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Study unit 4 
 
 

POLARIZATION OF LIGHT 
 

4.1. Natural and polarized light  
 

Interference and diffraction phenomena are observed for both 
transverse and longitudinal waves. At the same time, there are the 
phenomena for which the light wave transversity has the fundamental 
importance. Polarization of light is related to such phenomena.      

Maxwell's theory states that the light is the transverse 
electromagnetic wave, and the electric and magnetic vectors of the light 
wave oscillate perpendicularly to wave spreading direction. In fact, the 
light wave transversity which determines polarization of light has been 
observed before Maxwell's electromagnetic theory appearing. 
Particularly, detection of birefringence in Iceland spar crystals 
(Bartholini, 1670) together with investigation of these rays intensity 
change (Huygens, 1690) and also study of the light reflection from the 
glass surface (Malus, 1808) indicated the light polarization, although the 
meaning of this phenomenon was incomprehensible. Experiments by 
Fresnel and Arago concerning interference of the polarized rays (1816) 
stimulated Young to make assumption of transversity of the light waves. 
Fresnel, independently from Young, has also proposed the conception of 
the light wave transversity, widely grounded it by means of multiple 
experiments and explained the phenomena of light polarization and 
birefringence in crystals.        

Although the light waves are transverse ones but they normally have 
no asymmetry relatively to propagation direction. This is explained by 
the fact that in the light radiated by the ordinary sources, the electric 
vector E  oscillates in all possible directions that are perpendicular to 
the wave propagation direction. Such light is called natural light. 

According to classical representation, the luminous body radiation 
consists of the waves radiated by its atoms. Individual atom radiation 
time equals approximately 10–8 s. An atom radiation represents the 
wavetrain with the length of approximately 3 m where the vector E  lies 
in the single plane. After radiation, the atom in some time goes to the 
excited state and radiates again and again, and every new wavetrain has 
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its own independent orientation of the vector E . Many atoms radiate 
simultaneously and independently and form the resultant light radiated 
by a body. The light vector E  oscillations occur in different planes with 
the same probability. In theory, natural light is represented in Fig. 4.1 where 
the wave propagation direction is perpendicular to the figure plane.  

Light with an ordered plane of the vector E  
oscillations is called polarized light. If the oscillations 
of the vector E  occur in the single plane only, the 
light is called linearly polarized or plane-polarized.  
The plane of the vector E  oscillations is called the 
vector E  oscillation plane or polarization plane. It 
passes through the incident ray direction. 

It is known from the theory of oscillations (Module 4 “Oscillations 
and waves”, paragraph 1.9) that addition of two mutually perpendicular 
harmonic oscillations with the same frequencies generally products 
motion along the ellipse trajectory. It means that addition of two waves 
with mutually perpendicular planes of electric vector oscillations      

1 cosxE A t= ω ,   2 cos( )yE A t= ω + δ                        (4.1) 

gives the resulting wave in which the end of the vector E  moves along 
the ellipse trajectory (Fig. 4.2), the light ray is spreading perpendicularly 
to the figure plane).  

Thus, superposition of two coherent 
( constδ = ) linearly polarized light waves with 
the mutually perpendicular oscillation planes 
forms the elliptically polarized light wave. If 
phase difference 0δ =  or δ = ±π  the ellipse 
transforms to the straight line and light 
becomes the linearly polarized (plane-
polarized) light. The vector E  oscillations 
direction and the wave propagation direction 
form the oscillation (polarization) plane. 
Under condition of the same amplitudes 21 AA =  and the phase 
difference / 2δ = ±π , the ellipse transforms to the circle, i.e. we observe 
rotatory polarization of the light.     
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Left-hand and right-hand elliptical and rotatory polarizations are 
differed depending on the vector E  rotation direction. If to look in the 
direction opposite to the direction of the wave propagation and the 
vector E  rotates clockwise, the polarization is right-hand, if it rotates 
counter clockwise, the polarization is left-hand. 

Thus, the wave with rotatory or elliptical polarization can be always 
decomposed into two mutually perpendicular linearly polarized waves 
with mutually perpendicular planes of the vector E  oscillations. In this 
case, phase difference for these two waves remains constant in time 
( constδ = ). Such waves are called coherent unlike the incoherent waves 
with the phase difference changing chaotically in time.      

The resulting vector E  (Fig. 4.2) represents the vector sum of 
electric intensities xE  and yE . Angle between E  and xE  equals: 

2

1

cos( )tg
cos

y

x

E A t
E A t

ω + δϕ = =
ω

.                              (4.2) 

If the phase difference is constant ( constδ = ) and δ = 0 or δ = π then 
the angle φ is constant too: 2 1tg const.A Aϕ = ± =  Thus, the resulting 
oscillation occurs in the fixed direction and the wave is linearly polarized. If 

const 0δ = ≠ , the vector E  rotating with the frequency ω  around the 
coordinate origin changes in size according to certain regularity. If the 
phase difference changes chaotically, both the angle δ  and the direction 
of the vector E  change chaotically and the mutual position of the 
vectors E , xE  and yE  is arbitrary.  

