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PREFACE 

Foreword to Module M 5 “Optics” 
 
This book is the fifth module of the discipline “Physics”. It helps to 

elucidate essential principles of wave optics.  
As a result of studying this module, students must know the defi-

nitions of such concepts as light ray, coherence, basic regularities of 
light propagation and such phenomena as interference, diffraction, 
polarization, dispersion. 
      Students must get skills to research and apply theoretical and 
experimental methods of wave optics, plot graphs, estimate errors of 
physical measurements and use theoretical knowledge for solving 
practical problems. 

It is necessary to understand, that such phenomena as interference, 
diffraction, polarization, dispersion are based on the wave nature of 
light.  
       The differential and integral calculus is widely used in the module 
but for the first year students’ level.  
     The module "Optics" consists of the following Study Units (SU): 

SU 1 — Electromagnetic properties of light; 
SU 2 — Interference of light;  
SU 3 — Diffraction of light;  
SU 4 — Polarization of light; 
SU 5 — Dispersion of light; 
SU 6 — Laboratory works; 
SU 7 — Individual home tasks; 
Supplementary SU — Key words, Help tables. 
The Preliminary unit contains the basic concepts and laws of 

electricity and magnetism and oscillations and waves that are necessary 
to study efficiently this module and a glossary with explanations of 
mathematics and physics terminology.  

“Study Units 1–5” include theoretical material, test questions, sample 
problems, as well as problems for work in class. “Study Unit 6” gives 
instructions on how to perform laboratory works. “Study unit 7” 
contains problems to be solved by students on their own. 
“Supplementary Units” are aimed at facilitating the module study.  

For effectiveness, we advise using self-check questions. Each question 
is provided with information where to find an answer. Concepts, which are 
studied in the module, are basic for all engineering fields of study; they are 
used in aeronavigation, radiolocation, technical electrodynamics etc. 
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Study Unit 1 
 
 

ELECTROMAGNETIC PROPERTIES OF LIGHT 
 

Optics is a science about light phenomena. Historically it has two 
stages of development. The first stage corresponds to classical or 
wave optics (till 1900) and is based on the wave nature of light; the 
second one is connected with a discovery of photons — quanta of 
electromagnetic energy (so cold quantum optics).  

In this manual we shall treat the wave (classical) optics that 
considers light as electromagnetic waves. 

As it was pointed in Module 4 “Oscillation and Waves”, Maxwell 
established that light is an electromagnetic wave.  So, light phenomena 
must be described by the same equations that express the origin and 
propagation of electromagnetic waves including their interaction with 
substances.    

According to the Maxwell’s electromagnetic theory, we have to 
regard three characteristics of substance: permittivity ε , permeability 
μ  and conductivity σ . Conductivity σ  determines absorption of 
waves, and permittivity ε and permeability μ  determine the phase 
velocity of the electromagnetic waves propagation in a medium 

= εε μμ0 01/v . 

As the phase velocity of light in vacuum is: 

0 01/с= ε μ  ( 1ε = , 1μ = ), so = εμ/v c . 

The ratio of the speed of light in vacuum c to its phase velocity in a 
medium v  is called the absolute refractive index n: 

cn =
v

, 

where n = εμ .  

     For the majority of transparent substances 1μ = , therefore n = ε .  
The refractive index characterizes the optical density of the medium: 

a medium with constn = is called optically homogeneous, a medium 
with a greater n is called optically denser. 
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A line along which light energy propagates is called a ray. In 
optically homogeneous medium for a plane or spherical wave the rays 
are straight. In isotropic medium the rays are perpendicular to the wave 
surfaces, in anisotropic medium they are not.  

 
1.1. Reflection and Refraction of Plane Electromagnetic  

Waves at Interface Between Two Dielectrics 
 
Experiments show that if a light wave falls on the interface between 

two dielectrics, it is divided into two waves: one of them is reflected on 
the interface and is propagated in the first medium, and the second wave 
is refracted and propagated in the second medium. It may be shown that 
the frequencies of the reflected and refracted waves coincide with that 
of the falling (incident) wave. 

  
1.1.1. Constancy of Wave Frequency at Reflection and Refraction 

Let us regard a plane electromagnetic wave that falls on the infinite 
interface between two homogeneous isotropic dielectrics with the 
refractive indexes 1n  and 2n . Let us determine the direction of 
propagation by means of the wave vector k  for the incident wave, the 
wave vector k ′  for the reflected wave and the wave vector k ′′  for the 
refracted wave. The behavior of the wave at the interface where free 
charges and currents are absent is determined by the boundary 
conditions:  

1 2E Eτ τ= ,   1 2H Hτ τ= ,                                 (1.1) 
where 1Eτ , 2Eτ  and 1Hτ , 2Hτ  are the tangential components of electric 
and magnetic field intensities in the first and second media (see Module 3 
“Electricity and Magnetism”, subsections 1.5 and 4.3).  

The electric field intensity of the incidence wave that propagates in 
the direction of vector  k  may be presented in the form: 

( )
0 .i t krE E e ω −=                                      (1.2) 

According to the superposition principle (see subsection. 2.1) the 
electric field intensity in the first medium is determined by the 
intensities of the incident and reflected waves: 

( ) ( )
1 0 0

i t kr i t k rE E E E e E e ′ ′ω − ω −′ ′= + = + ,                        (1.3) 
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and in the second medium  by the intensity of the refracted wave only:  
( )

2 0
i t k rE E e ′′ ′′ω −′′= .                                         (1.4) 

Here 0 0
iE E e α= , 0 0

iE E e ′α′ ′= , 0 0
iE E e ′′α′′ ′′=  are the complex 

amplitudes of the incident, reflected and refracted waves; α , ′α , ′′α  
are the initial phases of these waves correspondingly; r  is the position 
vector that starts arbitrary and ends at the wave falling point at the 
interface of dielectrics.  

According to the equation (1.1), the tangential components at the 
interface must be the same: 

( ) ( ) ( )
0 0 0

i t kr i t k r i t k rE e E e E e′ ′ ′′ ′′ω − ω − ω −
τ τ τ′ ′′+ = .                  (1.5) 

For this equality at any time and at any point at the interface such 
conditions are necessary and sufficient:  

t t t′ ′′ ′ ′′ω = ω = ω ⇒ ω = ω = ω .                           (1.6) 

r r r r r rkr k r k r k r k r k r k k k′ ′′ ′ ′′ ′ ′′= = ⇒ = = ⇒ = = ,          (1.7) 

where rk , rk ′ , rk′′  are the projections of the wave vectors onto the vector .r  
It follows from the equation (1.6), that the frequency of the 

electromagnetic wave at reflection and refraction does not change.  
 

1.1.2. Relation between Angles of Incidence,  
Reflection and Refraction 

 
Let us regard a plane electromagnetic wave that falls on the interface 

between two homogeneous isotropic dielectrics with the refractive 
indexes 1n  and 2n  (Fig. 1.1).  
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Fig. 1.1  
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Let us determine the direction of propagation with the aid of the 
wave vector k for the incident wave, the wave vector k ′ for the 
reflected wave and the wave vector k ′′ for the refracted wave. The 
angles ϑ , ′ϑ  and ′′ϑ  that are counted from the normal Z, are called the 
angle of incidence ( ϑ ), the angle of reflection ( ′ϑ ) and the angle of 
refraction ( ′′ϑ ). 

Law of reflection of light: the reflected and incident rays and the 
normal to the point of incidence lie in one plane; the angle of reflection 
equals the angle of incidence:    

 ′ϑ = ϑ .                                              (1.8) 
Law of refraction of light (Snell’s law): the refracted and incident 

rays and the normal to the point of incidence lie in one plane; the ratio 
of the sine of the angle of incidence to the sine of the angle of refraction 
is constant for given substances and is equal to the relative refractive 
index of these substances:     

                                     12
sin
sin

nϑ =
′′ϑ

.                                       (1.9) 

The relative refractive index of the second substance with respect to 
the first one equals the ratio of their absolute refractive indices 1 1/n c= v  
and 2 2/n c= v . Therefore, 

  2 1
12

1 2

nn
n

= = v
v

.                                        (1.10) 

In the general case a refractive index depends on a wave length, 
temperature and pressure. 

Transforming the equations (1.9) and (1.10) as: 

1 2sin sinn n ′′ϑ = ϑ , 

we may understand, that when light passes from an optically less denser 
medium to an optically denser one ( 21 nn < ), the angle of incidence is 
greater then the angle of refraction ′′ϑ > ϑ (Fig. 1.1). On the contrary, if 
light passes from an optically denser medium to an optically less denser 
one ( 21 nn > ), the angle of refraction is greater then the angle of 
incidence ′′ϑ < ϑ  and the refracted ray moves away from a normal to the 
interface of the media (Fig. 1.2, a).  
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If the angle of incidence ϑ  increases, the angle of refraction 
′′ϑ grows even more rapidly (Fig. 1.2, b) and, at so called the critical 

(limit) angle of incidence crϑ , the angle of refraction becomes equal 
/ 2′′ϑ = π  (Fig. 1.2, c). It is clear that  

 cr 2 1 21sin /n n nϑ = = ,   ( 21 nn > ).                      (1.11) 

 

′′ϑ  

′ϑ  ϑ  

n2 < n1 
n1

ϑ
n1

n2 < n1 ′′ϑ n2 < n1 90° 
n1

crϑ
cr′ϑ  

′ϑ

 
                а                                          b                                     c 

Fig. 1.2  
 
For the angles of incidence crϑ > ϑ  (i.e. from crϑ  to / 2π ), the light 

wave penetrates into the second medium to a distance of the order of a 
wavelength λ  and then returns to the first medium. This phenomenon is 
called total internal reflection. 