Therefore, natural light can be considered as superposition of two 
incoherent waves polarized in the mutually perpendicular planes and 
having the same intensity ( 2

2
2
1~ AAI = ). In optics, natural light is 

symbolically shown in Fig. 4.3.   
 

Natural 
light  

Fig. 4.3  
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The linearly polarized light can be obtained from the natural light 
with the help of devices called polarizers. These devices transmit only 
the light vector E  oscillations which are parallel to the plane called the 
polarizer plane of polarization. Oscillations perpendicular to this plane 
are retarded completely or partially. A polarizer that completely retards 
the oscillations perpendicular to the plane of polarization is called the 
perfect polarizer; otherwise, it is called the imperfect polarizer. 

While passing through the perfect polarizer the natural light becomes 
the completely linearly polarized. When the light is passing through the 
imperfect polarizer, the output represents the light in which the 
oscillations in one direction prevail over the oscillations in other 
directions. Such light is called partially polarized. The partially 
polarized light as well as the natural light may be considered as a 
superposition of two incoherent linearly polarized waves with the 
mutually polarized planes of oscillation. The only difference is that the 
intensity of these waves in the natural light is the same while in the 
partially polarized light — different. The partially polarized light can be 
also considered as the sum of the natural and the linearly polarized 
components as shown in Fig. 4.4.  

 

Natural 
light

Plane-polarized 
light

Partial 
polarization  

Fig. 4.4  
 

It is seen in Fig. 4.4 that the vertical oscillations correspond to the 
maximum intensity maxI , the horizontal oscillations correspond to the 
minimum intensity minI . Such change of intensity can be observed with 
the help of a polarizer. The partially polarized light is characterized by 
the polarization degree Р which is determined as follows:  

polmax min

max min 0

,
II IP

I I I
−

= =
+

                                 (4.3) 
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where polI  is the polarized component intensity; 0І  is the total intensity 

of the partially polarized light: 0 max min .І І I= +  
For the linearly polarized light 0min =I  ( )pol 0I І=  and 1=P ; for the 

natural light minmax II =  ( )pol 0I =  and 0=P . For the partially polarized 

light 10 << P . For the elliptically and rotatory polarized light the 
polarization degree quantity is not used.  

 
4.1.1. Malus law 

 

Let us consider an experiment. A ray from an ordinary light source is 
directed perpendicularly to the tourmaline crystal surface 1T  (Fig. 4.5, а) 
that is parallel to the optical axis OO ′ . While rotating the crystal around 
the ray direction no change in the light intensity is observed.    
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Fig. 4.5 
 

However, if the second similar tourmaline crystal 2T  is placed on the 
ray path in parallel to the first crystal (Fig. 4.5, b), when rotating one of 
them ( 1T  or 2T ) around the ray direction the intensity of light I after 
passing through them varies depending on the angle ϕ  between the axes 

OO ′  and 11OO ′  according to the law discovered by Malus: 
2

0 cosI I= ϕ ,                                        (4.4) 

where 0I  is the intensity of the light passed through the first crystal 1T . 
Such phenomenon can be explained under assumption that: а) light 

is a transverse wave, b) a tourmaline crystal transmits only the light with 
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the electric vector E oscillations parallel to the optical axis and absorbs 
the light with the electric vector oscillations perpendicular to this axis.   

In fact, as the natural light falling onto the crystal 1T  surface consists 
of the vector E  oscillations in all directions perpendicular to the wave 
propagation direction, during the crystal 1T  rotation around the ray axis 
(Fig. 4.5, а) the oscillations along direction OO ′  always exist.  
Therefore, the intensity of the light passed through the crystal does not 
change.  

After passing through the tourmaline crystal the natural light 
becomes linearly polarized, i.e. the electric vector E  oscillations occur 
in the single direction OO ′only. Let us assume that the crystal 1T axis 

OO ′  forms the angle ϕ  relatively to the crystal 2T  axis 11OO ′ . Then the 
vector 0E  of light passed through the crystal 1T  forms the same angle 
ϕ  relatively to the crystal 2T  axis 11OO ′  as shown in Fig. 4.6. 

It is evidently that the electric vector value of 
light which passed through the crystal 2T  is 
equal to 0 cosE E= ϕ . Since the light intensity is 
proportional to the squared amplitude ( 2~ EI ), 
the expression 2

0 cosI I= ϕ  is Malus law.  
The crystal 1T  which transforms the natural 

light to the linearly polarized light is a polarizer. 
The second crystal 2T  is used to analyze the light 
and it is called an analyzer.  

If the light is transmitted in the reversal 
direction, the crystals exchange their roles and 
the crystal 2T  will be the polarizer and 1T  will be the analyzer.  

Let us determine the intensity of light passed through two perfect 
polarizers disregarding reflection and absorption. The first polarizer 
creates the linearly polarized light with the intensity of nat0 / 2I I= . 
Natural light intensity is natI . According to Malus law, the second 
polarizer transmits the light with intensity of 2

0 cosI I= ϕ . Thus, the 
intensity of light after the polarizers system is:  

ϕ

ϕ

ϕ= cos0EE  

2T  1T

0E 0E
90º 

 
Fig. 4.6 
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2
nat

1 cos
2

I I= ϕ .                                         (4.5) 

The maximum intensity max nat
1
2

I I=  is observed if 0ϕ =  (the 

polarizers planes are parallel), and the minimum intensity min 0I =  is 
observed if / 2ϕ = π  (the polarizers planes are crossed). 