Phenomenon of total internal reflection is used, for example, in a 
right-angle prism to return the direction of rays on о90  and о180  or to 
overturn the image (Fig. 1.3 a, b, c). 
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1.1.3. Fresnel’s Formulas 

 
For a complete description of reflection and refraction of light it is 

necessary to know the relation between the amplitudes and phases of 
electromagnetic waves at the interface of two media. These relations 
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were derived first by Fresnel (1823) and they are called Fresnel’s 
formulas. Using Maxwell’s electromagnetic theory it is possible to 
obtain these formulas.  

We know that what oscillates in an electromagnetic wave are the 
vectors E  and H . But the most actions of light (photoelectrical, 
photochemical, physiological, etc.) are due to the oscillations of the 
electric field intensity vector .E  Therefore we shall regard in the 
following the behavior of this electric vector E  (sometimes it is called 
the light vector) remembering, that the magnetic vector H is always 
perpendicular to it.    

Assume that a plane electromagnetic wave falls on the interface of 
two transparent homogeneous and isotropic media. As in the general 
case light is natural, the vector E  (and H ) oscillations occur in all 
planes and change with time. But at any moment of time each of these 
vectors may be resolved on two components, directed parallel and 
perpendicular to the plane of incidence. Therefore we shall consider two 
cases: 

1) the electric vector lies in the plane of incidence (||) (and the 
magnetic vector is perpendicular to it); 

2) the electric vector is perpendicular to the plane of incidence ( ⊥ )  
(and the magnetic vector lies in it). 

These two cases are shown in Fig. 1.4, a and b.  
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As it follows from Maxwell’s equations, there is a relation for the 
amplitudes of a plane electromagnetic wave: 0 0 0 0E Hε ε = μ μ  (see 
Module 4 “Oscillations and Waves”, subsection 4.2). For transparent 
dielectrics 1μ ≈  (in an optical region of spectrum), so the absolute 
refractive index is n = ε , and the magnetic field intensity is:  

0 00
0 0

0 0 0/
n E n E

H E
Z

ε ε= = =
μ μ ε

,                 (1.12)  

where the constant value 0 0/ 377Z = μ ε = Ω  is called the wave 

resistance of  vacuum. As at a certain space point the vectors E  and H  
oscillate in phase, the connection between the amplitudes [the equation 
(1.12)] holds also for the instantaneous values:   

Z
nEH = .                                       (1.12a) 

For the case shown in Fig. 1.5, а, according to the boundary 
conditions the equation (1.1) and the equation (1.12а), we get: 

cos cos cosE E E′ ′′ ′′ϑ + ϑ = ϑΙΙ ΙΙ ΙΙ ;   1 1 2n E n E n E′ ′′− =ΙΙ ΙΙ ΙΙ .       (1.13) 

According to the equations (1.6) and (1.7), at the interface of two 
dielectrics the phase factor exp( )t krτω −  is the same for the incident, 
reflected and refracted waves. Therefore the ratio of the instantaneous 
values of electric field intensities of these waves is equal to the ratio of 
their amplitudes. The ratio 0 0/ /E E E E′ ′=ΙΙ ΙΙ ΙΙ ΙΙ  we denote as ΙΙr , and 

0 0/ /E E E E′′ ′′=ΙΙ ΙΙ ΙΙ ΙΙ  — as ΙΙt .  
Here 0E ΙΙ , 0E′ΙΙ  and 0E′′ΙΙ  are, in general, the complex amplitudes of 

the plane wave that is polarized parallel to the plane of incidence.  
The values ΙΙr  and ΙΙt  are called the amplitude coefficients of 

reflection and transmission for a plane wave, polarized in the plane of 
incidence.  

Now the equation (1.13) may be rewritten as: 
cos cos cosr t ′′ϑ + ϑ = ϑΙΙ ΙΙ ;   1 1 2n n r n t− =ΙΙ ΙΙ .         (1.14)  

Solving this system of equations using the law of refraction 
2 1sin / sin /n n′′ϑ ϑ = , we obtain: 
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sin 2 sin 2 tg( )
sin 2 sin 2 tg( )

EEr
E E

′′ ′′ ′′ϑ − ϑ ϑ − ϑ= = = − = −
′′ ′′ϑ + ϑ ϑ + ϑ

0ΙΙΙΙ
ΙΙ

ΙΙ 0ΙΙ

;       (1.15) 

2cos sin
sin( )cos( )

EEt
E E

′′′′ ′′ϑ ϑ= = =
′′ ′′ϑ + ϑ ϑ − ϑ

0ΙΙΙΙ
ΙΙ

ΙΙ 0ΙΙ

.           (1.15a)  

For the case shown in Fig. 1.6, b, the boundary conditions (1.1) are: 

⊥⊥⊥ ′′=′+ EEE ;  1 2( )cos cosn E E n E⊥ ⊥ ⊥′ ′′ ′′− ϑ = ϑ .     (1.16)  

Performing calculations similar to the previous, we get: 

0

0

sin( )
sin( )

EEr
E E

⊥⊥
⊥

⊥ ⊥

′′ ′′ϑ − ϑ= = = −
′′ϑ + ϑ

;                    (1.17)  

0

0

2cos sin
sin( )

EEt
E E

⊥⊥
⊥

⊥ ⊥

′′′′ ′′ϑ ϑ= = =
′′ϑ + ϑ

,                (1.17a)  

where ⊥0E , 0E ⊥′  and 0E ⊥′′  are the complex amplitudes; ⊥r  and ⊥t are the 
amplitude coefficients of reflection and  transmission for a plane wave, 
polarized perpendicular to the plane of incidence.  

Relations (1.15), (1.15а) and (1.17), (1.17а) between the complex 
amplitudes of the incident, reflected and refracted waves are called 
Fresnel’s formulas.  

Based on the Fresnel’s formulas, we may obtain all the relations 
between the phases of the incident, reflected and refracted waves in all 
possible cases. For simplicity we assume that light falls normally on the 
interface ( 0′′ϑ = ϑ = ). At small angles of incidence, the sines and 
tangents in the equations (1.15) and (1.17) may be replaced by the 
angles themselves, so, the law of refraction (1.12) gets the form 

2 1/ /n n′′ϑ ϑ = . Then, 

0 1 2

0 1 2

( ) ( / 1)
( ) ( / 1)

E E n nr r
E E n n

⊥
⊥

⊥

′ ′ ′′ ′′ −ϑ − ϑ ϑ ϑ −= = = = − = − =
′′ ′′ϑ + ϑ ϑ ϑ + +

0ΙΙ
ΙΙ

0ΙΙ

.    (1.18)    

Taking into account that 0 0 0E E E ⊥= +ΙΙ , and 0 0 0E E E ⊥′ ′ ′= +ΙΙ , the 
equation (1.18) may be presented in a vector form: 

E
nn
nn

EE
nn
nn

E
21

21
0

21

21
0 +

−
=′⇒

+
−

=′ .                 (1.19)  

Performing similar calculations with the equations (1.15a) and (1.17a), 
we get:  
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0 0 1

0 0 1 2

2E E nt t
E E n n

⊥
⊥

⊥

′′ ′′
= = = =

+
ΙΙ

ΙΙ
ΙΙ

,                          (1.20)  

or, in a vector form, 

E
nn

n
E

21

12
+

=′′ .                                  (1.21)  

As it follows from the equation (1.21), vectors E ′′  and E  have the 
same direction at any moment of time, i.e. their oscillations are in-
phase. It means that at the interface the phases of the incident and 
refracted waves coincide. Namely, the refracted wave in all cases 
conserves the phase of the incident wave without any change.    

For the reflected wave [the equation (1.19)] vectors E ′  and E  also 
have the same direction, but only when 21 nn > . Namely, if a wave 
reflects from the optically less dense medium, its phase does not change. 
But when 21 nn < , the fraction in the equation (1.19) becomes negative, 
therefore the direction of vector E ′  is opposite to the direction of vector 
E . It means, that at the reflection of a wave from the optically denser 
medium its phase sharply changes by π .  

Indeed, for the complex amplitudes the equation (1.19) in the case 
21 nn <  may be written as: 

1 2
0 0

1 2

i in nE e E e
n n

′α α−′ = −
+

. 

Since 1ie± π = − , then 

( )1 2 1 2
0 0 0

1 2 1 2

i i i in n n nE e e E e E e
n n n n

′α ± π α α±π− −′ = =
+ +

. 

Two complex magnitudes are equal if their modules 

0
21

21
0 E

nn
nn

E
+
−

=′  and phases ′α = α ± π  are equal. The last equation 

means, that the phase changes sharply by π . This result is also true in 
the case of oblique incidence of light on the interface of two transparent 
isotropic dielectrics (see subsection 4.2.1).  