 
4.2. Polarization in case of light reflection  

and refraction on interface of two dielectrics    
 

4.2.1. Brewster's law 
 
If the natural light incidence angle onto interface of two transparent 

isotropic dielectrics (for example air — glass) is different from zero, the 
reflected and refracted rays are partially polarized, that is they represent 
the mixture of the natural light with some portion of the polarized light. 
The oscillations perpendicular to the incidence plane prevail in the 
reflected ray (they are shown in Fig. 4.7, а by the double-side arrows), 
and the oscillations parallel to the incidence plane prevail in the 
reflected ray (they are shown in Fig. 4.7, а by points).  

 Natural 
light 
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Fig. 4.7  
 
Polarization by reflection and refraction was detected by Malus 

(1810) who noted by chance that during rotation of a tourmaline crystal 
around the ray reflected from the glass, the light intensity periodically 
increases and decreases, i.e. the reflection from the glass acts on the 
light in the way as it passes through two tourmaline crystals (Fig. 4.5).       
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Brewster found experimentally that at a certain incidence angle the 
ray reflected on the interface becomes completely polarized, and the 
reflected and the refracted rays form the angle of o90  (Fig. 4.7, b). Such 
incidence angle is called Brewster angle ( Brϑ = ϑ ) or complete 
polarization angle. This angle is determined by the law stated by 
Brewster in 1815: 

2
Br 12

1

tg n n
n

ϑ = = ,                                      (4.6) 

where 12n  is a relative refraction index of the second medium with 
respect to the first medium.   

As the ray reflected at the angle Brϑ  is completely polarized, the 
vector E  oscillations occur only perpendicularly to the incidence plane. 
The incidence plane is the plane of Fig. 4.7, b, thus oscillations of the 
vector E  in the reflected ray are shown in this figure by points. At the 
same time, the refracted ray polarization in case of falling at Brewster 
angle is maximal but not complete; therefore, the number of arrows just 
exceeds the number of points in the refracted ray (Fig. 4.7, b). 

The reflected and the refracted rays form the right angle in case of 
falling at Brewster angle (Fig. 4.7, b). According to Brewster law and 
refraction law, we get: 

Br Br
12

Br Br

sin sin
cos sin

n ϑ ϑ= =
′′ϑ ϑ

.      

Hence, 
Br Br Br Br Brcos sin cos( / 2 ) / 2′′ ′′ ′′ϑ = ϑ = π − ϑ ⇒ ϑ + ϑ = π .      (4.7) 

This result is obtained from Fresnel formulas; let us analyze these 
formulas in details. It is seen from the formulas (1.18а) and (1.20а) that 
the signs of the complex amplitudes of incident and refracted waves at 
any values of the angles ϑ  and ′′ϑ  are the same (sum of ϑ  and ′′ϑ  
cannot exceed π , and cosine of the angles difference is an even 
function). It means that phases of incident and refracted waves are the 
same, i.e. the refraction occurs without the wave phase change under all 
conditions.   

In case of reflection, the change of the phases depends on conditions. 
From formula (1.20)  
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0

0

sin( )
sin( )

E
r

E
⊥

⊥
⊥

′ ′′ϑ − ϑ= = −
′′ϑ + ϑ

 

we see that the ratio of the perpendicular components ⊥⊥′ 00 / EE  is 
always negative (i.e. ⊥′0E  are ⊥0E  have the opposite signs) under the 
condition that ′′ϑ > ϑ , i.e. the light is refracted from the optically more 
dense medium ( 12 nn > ). It means that the phase of oscillations 
perpendicular to incidence plane ( ⊥′0E ) changes jump-like by π  and 
becomes opposite to the phase of the incident ray perpendicular 
component ( ⊥0E ).  

In case when the light is reflected from the optically less dense 
medium ( 12 nn < ) the incidence angle is less than the refraction angle 

′′ϑ < ϑ  (or crϑ < ϑ ). Thus, sin( ) 0′′ϑ − ϑ < , and 0/ 00 >′ ⊥⊥ EE . The phase 
change is absent.  

If 12 nn > , the phase of oscillations of a reflected wave parallel to 
the incidence plane 0E′ΙΙ  is opposite  to the phase of the parallel 
component of the incident wave 0E ΙΙ  but only for incidence angles less 
than Brewster angle: Br′′ϑ < ϑ < ϑ  ( )/ 2 .′′ϑ + ϑ < π  It is evident that under 
such condition the ratio 0 0/ 0E E′ <ΙΙ ΙΙ .  

While passing through Brewster angle, the phase of a parallel 
component changes by π  jump-like. It means that the phases of the 
perpendicular ⊥′0E  and the parallel 0E′ΙΙ  components of reflected wave 
become opposite for the angles exceeding Brϑ , and the phases of the 
parallel components of the incident 0E ΙΙ  and the reflected 0E′ΙΙ  waves are 
the same. 

In case of wave reflection on optically less dense medium ( 12 nn < ), 
the situation is opposite. For the incidence angles less than Brewster 
angle Br′′ϑ < ϑ < ϑ  ( / 2′′ϑ + ϑ < π ) the ratio 0 0/ 0E E′ >ΙΙ ΙΙ  is positive, i.e. 
the phases of the reflected 0E′ΙΙ  and the incident 0E ΙΙ  waves oscillations 
are the same. For the incidence angles more than Brewster angle (but 
less than crϑ ) Br ′′ϑ < ϑ < ϑ  ( / 2′′ϑ + ϑ > π ), the phases 0E′ΙΙ  and 0E ΙΙ  are 
opposite. 
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Described above analysis shows that for the incidence angles 
/ 2′′ϑ + ϑ < π  the phase of the both components (|| and ⊥ ) of the 

reflected wave electric vector is opposite to the incidence wave phase 
for the case 12 nn >  and coincides with it at 12 nn < . The same result 
was obtained for light normal falling ( 0′′ϑ = ϑ = ).   

In case of complete polarization of a reflected ray (falling at 
Brewster angle) the parallel component 0E′ΙΙ  in formula  

0

0

tg( )
tg( )

Er
E

′ ′′ϑ − ϑ= = −
′′ϑ + ϑ

ΙΙ
ΙΙ

ΙΙ

 

is equal to zero.  
     Hence, tg( )′′ϑ + ϑ = ∞ , i.e. Br Br / 2′′ϑ + ϑ = π  ( Brϑ = ϑ , Br′′ ′′ϑ = ϑ ). If an 
incident wave electric vector lies in the incidence plane (i.e. the 
component 0E ΙΙ  only exists), the reflected wave is absent under the 
condition of Brϑ = ϑ . 

 
4.3. Polarization by birefringence 

 
Sailors transported to Europe from Island the Island spar crystals 

which had the interesting feature.  
While looking at subjects through such crystals, the double image of 

the subjects was observed. As a result, birefringence (double refraction) 
phenomenon was discovered.    

The Island spar is a kind of chemical chalk ( 3CaCO ); its crystals 
belong to the hexagonal system. In nature, the Island spar sometimes 
exists in the form of hexagon columns but often its chips are detected 
with the rhombohedron shape. It can be explained by the fact that the 
hexagonal crystals of the Island spar are easily split along the certain 
planes forming the rhombohedral chips. Rhombs which limit the 
rhombohedron have angles o101 52′  and o78 08′ .  

If a narrow beam of light falls onto such crystal, the output 
represents two spatially separated rays parallel to the incident beam 
(Fig. 4.8).  

Even if a ray incidence angle equals zero, the ray in the crystal is 
divided into two rays; one of them is a continuation of the incident ray 
and the other one is deviating (Fig. 4.9). 
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Fig. 4.9  

 
Experiments show that one of these rays propagates along the 

incidence plane, the refractive index for it does not depend on the 
incidence angle, and the ordinary refraction law is true for it. The ray 
velocity does not depend on its propagation direction in the crystal. 
Such a ray is called ordinary and designated with the letter o in figures. 
The second ray does not propagate along the incidence plane and the 
ratio of sine of the incidence angle to sine of the refraction angle 
depends on the incidence angle. Hence, the ray velocity depends on its 
propagation direction in the crystal. This ray is called extraordinary and 
designated with the letter e.  

Iceland spar, quarts, and tourmaline are the examples of the single-
axis crystals. These crystals have only one direction along which the 
birefringence is not observed.  

Double-axis crystals (mica, gypsum) have two directions along 
which the birefringence is not observed. Both rays are extraordinary in 
the double-axis crystals; the refractive indices for them depend on the 
incidence angle. 

Iceland spar crystals have only one direction along which the 
birefringence is absent; the refractive indices for both rays are the same 
in this direction. Such direction is called the crystal optical axis. An 
infinite number of the parallel crystal optical axes can be directed 
through the crystal.    
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4.3.1. Ordinary and extraordinary rays  
 
Any plane parallel to the uniaxial crystal optical axes is called its 

main section or main plane. An infinite number of the main planes can 
be traced through the crystal. A line of any two main planes crossing is 
the crystal optical axis. As a rule, the main section is selected in such a 
way that the optical axis and the incident ray are located on the section. 

The experiments show that the ordinary and the extraordinary rays 
are completely polarized in the mutually perpendicular directions. The 
ordinary ray electric vector is perpendicular to the main plane; the 
extraordinary ray electric vector is parallel to the plane. Fig. 4.9 
represents oscillations of the extraordinary ray electric vector by two-
sided arrows; the ordinary ray electric vector is normal to the main plane 
and its oscillations direction is represented by points. If, after passing 
through the first crystal, the rays are directed onto the next crystals, they 
again are doubled (Fig. 4.10). 
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Fig. 4.10 

 
Therefore, a double refraction exists for both natural and linearly 

polarized light. A difference is that intensities of both rays are identical 
for double refraction of natural light; intensities of ordinary and 
extraordinary rays depend on the angle of incidence in case of double 
refraction of polarized light.  