To find the relationships between the coefficients of reflection and 
transmission we may recall, that the intensity of an electromagnetic 
wave I is a period average value of an energy flux density, i.e. an 
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average value of Poynting vector S: 00~ HESI >=<  (see Module 4 
“Oscillations and Waves”, subsection 4.3). According to the equation 
(1.12), 00 ~ EnH , therefore 2

0~ EnI . By the definition, the 

coefficient of reflection is: 2
01

2
01 // EnEnIIR ′=′= , where I ′ , I are 

the intensities; 0E ′ , 0E  are the ordinary  amplitudes of the reflected 
and incident waves. According to the equation (1.19) we get: 

2

21

21
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+
−

=
′

=
nn
nn

I
IR .                                (1.22)  

It is seen, that R does not depend on the direction of the wave 
incidence: from the first medium into the second, or vice versa.  

Similarly, we find the transmission coefficient as the ratio 
2 2

2 0 1 0/ /T I I n E n E′′ ′′= = , or, with regard to the equation (1.21),  

2
21

21

)(
4

nn
nn

I
IT

+
=

′′
= .                              (1.23)  

Easy to see that in the absence of absorption 1=+ TR  (the law of 
energy conservation). Intensities I , I ′  and I ′′  may be calculated as the 
sum of corresponding parallel (||) and perpendicular ( ⊥ ) components.  

Let us estimate the reflection coefficient at normal (or nearly 
normal) incidence of light from air ( 11 ≈n ) into glass ( 2 1,5n ≈ ). In this 
case [see the equation (1.22)] 0.04R = , i.e. 4 % of the incident energy 
reflects and 96 % passes through the glass. 

Taking into account the equations (1.15) and (1.17), the equations 
for the reflection coefficients for polarized light in the case of oblique 
incidence may be represented as: 

2
2 tg( )

tg( )
r

′′⎡ ⎤ϑ − ϑρ = = ⎢ ⎥′′ϑ + ϑ⎣ ⎦
ΙΙ ΙΙ ,   

2
2 sin( )

sin( )
r⊥ ⊥

′′⎡ ⎤ϑ − ϑρ = = ⎢ ⎥′′ϑ + ϑ⎣ ⎦
.        (1.24)     

If natural light falls on the interface (all the directions of the electric 
vector oscillations are equally probable), the wave energy is divided 
equally between the parallel and perpendicular components. So the total 
coefficient of reflection is:  

2
⊥ρ + ρρ = ΙΙ .                                         (1.25)  
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1. What does optics study? 
2. Give the definitions of the refractive index of a medium. 
3. Does the frequency of electromagnetic wave change at reflection or 

refraction?    
4. Formulate the law of reflection of light. 
5. Formulate the law of refraction of light. 
6. What is the phenomenon of total internal reflection? 
7. What is the limit (critical) angle of total internal reflection equal to? 
8. What do Fresnel’s formulas describe? 
9. How does the phase of a light wave that is reflected from an optically 

denser medium change? 
 
 
 
 
 
 

Problem 1. Show, that in the case of refraction in a prism with a 
small angle of refraction ϑ, a ray deviates from its initial direction on an  
angle ( )1nα = − ϑ  regardless of the angle of incidence, if this angle 
is also small. 

Solution. As the angles of incidence are 
small, the sines in the law of refraction may 
be replaced by the angles themselves.  

Using the law of refraction for the front 
and back surfaces of the prism (Fig. 1.5) we 
obtain the relations: 

11 ini ′= , 22 ini ′= , 1 2 .i i′ + = ϑ      (1.26) 

As it is shown in Fig. 1.1, the required 
angle is equal to 

( ) ( )2211 iiii −′+′−=α .         (1.27) 

After substitution the angles from the 
equation (1.26) into the equation (1.27) we get: 

( 1) .nα = − ϑ  
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Fig. 1.5 

Test Questions ? 

     Sample Problems 



 

15 

 
 
 

1. The angle of incidence of light on a glass plate (n = 1.5) is. 60°. 
After passing through the plate the ray shifts at 15 mm. What is the 
thickness of the plate? (≈ 28 mm) 

2. The refractive index for glass equals 1.52, and for water — 1.33. 
Find the limit angle of total internal refraction for the interface: 1) glass — 
air; 2) water-air; 3) glass-water. (41.1°; 48.7°; 61°) 

3. A light ray falls at an angle i on a body with the refractive index n. 
Find the relation between і and n if the reflected ray is perpendicular to 
the refracted one. (tani = n) 

4. Find the speed of light in a substance if it is known, that at the 
angle of incidence 45°, the angle of refraction is 30°. (2.13·108 m/s) 

 

Problems 
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Study Unit 2 
 
 

INTERFERENCE OF LIGHT 
 

2.1. Superposition Principle 
 

Interference of light is a vivid example of the demonstration of 
the wave properties of light. 

Different optical experiments pointed, that the light beams 
propagate independently. Therefore, the resulting intensity at a given 
space point equals the vector sum of intensities of separate waves. 
This statement is called the principle of superposition. Superposition 
may be considered for waves of any nature (sound, electromagnetic, 
on the water surface, etc.). 

For the light waves, that are electromagnetic waves, the 
superposition principle mathematically means that the electric field 
intensity vector (so called light vector) 1E  of one wave simply is 
added to the electric field intensity vector 2E  of another wave 
without any change:  

21 EEE += , 

or for any number of light waves:  

∑=
i

iEE . 

 
2.2. Conception of Coherence. Interference of Light Waves 

 
Before considering conception of coherence let us recall addition of 

oscillations and waves. 
Let there be two monochromatic waves of the same frequency that 

superpose and, at a certain point of space, they produce oscillations of the 
same direction x with the amplitudes 1A  and 2A : 

1 1 1cos( )x A t= ω + ϕ  and 2 2 2cos( )x A t= ω + ϕ . 

The resultant oscillation at the given point has the same frequency 
and its amplitude is:  
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 2 2
1 2 1 2

2 2 cosA A A A A= + + δ ,                          (2.1) 

where δ is the phase difference 2 1 2 1( ) ( )t tδ = ω + ϕ − ω + ϕ = ϕ − ϕ .  
The initial phase determines by the equation:  

 1 1 2 2

1 1 2 2

sin sintg
cos cos

A A
A A

ϕ + ϕϕ =
ϕ + ϕ

                          (2.2) 

(see Module 4 “Oscillations and Waves”, subsection 1.7). 
We see, that the amplitude of the resultant oscillation depends on the 

phase difference δ . If this phase difference of oscillation set up by the 
waves varies chaotically in time, corresponding waves (and oscillations) 
are called incoherent. In this case δ  varies continuously and takes on 
any values with an equal probability. Therefore, the time-averaged 
value of cosδ  equals zero. Thus,  

>>> <+=<< 2
2

2
1

2 AAA . 

As the intensity is proportional to the average value of the square of 
the wave amplitude >< 2~ AI , it may be written as: 

21 III += .                                       (2.3) 

So in the case of the superposition of incoherent waves (or 
oscillations) the resultant intensity equals the sum of the intensities of 
separate waves (or oscillations).  

If the phase difference δ  remains constant in time, corresponding 
waves (and oscillations) are called coherent. In the case of 
superposition of coherent waves, cosδ  has a constant value and 
according to the equation (2.1) the resultant intensity is:   

δcos2 2121 IIIII ++= .                               (2.4) 

We see, that in this case the resultant intensity depends on cosδ : if 
cos 0δ > , the resultant intensity 21 III +>  (amplification of waves); if 
cos 0δ < , the resultant intensity 21 III +<  (attenuation of waves). 
Thus, the resultant intensity differs from the sum of intensities of 
separate waves (or oscillations). Such superposition of coherent waves 
that results in redistribution of their intensities in space is called the 
interference of waves.  
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The points, where the waves amplify each other, are called the 
maxima of interference; the points, where the waves attenuate each 
other, are called the minima of interference;  

The interference is seen the most clearly when the intensity of both 
waves is the same: 021 III == . Then, according to the equation (2.4), if 
the phase difference 2 mδ = ± π , where 0,1, 2 ...m = , the resultant 
intensity 04II =  (maximum of interference); if the phase difference 

2 mδ = ± π , where 0,1, 2 ...m = , the resultant intensity 0=I  (minimum 
of interference). Note, that for incoherent waves we get the same 
resultant intensity 02I I=  everywhere [the equation (2.3)]. 

Thus, two waves are called coherent, if their phase difference does 
not depend on time. The sources of such waves are called the coherent 
sources (for example, the Sun, the lamps, the identical radio antennas). 
The overlapping of coherent ways leads to the interference and 
corresponding interference pattern with places of maximum and 
minimum intensity is observed. For light monochromatic waves 
maximum and minimum intensity correspond to light and dark places. 
The region where coherent waves overlap is called the interference 
field.   

Natural light sources (for example, lamps, even monochromatic) are 
not coherent. It is due to the fact that light is emitted by many individual 
atoms. Each atom emits a wave during 10–9 – 10–8 (so called a wave 
train of a length of about 3 m) and then a new emitted wave has another 
phase. So the phase difference of emitted waves changes over very short 
time intervals and therefore these waves are not coherent. When they 
overlap, we observe only an average uniform distribution of 
illumination, but not their interference. 

To obtain coherent light waves we must split the wave emitted by a 
single source (atom) into two parts (by means of reflections or 
refractions). If these waves then overlap, interference in nature light is 
observed.  

Let there be two coherent point sources 1S  and 2S  of 
monochromatic waves and the oscillations of vector E  occur 
perpendicular to the plane of the drawing (Fig. 2.1).  