Let us explain the phenomenon. If the polarized light with the 
amplitude E falls onto a crystal at the angle ϕ  between the light 
oscillation plane and the crystal main plane, the electric vectors of the 
extraordinary e and ordinary o rays create accordingly angles ϕ  and 

/ 2π − ϕ  with the plane of oscillations of the falling polarized light. 
Then, the amplitudes of the electric vectors oscillations for the ordinary 
and extraordinary rays are: 

sinoE E= ϕ ;   cosеE E= ϕ, 
and their intensities are: 
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2sinoI I= ϕ ;   2cosеI I= ϕ .                            (4.8) 

The equations (4.8) represent Malus law for the ordinary and 
extraordinary rays. Then, we can get the relation of intensities: 

2 2 2 2 2/ / sin / cos tgo е o еI I E E= = ϕ ϕ = ϕ .                  (4.9) 

As it follows from (4.9), the intensities of o and e rays are identical 
only for o45ϕ = , it is confirmed by the experiments. 

Double refraction is explained by the crystals anisotropy. Physical 
nature of anisotropy is conditioned by the structure of molecules and 
their placing and interaction in crystals. The phenomenon of double 
refraction is observed in all optically transparent crystals except the 
cubic system crystals. An index of refraction of the cubic system 
crystals does not depend on the direction of light propagation. 
Therefore, cubic system crystals are optically isotropic. Crystals of 
tetragonal, trigonal and hexagonal systems are uniaxial crystals; crystals 
of rhombic, monoclinic and triclinic systems are biaxial. 

Singularity of propagation of the 
ordinary and extraordinary rays in a crystal 
is possible to explain by Huygens principle. 
Fig. 4.11 shows wave surfaces of o and e 
rays with a center in a point 2 on the crystal 
surface. The flat wave front reaches the 
point 1. According to Huygens principle, 
the straight lines from the point 1 that 
touch ellipsoid and spherical surfaces show 
the wave fronts of the flat extraordinary e 

and ordinary o waves. The ordinary ray o coincides with a normal to the 
spherical surface. At the same time, the extraordinary e ray deviates 
from this normal. 

Let us consider three cases of a light normal falling on the crystal 
surface. In the first case (Fig. 4.12, a), the rays o and e propagate along 
the optical axis and coincide. In the second case (Fig. 4.12, b), the 
extraordinary ray deviates from the normal to this surface. In the third 
case (Fig. 4.12, c), the optical axis is parallel the surface of the crystal; 
the ordinary and extraordinary rays propagate one-way but their speeds 
are different, that is why increasing with time difference of phases 
appears between them. Oscillations of the vector E of the ordinary o ray 
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Fig. 4.11 



 

 103

are perpendicular to the main plane; oscillations of the vector E of the 
extraordinary e ray are parallel to the main plane. 
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Fig. 4.12  

 
4.3.2. Polarization devices (prisms)  

 
The index of refraction of the Iceland spar changes from 1.486 to  

1.658; it can be applied for separation of two polarized in mutually 
perpendicular planes rays.  

The first polarization prism was made by Scottish physicist Nicol 
(1828) and it has the name «Nicol». It consists of two prisms of the 
Iceland spar that are glued together by the Canadian balsam, which 
index of refraction is between no and ne.  

Fig. 4.13 shows the main cut of the Nicol prism and the rays path in 
the prism. An optical axis is represented by a two-sided arrow; it forms 
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an angle 64º with the long rib of the prism. At the proper angle of 
incidence on the prism face, the ordinary ray o undergoes complete 
internal reflection on the layer of the Canadian balsam and then it is 
absorbed by the prism blackened lower face.  

To prevent heating of the large prisms, an ordinary ray is taken away 
from the prism by the little prism glued to the Nicol prism (it is shown 
by the dotted line, Fig. 4.13). 
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Fig. 4.13 

 
The Foucault prism (Fig. 4.14) is built as the Nicol prism but the 

function of the Canadian balsam is executed by the layer of air. Due to 
that, the Foucault prism can be used for ultraviolet, while the Nicol 
prism is not suitable for this purpose as the Canadian balsam absorbs 
ultraviolet light. The Foucault prism is considerably shorter and, 
consequently, more cheap. 

59º
е

о  
Fig. 4.14  

 
Absorption of the ordinary and extraordinary rays is identical in the 

common transparent uniaxial crystals. However, there are crystals in 
which one of the rays is absorbed stronger than the other. Such 
phenomenon is named dichroism. A crystal of tourmaline has strong 
dichroism of the visible rays.  

This crystal of 1 mm thickness almost entirely absorbs the ordinary 
ray. As a result of the removal of one ray, the plate of tourmaline 
becomes a polarizer. The phenomenon of dichroism is used for 
production of polarizers as nonselective light filters; they are named 
Polaroid.  
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4.3.3. Elliptic, circular and linear polarizations of light. 
Transmission of the polarized light 

through a crystalline plate 
 

Let us consider a case that has a practical application, when the 
linearly polarized light propagates in a uniaxial crystal crosswise to its 
optical axis. If the linearly polarized light falls crosswise onto a crystal 
plate that is cut parallel to the optical axis O′O, division of the ordinary 
and extraordinary rays is absent (see Fig. 4.12, c) but they have different 
speeds and different indexes of refraction. 

Let the plane of oscillations of the vector E 
of falling linearly polarized light form an angle 
ϕ  with an optical axis. The light propagates 
perpendicular to the plane of Fig. 4.15. oE  and 
Ee are vectors of the ordinary and 
extraordinary rays, their amplitudes are: 

sinoE E= ϕ , cosеE E= ϕ .       (4.10) 

     Depending on the thickness of the crystal 
plate d, both rays go out from it with the 
difference of phases δ  that depends on the optical path difference:   

)( eo nnd −=Δ .                                     (4.11) 

Taking into account that 02 /δ = πΔ λ , where 0λ  is a wavelength in 
vacuum, we get: 

0

( )2 o еd n n−δ = π
λ

.                                    (4.12) 

Consequently, if the linearly polarized light falls normally onto a 
uniaxial crystal, the ordinary o and extraordinary e rays are coherent and 
the difference of phases between them is determined by the formula 
(4.12). Taking into account the difference of phases, the electric fields 
intensity oscillations of o and e rays at exit from the crystal are:  

cosox oE E t= ω ,   cos( ),еy еE E t= ω + δ                  (4.13) 

where indexes of x and y state that the oscillations of the electric vectors 
of the ordinary o and extraordinary e rays take place in the mutually 
perpendicular planes (Fig. 4.15).  
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     It is known from the theory of oscillations (module 4 “Oscillations 
and waves”, subunit 1.9) that (4.13) is a formula of an ellipse in a 
parametric form; its general form is: 

22
2

2 2 2 cos sinox

o

ey ox ey

е o е

E E EE
E E E E

+ − δ = δ .                   (4.14) 

     Expression (4.14) represents an arbitrarily oriented in relation to 
coordinate axes ellipse (Fig. 4.16). The orientation of the ellipse 
depends on the difference of phases δ .  
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Fig. 4.16   

 
Therefore, if linearly polarized light passes through a uniaxial crystal 

plate, the light becomes the elliptic polarized light with a resulting 
vector E rotating with a cyclic frequency ω .  

Addition of two mutually perpendicular coherent oscillations leads 
to the formation of the elliptic polarization. The elliptic polarized light 
can be presented as a sum of two mutually perpendicular coherent 
oscillations. Depending on the values of amplitudes and the difference 
of phases, the elliptic polarized light can turn into the circle polarized or 
linearly polarized light.  

Transformations of light depend on the crystal plate thickness d 
parallel to the optical axis. Let us consider special important cases when 
the polarized light falls normally on the uniaxial crystal plate. 
     1. A plate thickness is equal to the fourth part of wavelength. 
Therefore, the path difference of o and e rays is the fourth of the 
wavelength: 

0( ) / 4o ed n n− = λ , or 

0( ) ( 1/ 4)o ed n n m− = + λ ,    ,...2,1,0=m        (4.15) 
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According to the equation (4.12), / 2δ = π  
and the equation of an ellipse (4.14) becomes 
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The ellipse is oriented relatively to the 
main axes (Fig. 4.17). If o еE E= , the ellipse 
turns into a circle, its equation is: 
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Consequently, to get a circle polarized light, we have to add two 
coherent waves with the identical amplitudes that have the difference of 
phases / 2π  and are polarized in two mutually perpendicular planes. It 
can be achieved if the linearly polarized light passes through a fourth of 
wavelength plate so that the plane of polarization of the falling light 
forms an angle 45o with the crystal plate optical axis. 

Depending on the plate orientation, the difference of phases can be 
positive or negative. So, the resulting vector E can rotate clockwise or 
counter-clockwise. 
     2. A plate thickness is equal to the half wavelength. Therefore, the 
path difference of o and e rays is: 

0( ) / 2o ed n n− = λ ,   or    0( ) ( 1/ 2)o ed n n m− = + λ ,         (4.17) 

hence, δ = π . In this case an ellipse turns into a line: 

0eyox e
ey ox

o e o

EE EE E
E E E

+ = ⇒ = − .                      (4.18) 

     The equation (4.18) states that the 
linearly polarized light after passing of 
the half wavelength plate remains 
linearly polarized, but the «minus» sign 
shows that the oscillations direction is 
changed by the angle 2φ relatively to the 
plate main optical plane (Fig. 4.18). 
     3. A plate thickness is equal to the 
wavelength. Therefore, the path 
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Fig. 4. 17 
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difference of o and e rays is: 

0( )o ed n n− = λ ,   or     0( )o ed n n m− = λ ,                 (4.19) 

i.e. 2 .δ = π  An ellipse transforms into a straight line: 

0eyox e
ey ox

o e o

EE E
E E

E E E
− = ⇒ = ,                          (4.20) 

and a ray passed through the plate remains linearly 
polarized in the same plane as the falling light. Thus, a 
wavelength plate does not change orientation of the plane 
of oscillations of the falling light.  
     4. Compensator. The simplest compensator consists 
of two quartz wedges (Fig. 4. 19), optical axes of which 
are parallel. It is possible to move one wedge relatively 
to the other by a micrometrical screw and change the 

overall thickness of the plate. Consequently, the difference of phases δ  
between ordinary o and extraordinary e rays changes from 0 to 2π . As a 
result, it is possible to see how a character of polarization changes with 
the growth of the plate thickness and the difference of phases. Direction 
of polarization changes periodically (Fig. 4. 20). 
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Fig. 4.20 

 
4.3.4. Analysis of polarized light  

 
In practice, there is a necessity to recognize a character of a light 

polarization. Let us consider the most typical cases.  
1. Linearly polarized light. During the polarizer rotation, a falling 

light intensity changes after passing through the polarizer. When the 
polarizer optical plane becomes perpendicular to the plane of oscillation 
of the falling light, the light completely disappears after passing through 
the polarizer. Consequently, the falling light is linearly polarized.   