The interference of these waves gives the interference pattern on 
screen E. 
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Fig. 2.1 

 
The position of point P on the screen is characterized by the 

coordinate x (the origin is at point О relatively to which the sources 1S  
and 2S  are arranged symmetrically). Also we count, that the distance 
between the sources d is considerably smaller than the distance l to the 
screen. The distance x to point Р is also considerably smaller than l. 

Let us assume that two coherent waves with a wavelength λ  
coincide at point Р. As at the sources 1S  and 2S  oscillations of vector  
E  are identically directed, we may use the equations of oscillations in 
scalar form. Then the first and the second waves excite the oscillations 
at point Р as: 

1 1 1 1 1 1cos( ) cos( );E A t kr A t= ω − + ϕ = ω + α  

2 2 2 2 2 2cos( ) cos( ),E A t kr A t= ω − + ϕ = ω + α  

( 1 1 1krα = ϕ − ; 2 2 2krα = ϕ − ), and their superposition is: 

1 2 cos( ).E E E A t= + = ω + α  

The amplitude А and the phase α of the resulting oscillation at 
the point Р may be found according to the equations (2.1) and (2.2). 
But in this case the phase difference δ  is determined not only by the 
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difference of initial phases, but also by the difference of the paths 1r  
and 2r , that is called the geometrical path difference.  

Then the phase difference of two waves at the point Р may be written 
as: 

[ ] [ ]2 1 2 1 2 1 2 1( ) ( ) ( )k r r k rδ = α − α = − − − ϕ − ϕ = − Δ − ϕ − ϕ , 

where 12 rrr −=Δ  is the geometrical path difference of two waves. 
According to the equation (2.4), the intensity at this point is: 

[ ]1 2 1 2 2 12 cos ( )I I I I I k r= + + Δ − ϕ − ϕ                (2.5) 

(sign “minus” disappears because cosine is an even function). As the 
waves are coherent, 2 1 constϕ − ϕ = , so the intensity distribution at 
different points of the screen depends on geometrical path difference 

rΔ  (Fig. 2.1). 
For simplicity we may take 2 1 0ϕ − ϕ = . Then, the interference 

pattern is symmetrical about point О (Fig. 2.1) and the intensity is: 

1 2 1 22 cos( )I I I I I k r= + + Δ ,                            (2.6) 

where 
2k r rπδ = Δ = Δ
λ

                                      (2.7) 

is the phase difference that has appeared due to the path difference;  
λ  is the wavelength in the medium.  

The equations (2.6) and (2.7) establish, that if  r mΔ = ± λ  
( 0,1, 2, ...m= ), i.e. when the geometrical path difference equals an 
integral number of wavelengths, the resultant intensity is maximum.  

Corresponding phase difference is 2mδ = ± π , and the oscillations at 
these points occur in phase. If (2 1) /2r mΔ = ± + λ  ( 0, 1, 2, ...m = ), i.e. 
when the geometrical path difference equals a half- integral number of 
wavelengths, the resultant intensity is minimum.  

Corresponding phase difference is (2 1)mδ = ± + π, and the 
oscillations at these points are in counterphase. 

Thus, the equation   
r mΔ = ± λ , 2k r mδ = Δ = ± π ,  ( ,...2,1,0=m )              (2.8) 

is the condition for an interference maximum, and the equation  
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(2 1) / 2r mΔ = ± + λ , (2 1)k r mδ = Δ = ± + π ,  ( ,...2,1,0=m )    (2.9) 
is the condition for an interference minimum. 

 
2.3. Optical Path Difference 

 
In general, the interfering waves can propagate in several media with 

different refractive indices. Assume that up to the observation point the 
first wave travels the path 1r  in a medium with the refractive index 1n . 
The second wave travels the path 2r  in a medium with the refractive 
index 2n . The wavelengths in the media are 0 11 / nλ = λ  and 

2 0 2/ nλ = λ , where 0λ  is the wavelength in vacuum. Corresponding 
wave numbers are 1 12 /k = π λ  і 2 22 /k = π λ . Then the phase difference  
(2.7) has a form: 

2 1
2 2 1 1 2 2 1 1

0 2 0 1 0 0

2 22 ( ) ,
/ /
r rk r k r n r n r

n n
⎛ ⎞ π πδ = − = π − = − = Δ⎜ ⎟λ λ λ λ⎝ ⎠

  (2.10) 

where a quantity  
121122 LLrnrn −=−=Δ                            (2.11) 

is called the optical path difference.  
If the waves propagate in the same medium with the refractive index 

21 nnn == , the optical path difference equals the product of the 
refractive index and the geometrical path difference: 

2 1( )n r r n rΔ = − = Δ .                                 (2.12) 
The optical path nrL =  points that the time spent by light in 

covering the distance r with the speed v in the medium is the same as in 
vacuum to cover the optical path L with the speed с. 

In fact, 

/
L nr r rt
c c c n

= = = =
v

. 

Using the optical path difference we may rewrite the equations (2.8) 
and (2.9) in the form of (2.8a) and (2.9a) respectively. 

Eq. (2.8а) 0mΔ = ± λ , 2k mδ = Δ = ± π ,   ( 0, 1, 2,...m = )  

for the condition for an interference maximum, and 
Eq. (2.9а) 0(2 1) / 2mΔ = ± + λ , (2 1)k mδ = Δ = ± + π  ( 0, 1, 2, ...m = )  

for the condition for an interference minimum. 
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It is clear, that if the waves propagate in vacuum ( 1=n ) or in air 
( 1≅n ), the optical path difference Δ  coincides with the geometrical 
path difference rΔ=Δ . 

 
2.4. Width of Interference Fringes  

 
Let us return to Fig. 2.1 and consider the interference pattern that is a 

system of successive rectilinear light and dark fringes (bands). Let us 
find the width of the interference fringes and the distance between them.  

To obtain a distinguishable interference pattern, the conditions 
ld <<  and lx << must be fulfilled. Under these conditions the right 

triangles with a small angle ϑ (in practice о1ϑ << ) may be considered 
as similar, and the average distance from the sources to the observation 
point as lrr ≈+ 2/)( 21 . Thus, mathematically we get: 

lxdr
l
x

d
r /=Δ⇒=Δ . 

Multiplied by the refractive index n of the medium, we get the 
optical path difference:  

/ .n r nxd lΔ = ⋅ Δ =                                 (2.13) 
From the equations (2.8а) and (2.13) we find the positions of the 

interference maxima (light fringes) on the screen: 

0/nxd l mΔ = = ± λ ⇒  

max /x ml d⇒ = ± λ ,    ( ,...2,1,0=m ),                   (2.14) 

and from the equations (2.9а) and (2.13) — the positions of the 
interference minima (dark fringes) on the screen: 

0/ (2 1) / 2nxd l mΔ = = ± + λ ⇒  

min (2 1) / 2x m l d⇒ = ± + λ ,    ( ,...2,1,0=m ),             (2.15) 
where 0 / nλ = λ is the wavelength in the medium between the sources 
and the screen.  

The number m is called the order of interference. The distance 
xΔ between two adjacent maxima or minima that corresponds to a 

change of m by one is called the width of an interference fringe.  
It follows from the equations (2.14) and (2.15) that the width of a 

fringe is: 
/ .x l dΔ = λ                                       (2.16) 
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The width of the interference fringe may be expressed through an 
convergence angle of the rays ψ (Fig. 2.1). Since as usual this angle is 
small, it may be seen that d l= ψ , or /d lψ = . Substituting this equation 
into Eq. (2.16), we get: 

/ .xΔ = λ ψ                                      (2.17) 
The angular width of the interference fringes is the angular distance 

between the adjacent maxima that is observed in the location of sources. 
Indeed, the position of maxima (light fringes) can be determined by 
means an angle /x lϑ=  (Fig. 2.1). The condition of maximum is  

0/ndx l mΔ = = ± λ , thus /m dϑ = ± λ  ( 0 / nλ = λ ), and the angular width 
becomes equal to: 

d
λΔϑ =    or   x

l
ΔΔϑ = .                             (2.18) 

The interference pattern is the alternation of light and dark fringes 
(bands) only in monochromatic light constλ = . The interference pattern 
in white light consists of the alternation of colored fringes, as the 
positions of minima for one wavelength coincide with the positions of 
maxima for another wavelength.  

By measuring the distances xΔ between the adjacent maxima for a 
certain color and knowing l and d, the wavelength corresponding to this 
color may be found [see the equation (2.16)]. It is exactly from the 
experiments on the interference of light, the wavelengths for light rays 
of various colors were determined for the first time (Table 2.1)   

Table 2.1 
Correspondence colors and wavelengths for visible light  

Color λ , nm Color λ , nm 
Red 760–630 Blue-green 500–450 
Orange 630–600 Blue 450–430 
Yellow 600–570 Violet 430–00 
Green 570–500   

 
Recall, that the rays with wavelengths greater than 760 nm and less 

than 400 nm, the human eye does not perceive. The first of them are 
called infrared, the second — ultraviolet. Light of a certain wavelength 
( constλ = ) is called monochromatic. 
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2.5. Intensity Distribution 

Let us consider the case of a particularly clear interference, when the 
intensities of the coherent sources 1S  and 2S  are the same 021 III == . 
According to the equation (2.6) the resultant intensity at the points, 
where the phase difference equals δ  [the equation (2.10)], has a form: 

2
0 02 (1 cos ) 4 cos / 2I I I= + δ = δ .                    (2.19) 

The phase difference δ  depends on the optical path difference  
02 /δ = πΔ λ , and as lnxd /=Δ  [Eq. (2.13)], then 2 /xd lδ = π λ  

( 0 / nλ = λ ). Finally, we obtain:  

2
04 cos xdI I

l
π=

λ
.                                  (2.20) 

The phase difference δ grows proportionally to x. Hence, the intensity 
varies along the screen in accordance with the law of cosine square. The 
right-hand part of Fig. 2.1 shows the dependence of I on x in 
monochromatic light. The intensity varies from 0 at points  minx  to 04I  at 
points maxx .  

On the whole it may be stated that the interference is the phenomenon of 
superposition of coherent waves that leads to a steady in time redistribution 
of a wave energy flux in the form of interference maxima and minima.  

 
2.6. Coherence 

 
Let us return to the conception of coherence and consider it in 

details. Two types of coherence are distinguished: time (temporal) and 
space (spatial) coherence.  

 
2.6.1. Time Coherence. Coherence Length 

An absolute monochromatic wave is an idealized notion. A real light 
wave is more or less nonmonochromatic. It may be considered as a set 
of monochromatic waves whose lengths vary in a finite interval from λ  
to λ + Δλ .  

Let us assume, that the lengths of the monochromatic waves 
uniformly and continuously fill sufficiently narrow interval from λ  to 
λ + Δλ and intensity of the waves is approximately the same. Let us take 
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from this interval two extreme waves with the wavelengths λ  and 
′λ = λ + Δλ  and find the condition under which the interference maxima 

of this pair of waves coincide. 
The distance of the m-th maximum from the center of the screen to the 

point Р (Fig. 2.1) is directly proportional to max ~x mλ  [see Eq. (2.14)]. 
Hence, the m-th maximum of the greater wavelength  ′λ > λ  is placed 
farther away from the center of the screen then the m-th maximum of 
the wavelength λ. Between these maxima there is a shift ( )m ′λ − λ and 
it will grow with the increasing of the interference order m. For a certain 
value of m this shift will reach the value of the wavelength λ, i.e. the 
path difference between these waves will be one wavelength 

( )m ′λ = λ − λ . It means that the interference maxima of two waves λ  
and ′λ  will coincide in the same place of the screen: 

m m′λ = λ + λ ,   or   ( ) ( 1)m mλ + Δλ = + λ .              (2.21) 
The positions of maxima for the extreme wavelengths of the spectral 

interval λ  and λ + Δλ are given in Fig. 2.2, a. Solid lines correspond to 
the order 1+m for the wavelength λ, dotted lines —to the order m for 
the wavelength λ + Δλ . In the shaded areas maxima of the 
intermediate wavelengths are located. 

The interference pattern is distinguished until the dip between 
adjacent maxima of the wavelength λ  is completely filled with the 
intermediate maxima of the wavelengths from the interval ( λ , λ + Δλ ). 
If the maximum of the m-th order for λ + Δλ  coincides with the 
maximum ( 1+m )-st order for λ , then all this dip will be filled with 
maxima of intermediate wavelengths (Fig. 2.2, a, the dip between the 4-
th and the 5-th orders of interference). It means that from this place the 
interference pattern becomes indistinguishable. The character of the 
smearing of the interference pattern (the disappearing of the interference 
fringes) is shown in Fig. 2.2, b.  

 
λ + Δλ 

m + 1 

m 4 3 2 1 0 
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λ

2 
   

x 
 

                               a                                                             b 

Fig. 2.2 
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Thus, the interference pattern becomes indistinguishable under the 
condition ( ) ( 1)m mλ + Δλ = + λ , where m is the limit interference order 
from which the fringes disappear. Hence we get   

/m ≈ λ Δλ .                                       (2.22) 
The quantity /λ Δλ  characterizes the degree of light 

monochromaticity: the greater it is, the light is more monochromatic.  
It can be seen from the equation (2.22) that the higher the 

interference order is, the narrower the spectral interval ∆λ must be, at 
which the interference pattern may still be observed. 

For non-monochromatic light the path difference when the 
interference pattern disappears corresponds to the interference order m 
[the equation (2.22)]. Such path difference is called the coherence 
length for optical radiation    

2
coh coh /l m l≈ λ ⇒ ≈ λ Δλ .                      (2.23) 

The coherence length is directly connected with the degree of light 
monochromaticity ( /λ Δλ ): the greater it is, the more the coherence 
length is.  

Thus, to obtain an interference pattern by splitting a natural wave 
into two parts, the optical path difference Δ must be smaller than the 
coherence length: 

cohlΔ < .                                  (2.24) 

As it is known, the waves emitted by the atoms in a single act of 
radiation retain regular only during a limited time interval. During this 
time an amplitude and a phase of atom oscillations are approximately 
constant (then they significantly vary). Such sequence of regular 
oscillations is called a train of waves or a wave train. Time of radiation 
of the wave train (i.e. time of an atom transition from the exited state to 
the normal one — one act of radiation) is called the duration of a train 
or the coherence time cohτ . The length of the train in space at a given 
moment of time may be presented as a small segment of sinusoidal 
oscillations and a wave may be considered here as monochromatic.  

The train length L and the coherence time are connected by the 
relation cohL с= τ , where с is the speed of light. The average space 
length of the train is about 3 m, and the time duration is 10–8 s. Thus, 
on an average, through such time intervals the radiation of one wave 
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train ends and the radiation of a new train starts. Besides the amplitudes, 
phases and polarizations of two successive trains are not related in any 
way. Now it becomes clear that to observe the interference pattern the 
train length must be equal to the coherence length cohL l= . So it is 
essential that the optical path difference Δ  is smaller (or equal) than 
the coherence length coh cohc lΔ ≤ τ = , otherwise the overlapping of 
different and independent trains takes place.   

Experiments show that the coherence length does not exceed a few 
tens of centimeters.   

Using the equation (2.23) the connection between the width of the 
spectral interval Δλ  and the coherence time cohτ  may be found: 

2

cohl
λΔλ ≈ ,  or  

2

cohc
λΔλ ≈
τ

.                         (2.25) 

As /сλ = ν , differentiation of this equation  yields 2/cΔλ = Δν ν  
and as a result we get: 

coh
1τ ≈

Δν
,                                       (2.26) 

where Δν is the width of the spectral interval on a scale of frequencies.  
From this equation it can be seen that the smaller the range of Δν  (or 

Δλ ) is, the greater the coherence time is. 
If coh (Cd) 30 cml = , coh (laser) 3 kml = , then the corresponding 

coherence time equals: 9
coh(Cd) 10 s−τ = , 5

coh(laser) 10 s−τ = . 
 

2.6.2. Space Coherence  
 
Let us consider the effect of the size of a light source on an 

interference pattern using Young experiment (1802). The English 
scientist Thomas Young observed the interference of light waves for the 
first time in history.  

The scheme of Young experiment is shown in Fig. 2.3, a. A sunlight 
beam falls on a narrow slit S and then on two narrow slits 1S  and 2S  
behind which there is a screen Е. The slits 1S  and 2S  become the 
sources of the coherent waves that overlap and form an interference 
pattern on the screen.  
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It is necessary to find out, at which the width of the slit S the 
observed interference pattern is still clear. We assume that radiation is 
monochromatic. 
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Fig. 2.3 
 

If the primary slit S is narrow enough, the slits 1S  і 2S may be 
considered as the sources of coherent cylindrical waves, formed by 
dividing a cylindrical wavefront from a common source S. Increasing of 
the width of the primary slit S leads to the scattering of the interference 
pattern and even to its complete disappearance. Thus, the dimensions of 
the source affect the formation of the interference pattern.   

In Fig 2.3, a the path of the rays from the upper edge (a solid line) 
and the lower edge (a dotted line) of the slit S is shown. The interference 
maxima produced by the rays from upper edge 1 are shown in Fig. 2.3, 
b as the solid lines, and the interference minima produced by the rays 
from lower edge 2 — as the dotted lines. In the shaded areas the 
interference maxima produced by the slit points between edges 1 and 2 
are located. 

If the slit S is infinitely narrow, the interference maxima from edge 
points 1 and 2 will coincide. But if the width of the slit increases, the 
interference pattern will scatter and disappear completely (in this case 
the interval between adjacent maxima will be completely filled with the 
intermediate maxima of the wavelengths from another points of the slit).    

The disappearance if the interference pattern, when the width of the 
slit S increases, signifies that the slits 1S  and 2S  are not coherent any 
more. We must find the greatest distance between the slits at which 
interference can still be observed.  



 

29 

Therefore we may introduce the notion of the coherence width 
cohh of the wave that falls on the slits 1S  and 2S , and connect this 

notion with the space coherence of the light source S.   
Under the width of the coherence cohh we understand the 

characteristic distance between the points of the surface that is 
perpendicular to the direction of wave propagation. (In Young 
experiment such surface passes through the slits 1S  and 2S ). 