2. Natural and circle polarized light. How to distinguish them? One 
polarizer is not enough for this purpose; a falling light intensity does not 
change during the rotation of the polarizer in both cases. 

 
Fig. 4. 19 
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If primarily insert a plate of the fourth part of wavelength thickness, 
the circle polarized light turns into the linearly polarized light as the 
plate creates the additional difference of phases / 2π  that compensates 
the present difference of phases converting it into zero or π . Such 
method allows converting the circle polarized light into the linearly 
polarized light that can be fully liquidated by a polarizer. A natural light 
remains the same after passing the plate and cannot be liquidated by the 
polarizer.  

3. Elliptic and partly polarized light. The elliptic polarized light can 
be detected similarly to the circular polarized light. But unlike to the 
circular light, the plate optical axis has to coincide with the ellipse main 
axes of the elliptic polarized ray. 

Thus, to distinguish the elliptic and partly polarized light, they have 
to be taken through the fourth part of wavelength plate and then 
analyzed by a polarizer. If we can completely liquidate a falling ray by 
rotation of the plate, it is the elliptic polarized light. If the ray intensity 
changes after the polarizer but we cannot completely liquidate the ray 
by the polarizer rotation, it is the partly polarized light.  

 
4.3.5. Interference of the polarized waves 

 
The ordinary o and extraordinary e rays in the uniaxial crystals are 

non-coherent because they are created by the different wave trains. 
However, both rays can be coherent if on the way of the natural light we 
put the polarizer P before the crystal plate K (Fig. 4.21), so that the 
falling light becomes linearly polarized. But interference cannot be 
observed during addition of the coherent 
waves polarized in the mutually perpen-
dicular planes. Therefore, for interference 
of the ordinary o and extraordinary e rays 
they must have one direction; it can be 
got by passing these rays through the 
second polarizer (analyzer) P′. 

Let us consider interference of the 
polarized light when an angle between the polarizer P and the crystal 
plate K is 45o. In this case, the amplitudes of the ordinary o and 
extraordinary e rays are identical; consequently, interference is perfect. 
Two cases are considered here: 
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Fig. 4.21  
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1. Optical planes of both polarizers are parallel. After the polarizer P 
the linearly polarized wave is divided by the plate K into the mutually 
perpendicular waves with the identical amplitudes.  

To provide interference, the waves are taken to one direction of the 
oscillations by the second polarizer P’. Their amplitudes are identical. 

2/EEE eo =′=′ ,                                     (4.21) 

where E is the linearly polarized light wave electric field intensity after 
passing the polarizer P.  
     Interference of the ordinary o and extraordinary e rays depends on 
the difference of phases, which they get after passing through the crystal 
plate. This difference of phases is represented by a vectogram  
(Fig. 4.22). The amplitude of the resulting wave is: 

2 2
2 2 2 21 cos2 2 cos cos

2 2 2 2
E EE E E+ δ δ⎛ ⎞ ⎛ ⎞′ = + δ = =⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠
ΙΙ .    (4.22) 
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Fig. 4.22  

 
Intensity is proportional to the amplitude squared: 

2cos
2

I I δ′ =ΙΙ .                                      (4.23) 

2. Optical planes of both polarizers are perpendicular. The 
amplitudes are identical o eE E′ ′=  and directed oppositely. It means that 
after passing the polarizer, the additional difference of phases π  
appears. Therefore, to find intensity by the formula (4.23), we have to 
write down δ + π  instead of δ : 

2sin
2

I I⊥
δ′ = .                                        (4.24) 

     We see from the formulas (4.23) and (4.24) that the intensities I⊥′  
and I ′ΙΙ  are complementary; it means that their sum equals the light 
intensity I that passed through the polarizer P. If  
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2 mδ = π    (m = 1, 2, 3 …)                            (4.25) 
(the plate K thickness is equal to the wavelength), the intensity of light 
I ′ΙΙ  which passed through an analyzer is maximal, and the intensity I⊥′   
equals zero.  
     It means that an interference maximum is observed for the parallel 
polarizers, and an interference minimum is observed for the crossed 
polarizers. If  

(2 1)mδ = π +    (m = 0, 1, 2 …),                      (4.26) 

(the plate K thickness is equal to the half wavelength), the result of  the 
interference is reverse.  
     The intensity I ′ΙΙ  is minimal, and the intensity I⊥′  is maximal. 
Actually, we don’t see a classic interference sequence of light and dark 
sections characteristic for it.  
     Interference of the ordinary o and extraordinary e rays shows up as 
the redistribution of the light energy between mutually perpendicular 
planes.  