Let us find the equation for cohh . For simplicity, assume that 
lba ==  (Fig. 2.3). Then the secondary sources 1S  and 2S cease to be 

coherent if the width s of the primary slit (S) becomes equal to the width 
of the interference fringe: xs Δ≈ . As /x l dΔ = λ  [Eq. (2.16)], these 
relations give: 

ds l≈ λ .                                          (2.27) 
The distance between two slits 1S  and 2S  that satisfies condition 

(2.27), is called the space coherence length 

coh /
l lh d
x s s l

λ λ λ λ≈ = ≈ ≈ ≈
Δ ϕ

,                    (2.28) 

where /s lϕ =  is the angular dimension of the slit 
S relative to a diaphragm with two slits 1S andі 

2S  (Fig. 2.4). It follows from the equation (2.28), 
that for fixed values λ  and l a space coherence 
length may be increased by reducing the width of 
the primary slit, or, equivalently, reducing its 
angular dimension ϕ . In Young experiment to 
observe clear (contrast) interference pattern the 
condition xs Δ< must take place, so 

ds l< λ    or   cohd h λ< ≈
ϕ

.                            (2.29) 

2.7. Methods of Producing of Coherent Light Beams  
  

Let us consider the certain optical schemes of the experiments where 
interference may be observed. They are connected with two methods of 
obtaining the coherence rays — the method of wavefront division and 
the method of amplitude division. 
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S ϕ

 
Fig. 2.4 
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2.7.1. Method of Wavefront Division  
 
The first example is Young experiment that was regarded already in 

subsection 2.3.2. In this case a primary wavefront divides onto two parts 
by passing through two closely located very narrow slits. The same 
effect may be obtained when a primary light refracts (Fresnel’s 
biprism). 

Fresnel’s Biprism. A light wavefront from a source S (a slit) divides 
(splits) with the aid of a biprism with a small refractive angle ϑ  
(Fig. 2.5). An interference pattern is seen on a screen E.  
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Fig. 2.5 

 

The angle of incidence of the rays on the biprism is not great. 
Therefor, all the rays are deflected by each half of the biprism through 
the same angle ϕ . It looks like two coherent cylindrical waves emerge 
from virtual sources 1S  and 2S in the same plane as S.  

It may be shown (see laboratory work 5 of SU 6) that when the 
refractive angle ϑ  of the biprism is very small and the angles of 
incidence of the rays on the face of the prism are not very great, all the 
rays are deflected through an identical small angle that is equal to: 

( 1)nϕ = − ϑ ,                                        (2.30) 

where n is the refractive index of the prism. 
The distance between the virtual sources 1S  and 2S  of the source S 

equals:   
 2 sin 2d a a= ϕ ≈ ϕ .                                  (2.31) 

The distance to the screen is bal += . The width of an interference 
fringe is found by the equation (2.16):  
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( ) 1
2 2

l a b bx
d a a
λ λ + λ ⎛ ⎞Δ = = = +⎜ ⎟ϕ ϕ ⎝ ⎠

.                  (2.32) 

If a plane wave falls on the biprism ( ∞→a ), the width of the 
interference fringes does not depend on the distance to the screen: 

2
x λΔ =

ϕ
.                                          (2.33) 

The maximum number N of fringes observed may be found by 
taking into account the size 2x b≈ ϕ  of the coherent waves overlap, 
namely:  

24x abN
x a b

ϕ≈ =
Δ λ +

.                                  (2.34) 

 
2.7.2. Method of Amplitude Division  

 
This method is suitable both for point and for linear sources and 

provides a much greater intensity of the interference fringes than the 
method of wavefront division. The coherent waves are formed under 
certain conditions due to the reflection of incident light on the top and 
the bottom surfaces of the transparent film (or plate). Interference of 
these rays results, for example, in the rainbow color of soap bubbles or 
thin films of oil or kerosene (gasoline), etc.   

Plane-Parallel Plate (Film). Assume that a plane monochromatic 
wave falls on a transparent glass plate. This wave may be considered as 
a parallel beam of rays. As the result of reflection on both surfaces of 
the plate, the primary wave splits onto two waves with about the same 
amplitudes. Note, that besides these reflected waves ( 1′  and 2′ ) a 
multiple reflection appears (Fig. 2.6), but intensity of these waves is rather 
small and we may take no account of them. 

The pass of the rays that are formed due to the refraction and 
reflection of light in a plane-parallel film is shown in Fig. 2.6. 

We assume that a plate with a refractive index n and a width d is 
placed into a medium with a refractive index 0n . Ray 1 falls on the 
surface of the film at the angle i. Rays 1′  and 2′  reflect on the top and 
bottom surfaces of the plate, and rays 1′′  and 2′′  pass through the plate. 
These rays, under certain conditions, may be coherent and interfere. Let 
us find these conditions.  
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Fig. 2.6 

 
The optical path difference of reflected rays 1′  and 2′  (Fig. 2.6) 

equals to: 
0( ) ( / 2)n AB BC n ADΔ = + − ± λ ,  

or 
0 0( ) / 2n AB BC n ADΔ = + − ± λ ,                    (2.35) 

where 0λ  is the wavelength in vacuum, 0 0/ nλ = λ  is the wavelength in 
a medium with a refractive index 0n . The term 2/0λ±  means that in 
the case of the wave reflection on an optically denser medium a wave 
phase sharply changes on π [see the equation (1.19)], i.e. half a 
wavelength is lost. If 0nn > , half a wavelength is lost  at the point A 
and the term 0 / 2λ  will have sign “minus”. If 0nn < , half a wavelength 
is lost at the point B and this term will have sign “plus”. 

A glance at Fig. 2.6 shows that rdBCAB cos/2=+  ( AB BC= ) 
and AD 2 sin sin 2 tg sinAB r i d r i= = . As the angles of incidence і and 
refraction r are connected by the relation 0/sin/sin nnri = , then 

rnrndAD cos/sin2 0
2= . Thus,   

2
0( ) 2 cos 2 1 sinn AB BC n AD nd r nd r+ − = = − =  

           
2

2 2 2 20
022 1 sin 2 sin .nnd i d n n i

n
= − = −              (2.36) 

Finally for the optical path difference we get 
2 2 2

0 02 sin / 2d n n iΔ = − ± λ .                           (2.37) 
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In practice, the medium surrounding the plate is, as usual, air  
( 10 ≅n , nn <0 ), therefore equation (2.37) is simplified to the form: 

2 2
02 sin / 2.d n iΔ = − − λ                             (2.37а) 

If reflected rays 1′  and 2′  are coherent, the condition of maxima for 
reflection is 0mΔ = λ , namely: 

2 2
02 sin ( 1/ 2)d n i m− = + λ ,                         (2.38) 

and of minima is 0( 1/ 2)mΔ = + λ , namely 
2 2

02 sin ( 1)d n i m− = + λ .                           (2.39) 

Interference may be observed not only in reflected but also in 
transmitted light. As a wave, that passes from the optically denser 
medium to the optically less denser one, does not change its phase (the 
loss of half a wave is absent), the optical path difference of rays 1′′  
and 2′′  that pass through the plate will be (Fig. 2.6): 

ind 22 sin2 −=Δ . 
Thus, the maximum of interference in transmitted light will 

correspond to the minimum of interference in reflected light, and vice 
versa. 

According to the equation (2.38) the position of maxima depends on 
the wavelength. Therefore, if sunlight falls on the plate (film), the 
interference pattern will form by the rays of different colors 
(wavelengths), and the plate acquires the coloring of a rainbow. 

To obtain interference of rays 1′  and 2′ , the conditions of both  time 
and space coherence must be performed. For the time coherence the 
path difference must not exceed the coherence length 2

0 0coh /l ≈ λ Δλ  [see 
the equation (2.23)].  

So condition (2.24) must be fulfilled:  
2 2 2

0 0 02 sin / 2 /d n i− − λ < λ Δλ ,  
or 

0 0 0
2 2

( / 1/ 2)
2 sin

d
n i

λ λ Δλ +<
−

. 
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As 0 0/ 1/ 2λ Δλ >> , we may disregard 1 / 2  in comparison with 

0 0/λ Δλ . The equation in 22 sin−  has a magnitude of the order of 
unity (for 5,1=n  the magnitude of this equation varies within the 
limits from 1.12 at о90i = , to 1,50 at 0=i ). Therefore, we can assume, 
that 

2
0 0/(2 )d < λ Δλ ,                                 (2.40) 

i.e. the double plate thickness must be less than the coherence length. 

For example, if 
о

5000Аλ =  and 
о

20 АΔλ = (for air 0λ ≈ λ ), the extreme 
thickness equals, according to the equation (2.40), 

2 о
55000 6 10 А 0,06 mm

2 20
d = ≈ ⋅ =

⋅
.                    (2.41) 

As to the space coherence: Fig. 2.6 shows that the distance DC 
between two reflected rays 1′  and 2′  is: 

in

idirdDС
22 sin

2sincostg2
−

== . 

If the same distance exists between the incident rays and does not 
exceed cohh  of the incident wave (the equation (2.28)), rays 1′  and 2′  
will be coherent. Thus,  

coh 2 2

sin 2
sin

d ih
n i

=
−

.                               (2.42) 

If 5,1=n , then for о45i =  we get coh 0,8h d= , and for o10i =  we get 

coh 0,1h d= . For normal incidence ( 0=i ) , coh 0h =  for any n. 
The coherence radius of sunlight cohh ~ 0,05 mm. At an angle of 

incidence of o45 ,i =  we may assume that cohh d≈ . Hence, for 
interference to occur, the following condition must be fulfilled: 

cohd h< , or   0,05 mmd < .                    (2.43) 

So we arrive to the conclusion that owing to the restrictions imposed 
by time and space coherence, interference is observed only if the 
thickness of the plate (film) does not exceed a few hundredths of a 
millimeter.  
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In practice interference is observed by placing in the path of the 
reflected rays a lens that gathers the rays at one of the points of the 
screen (or the part of the lens and the screen can be played by an eye 
and a retina).  

Plate (Film) of Varying Thickness (Wedge). Assume that a 
monochromatic light falls on a plate (film) in the form of a wedge with a 
small apex angle 1 .α << °  Parallel rays 1 and 2 reflect on the top and the 
bottom surfaces of this wedge (Fig. 2.7) 
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Fig. 2.7 

 

Now the reflected rays 1′  and 1′′  and, correspondingly, 2′  and 2′′  
will not be parallel. These rays will interfere at points P and Q on screen 
E and an interference pattern will be observed in the form of light and 
dark fringes parallel to the edge of the wedge. Usually for all points of 
the wedge with the same thickness d conditions of maxima or minima 
are equal. Thus, maxima and minima hold the points that correspond to 
the same thickness of the wedge; therefore they are called the fringes of 
equal thickness.  

Let us find the distance between the adjacent fringes (width of the 
fringe) Δх on the screen E (Fig. 2.7). As the apex angle is small 
( 1α << ° ), the optical path difference of rays 2′  and 2′′  may be found 
according to the equation (2.37а): 

2
02 sin / 2d n iΔ = − − λ ,                           (2.44) 

where d is the thickness of the wedge at the place where ray 2 falls on it; 
n is the refractive index; і is the angle of incidence of ray 2 on the top 
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surface of the wedge. Similarly the optical path difference of rays 1′  
and 1′′ is: 

2
1 02( ) sin / 2d l n iΔ = + − − λ ,                     (2.45) 

where  ld +  is the thickness of the wedge at the place where ray 1 falls 
on it 1. 

If x′Δ  is the distance between rays 1 and 2 on the top surface of the 
wedge, then,  

sinx l′Δ α = .                                    (2.46) 
Taking into account, that xAB Δ≈ , from the triangle  АВС  we get: 

ixx cos/Δ=′Δ .                                (2.47) 
Since Δх is the distance between the adjacent fringes (width of the 

fringe), the condition  1 0Δ − Δ = λ is to be performed, or according to the 
equations (2.44) and (2.45) it is:  

2 2
02 sinl n i− = λ .                           (2.48) 

Having the equations (2.46), (2.47) and sin α ≈ α , finally from the 
equation  (2.48) we obtain: 

0
2 2

cos

2 sin

ix
n i

λΔ =
α −

.                             (2.49) 

With normal incidence of the light ( 0≈i ) from the equation (2.49) 
we get: 

                                         0

2n x
λα =
⋅ Δ

,                                    (2.50) 

so very small angles ( 1,0 ′ and less) may be determined.  
Newton’s Rings. A classic example of fringes of equal thickness is 

Newton’s rings. Usually they are observed in 
light reflected on an air wedge that is formed 
by a thick plane-parallel glass plate in contact 
with a plano-convex lens having a large radius 
of curvature (Fig. 2.8). With normal incidence 
of the light, fringes have the form of concentric 
rings centered at the point of contact of the lens 
with the plane-parallel plate. With inclined 
incidence, these rings transform into ellipses.  

 
R 
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Fig. 2.8 
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We have to note, that owing to the grate thickness of the plate and 
the lens, no interference fringes appear as a result of reflection on other 
surfaces.  

Let us find the radii of Newton’s rings when the light falls along a 
normal to the plate ( 0=i ). It is assumed that the lens and the plate have 
the same refractive index n. The refractive index of the air wedge is                     

nn <≅ 10 . To obtain the equation of the optical path difference in the 
air wedge, it is enough to change n on 0n  in the equation (2.44) for a 
glass wedge:  

0 02 / 2dnΔ = + λ . 

Since 10 ≅n , then 

02 / 2dΔ = + λ .                                   (2.51) 

Sign “plus” appears before 0 / 2λ , as the loss of half a wave occurs at 
the bottom of the air wedge (Fig. 2.8). For condition of minima (dark 
rings) Δ  must be equal to the odd number of a half of waves 

0 02 / 2 (2 1) / 2d mΔ = + λ = + λ , hence, 

02d m= λ  ( ,...2,1,0=m ).                        (2.52) 

By Pythagoras’ theorem (Fig. 2.8) 2 2 2( )r R R d= − − . Since  
Rd << , then 

dRr 22 = .                                        (2.53) 
From the equation (2.52) and (2.53) it follows, that the radius of the 

m-th dark ring is:  

0mr m R= λ ,    ( 0,1, 2, ...m = ).                        (2.54) 
(value 0=m  corresponds to a minimum of a dark spot). 

For condition of maxima (bright rings) Δ  must be equal to the 
integer number of the waves 0 02 / 2 .d mΔ = + λ = λ  Here the interference 
order starts with one ( ...3,2,1=m ), as 0m =  corresponds to the 
minimum. After similar calculations we obtain the formula for the radii 
of bright rings:  

0( 1/ 2)mr m R= − λ ,    ( ....3,2,1=m ).                  (2.55) 

Formulas (2.54) and (2.55) can be written as follows: 
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0 0 / 2 2mr m R R m= λ = λ ,                       (2.54а) 

0 0( 1/ 2) / 2 2 1mr m R R m= − λ = λ − .                (2.55а) 

In transmitted light the interference pattern is reverse (half a wave 
does not lose): the equations (2.55) and (2.55а) are used for the radii 
of dark rings, and the equations (2.54) and (2.54а) for the radii of 
bright rings.  

 
2.8. Interferometers  

 

Interferometers are the optical measuring instruments, which are 
based on the interference of light. Using these devices, we can very 
accurately measure linear and angular distances, refractive indexes, etc. 

The most famous is the Michelson interferometer, which played a 
fundamental role in the development of science and technology. By 
means of this interferometer Michelson made the first comparison of the 
wavelength of the red line of cadmium with the length of the standard 
metre, also the famous experiment of detecting motion of the Earth 
relative to the hypothetic ether was conducted (so called Michelson-
Morley experiment). It proved the independence of the speed of light 
from the Earth motion (the absence of “ether wind”).  

A schematic view of the Michelson interferometer is given in  
Fig. 2.9. It works by the method of amplitude division and consists of 
two flat mirrors 1М , 2М and semitransparent plane-parallel plate 1P . 
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Fig. 2.9 

A light beam from the source S falls at an angle 45° on the plate 1P . 
A back surface of this plate is coated with a thin layer of silver with the 
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coefficient of reflection 5,0≈R . The falling beam is splitting into two 
rays 1 and 2 with approximately equal intensities. The rays 1 and 2 
reflect on the mirrors 1М  and 2М  and return to the plate 1P , where each 
of them again is splitting into two rays of equal intensity. As a result, the 
rays 1′  and 2′  of equal intensity are formed. If conditions of time and 
space coherence are fulfilled, these rays will interfere and give the 
interference pattern that may be observed for example, through the 
eyepiece (ocular). 

The result of interference depends on the optical path difference 
from the plate 1P  to the mirrors 1М  and 2М  and back. The ray 2 passes 
through the plate three times, and the ray 1 only once. To compensate 
the additional optical path difference (especially for waves of different 
wavelengths), the plate 2Р  is placed on the path of the ray 1. This plate 
is identical to the plate 1P , except of the silver coating. This 
arrangement makes the paths of the rays 1 and 2 in glass equal.  

The observed interference pattern corresponds to the interference in an 
air layer formed by the mirror 2М and a virtual image 1М ′ of the mirror 

1М  in the plate 1P  (Fig. 2.9). The optical path difference of the rays 
1′  and 2′ in the plane-parallel air layer is: 

llnlln Δ=Δ=−=Δ 22)(2 0210 ,                      (2.56) 
where 10 ≅n is the refractive index of air; 1l  and 2l are the 
interferometer arms, i.e. corresponding distances from the plate 1P  to 
the mirrors 1М  and 2М ; lΔ  is the thickness of the air layer.  
 
 
 

1. Formulate the superposition principle for light waves. 
2. What waves are called coherent? 
3. What is the phenomenon of interference? 
4. How are the coherent waves formed in optics? 
5. What is the geometrical path difference, the optical path difference? 
6. Point the conditions of maximum and minimum for the optical path 

difference. 
7. What is the time coherence? 
8. What is the space coherence? 
9. Explain the notion of the coherence length. 

10. Give the examples of the optical plants for light interference observation. 
11. What are the instruments called interferometers? Give an example.  

Test Questions ? 
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Problem 1. A monochromatic light beam with λ = 0.6 µm normally 
falls onto a thin film (n = 1.4) that covers a thick glass plate  (n = 1.5). 
Find the thickness of the film if the reflected light is maximally 
attenuated due to the interference.     

Solution. Let us distinguish one ray SA from the light beam. The path 
of this ray for the general case, when 0,i ≠ is given in Fig. 1. At the 
points A and B the incident ray partially reflects and partially refracts. 
The reflected rays AS1 and BCS2 fall on a lens L and interfere. It is 
important to note, that a refractive index of air (n1 = 1.0) is less then a 
refractive index of a film (n2 = 1.4) and, in its turn, is less then a 
refractive index of a plate (n3 = 1.5). Hence, in both cases reflection 
occurs from optically denser media. Therefore, at the point А a phase of 
oscillations of the reflected ray AS1 changes on π. Similarly, at the point 
В the phase of the reflected ray BCS2 also changes on π. Thus, these rays 
will interfere as if there is no phase change.  

As it is known, the optical path difference for minimum of 
interference equals the odd number of a half of wavelengths: 

( )2 1
2

m λΔ = + . As it is seen on Fig. 2.10, the optical path difference is 

( ) .12 ADnnBCAB −+=Δ  Thus, the condition when light is 
maximally attenuated is:  

 ( ) ( )2 1 2 1
2

AB BC n ADn m λ+ − = + . 

If the angle of incidence i1 decreases up to zero, then 0AD →  and 
2 ,AB BC d+ →  where d is the thickness of the film. 

In the limiting case, if i1 = 0, we have 22dnΔ =  ( )2 1
2

m λ= + , and 

then the required thickness of the film equals 
( )

2

2 1
2

4

m
d

n

λ+
= . 

Counting m = 0, 1, 2, 3, ..., we obtain the possible values of the film 
thickness: 0.11 µm; 0.33 µ, etc. 

     Sample Problems 
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Fig. 2.10 

 
Problem 2. A beam of light (λ = 0.6 µm) falls normally onto a glass 

wedge (Fig. 2.11). The number of interference fringes per 1 cm  
equals 10. Find the apex angle (the refractive angle) of the wedge.  
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Fig. 2.11 

 
Solution. A beam of parallel rays reflects both on the top and the 

bottom of the wedge. These rays are coherent, so the interference 
pattern is observed. We assume that the reflected rays 1 and 2 are almost 
parallel (Fig. 2.11).  
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For the dark fringes the optical path difference is:  

( )2 1
2

m λΔ = + , 

where m = 0, 1, 2, ... . 
On the other hand, the optical path difference equals the difference 

of the optical paths of these rays 2dncosi2  and a half of the wavelength  

2
λ  (because of the reflection on the optically denser medium). Therefore 

we get:   

( )22 cos 2 1
2 2md n i mλ λ+ = + ,                               (2.57)  

where n is the refractive index of glass (n = 1.5); dm is the  thickness of 
the wedge where the dark fringe, that corresponds  the number m, is 
observed; 2i  is the refractive angle; λ  is the wavelength.  

Accordingly to the problem condition the angle of incidence equals 
zero, so the angle of refraction 2i also equals zero and 1cos 2 =i . The 
equation (2.57) transforms into:  

                                    2 .kd n k= λ                                            (2.58) 
Let us take an arbitrary dark fringe with the number m that 

corresponds to a certain thickness of the wedge dm  at this place, and a 
dark fringe with the number m + 10 that corresponds the thickness 
dm + 10. As there are ten fringes per l = 1 cm, the required angle will be 
(Fig. 2.11):  

                              10m md d
l

+ −α = ,                                     (2.59) 

where α≈αsin  (angle α is expressed in radians). Finding dm and 
dm + 10 from the equation (2.58) and substituting them into the equation 
(2.59), we have: 

10
52 2

m m
n n

l nl

+ λ − λ λα = = . 

Substituting the numerical data, we obtain:    
6

4
2

5 0,6 10 2 10 rad
1,5 1 10

−
−

−

⋅ ⋅λ = = ⋅
⋅ ⋅

. 

Рис.1 
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Let us express α  in degrees. For this we may use the relation 
between radians and seconds: 

1 rad = 206265′′ = 2′′.06·105, namely α = 2·10–4·2′′.06·105 = 41′′.2. 
Or, according to the general rule of transition from radians to degrees,     

o

deg
180 radα = α

π
, 

o
4 o 2180 2 10 1 .15 10 0 .688 41 .2.

3.14
− − ′ ′′α = ⋅ ⋅ = ⋅ = =  

Problem 3. A thin glass plate is placed in the path of one of the 
interfering rays in Young's experiment. This causes the central light 
band to shift into the position which was initially occupied by the fifth 
light band (not considering the central one). The ray falls onto the plate 
perpendicularly. The refractive index of the plate is 1.5. The wavelength 
is 6·10–7 m. What is the thickness of the plate? 

Data: 
n = 1.5 
k = 5 
λ = 6 · 10–7 m 

h = ? 

Solution 
The glass plate causes the optical paths 

difference Δ = n·h – h = h(n – 1). As a result of 
the introduction of a glass plate, the displacement 
of interferential bands by k took place. Hence, the 
additional difference in the paths due to the plate 
is kλ. Thus, condition of maximum is h (n – 1) = 
= kλ. Eliminate h and obtain: 

6
7

106
151

1065
1

−
−

⋅=
−

⋅⋅=
−
λ=

.n
kh m. 

 

Problem 4. Two slits are parallel and 0.5 mm apart. The interfringe 
distance obtained on a screen 2 m away from the slits is 2 mm. 
Calculate the wavelength of monochromatic radiation used.  

Data: 
d = 0.5 mm 
L = 2 m 
Δy = 2 mm 

λ = ? 

Solution 
We know that the distance between the 

interference bands on a screen and the 
corresponding wavelength are linked by the 

equation y
L

Δλ = λ . So the wavelength can be 

found as: 
3 3

62 10 0.5 10 0.5 10 m.
2

y
L

− −
−Δ ⋅ ⋅ ⋅λ = = = ⋅  
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Problem 5. A vertical soap film forms a wedge due to the liquid 
trickling down. By observing the interference bands in the reflected 
light of a mercury arc (λ = 5461 Å), we find that the distance between 
five bands is 2 cm. Find the wedge angle in seconds. The light falls at 
right angles to the film surface. The soapy water refractive index is 1.33. 

Data: 
λ = 5461⋅10–10 m 
k = 5 
l = 0,02 m 
n = 1.33 

α = ? 

Solution 
Let us denote thickness of the film 

corresponding to adjacent bands by h1 and h2. The 
optical paths differences for these bands differ by 
Δ = 2n (h2 – h1) = 2n⋅Δh. But adjacent bands 
always have optical paths differences changed by 
λ. Therefore λ = 2n⋅Δh. Let us denote the distance 
between the adjacent bands by l. It may be 
assumed that Δh = l tan α, where α is a wedge 
angle. Hence 

.11;1013.5
02.033.12

1054615
2

tan 5
10

′′=α⋅=
⋅⋅
⋅⋅=λ=α −

−

nl
k  

 

Problem 6. Find the distance between the third and the sixteenth 
Newton's dark rings if the distance between the second and the twentieth 
dark ring is equal to 4.8 mm. The observation is made in reflected light. 

Data: 
r20 – r2 = 4.8 mm 

r16 – r3 = ? 

Solution 
When Newton’s rings are observed in 

reflected light of wavelength λ, the condition of 
the minimum for a ring is determined by the 
formula λ= kRrk , where k is the number of the 
ring and R is the radius of curvature of the lens. 
Let us use the formula for the twentieth dark ring 
and for the second one: 

8.4220220 =λ−λ=− RRrr mm;  

=λR  1.57 mm. 
Let’s do the same for the sixteenth and the 

third Newton's dark rings:  

16 3 16 3r r R R− = λ − λ =  

16 1.57 3 1.57 2.83= ⋅ − ⋅ =  mm. 
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1. How many wavelengths with a frequency 5·1014 Hz lay on a path 

of 1.2 mm length: 1) in vacuum; 2) in glass with n = 1.5? (2·103; 3·103) 
2. Find the optical path difference change of a ray that propagates in 

air, if a glass plate of 2 mm width is placed on its path. Perform the 
calculations for two cases: the ray falls normally and the ray falls at an 
angle of 60°. The refractive index for the glass is 1.5. (1 mm; 0.32 mm)  

3. A light source with a diameter of 30 cm is 200 m apart from the 
point of observation. This source radiates the waves with wavelengths 
from 490 to 510 nm. Find a coherence time and a coherence length for 
this radiation. (4·10–14 s; 0.01 mm) 

4. Two coherent light beams with λ = 400 nm cross. What will be 
observed in a cross point – maximum or minimum of interference, if a 
path difference is 0.5 mm? (Maximum)   

5. White light falls at an angle of 45° onto a soap film (n = 1.33). At 
what minimum thickness of the film will the reflected rays be colored 
yellow with λ = 600 nm? (≈ 0.13 µm) 

6. White light falls normally onto a soap film (n = 1.33) with a 
thickness of 5.92·10–4 mm. This light reflects and produces an interfe-
rence maximum at a wavelength of λ1 = 630 nm. At what wavelength λ2 the 
nearest interference minimum of the same order will be observed? (525 nm)  

7. A plant for producing Newton’s rings is illuminated by normally 
incident monochromatic light. The radius of the lens is 15 m. The 
distance between the fifth and the twenty-fifth Newton’s bright rings is 
9 mm. Find the wavelength of the incident light. The observation is 
made in the reflected light. (675 nm) 

8. A plant used to observe Newton’s rings is illuminated by normally 
incident monochromatic light with a wavelength of 600 nm. Find the 
thickness of the air layer between the lens and the glass plate where the 
fourth dark ring is observed in the reflected light. (1.2 µm) 

9. A plant used to observe Newton’s rings in reflected rays is 
illuminated by normally incident monochromatic light with a 
wavelength of 600 nm. The radius of the lens curvature is 15 m. The 
space between the lens and the glass plate is filled with liquid. Find the 
refractive index of the liquid if the radius of the third dark ring is  
4.7 mm. (1.22)  

Problems 