If the white light falls on the optical system (Fig. 4.21), the light 
color after the analyzer changes during rotation of the polarizer or 
analyzer.  

This phenomenon is explained by the fact that the difference of 
phases (4.12), which determines the result of interference, depends on 
the wavelength. 

If the thickness d of the crystal plate is different in different places, 
the values δ  are also different. Therefore, during observation of the 
monochromatic light after the analyzer and such a plate, characteristic 
system of the dark and light interference sections is observed instead of 
the homogeneous light.  

During observation of the white light (sunlight) after the analyzer 
and such a plate, the varicolored light is observed. These colors change 
during the polarizer or analyzer rotation. 

 
4.3.6. Artificial double refraction 

 
Anisotropy under deformation. Zeebek (1813) and Brewster 

(1815) opened the phenomenon of double refraction in transparent 
bodies under mechanical deformations. For example, in the case of one-
sided compression or extension of a glass plate, it acquires properties of 
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a uniaxial crystal which optical axis coincides with the direction of 
compression or extension. Experience shows that difference of indexes 
of refraction of the ordinary o and extraordinary e rays in perpendicular 
to the optical axis direction is proportional to normal tension: 

o en n k− = σ ,                                        (4.27) 

where /F Sσ =  is a mechanical tension; k  is a coefficient of proportion 
that depends on properties of the substance.  
     The difference can be both positive and negative. 

For the double refraction observation, a 
glass plate is placed between the crossed 
polarizers PP ′⊥  (Fig. 4.23). While the 
glass plate is not deformed, such a system 
does not transmit light. If the plate is 
deformed, the system transmits light, at that 
white light develops into varicolored bars. 

Every colored bar responses the identically deformed places of the plate. 
Such method of research of deformation is used for aircraft 

constructions; it simplifies control of tensions in new constructions of 
airplanes. 

A Plexiglas model of an airplane is subjected to the tensions similar 
to the real. Observation of light transmitted through the model gives an 
opportunity to draw a conclusion about distributing of tensions and their 
magnitudes in the construction.  

Anisotropy under electric field. Kerr effect. Kerr discovered in 
1875 that solid and liquid transparent dielectrics become optically 
anisotropic under strong electric field action. The phenomenon was 
named Kerr effect.  

The similar phenomenon was discovered for gases in 1930. 
Experiments show that under the action of electric field a liquid in a 

flat capacitor is polarized and its optical properties become similar to 
the uniaxial crystals properties if its optical axis is parallel to the electric 
field intensity vector. The difference of indexes of refraction of the 
polarized liquid for the ordinary o and extraordinary e rays is 
proportional to the intensity E  squared:  

2
0e on n K E− = λ ,                                    (4.28) 

where 0λ  is a wavelength in vacuum; K is a Kerr constant.  

 P' P 

 
Fig. 4.23 
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     It has especially large value for nitro-benzol ( 256 NOHC , 
12 –1 –22.2 10 m VK −= ⋅ ). The Kerr constant 0>K  for most materials that 

is oe nn > ; that responses a positive uniaxial crystal. But there are 
materials with 0<K  (alcohol, ethyl ether). The Kerr constant depends 
on nature of material, wavelength, and usually quickly diminishes with 
the temperature increase.  

A path difference appears in the Kerr cell on the way l between the 
rays o and e: 

2
0( )e on n l K lEΔ = − = λ  

or phase difference 

2

0 0

2 2 ( ) 2e on n l KlEπ πδ = Δ = − = π
λ λ

.                     (4.29) 

Kerr effect was explained by Lanzheven (1910) and Born (1918). 
Molecules obtain a dipole moment in the direction of the external 
electric field and reorient so that the dipole moments coincide with the 
direction of the field. Thus, the material becomes anisotropic. 

Kerr effect is almost noninertial. Time of the molecules orientation 
in the direction of the electric field after its appearance or disorientation 
after its shutdown is approximately 1010 s−  and even 1210 s− . Therefore, 
the Kerr cell placed between the crossed polarizers is used as a fast-
acting noninertial keyer or a shutter of light. In particular, Kerr effect is 
used for the management of work of lasers for creation of high-powered 
ultrashort pulses.  

Anisotropy under electric field. Pockels effect (linear electro-
optic effect). Some polar crystals in the external electric field obtain 
double refraction properties. At that difference of indexes of refraction 
of e and o rays is proportional to the first degree of the electric field 
intensity.  

This phenomenon was named Pockels effect (1894). 
Induced by the field an artificial optical axis is perpendicular to the 

light direction and the light undergoes double refraction relatively to this 
axis 

e on n E− = α ,                                        (4.30) 

where α  is a constant that equals 11 1010 10 m/V− −− .  
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     The potential difference for Pockels effect is approximately ten times 
less than the potential difference in the case of Kerr effect. It is an 
important advantage of Pockels effect for practical application. Pockels 
effect as well as Kerr effect is noninertial.  
     Linear dependence of the difference of the indexes of refraction on 
the electric-field intensity (4.30) and relatively small regulatory 
potential difference give Pockels effect advantage in technical 
application compared to Kerr effect. 

Anisotropy under magnetic field. Cotton-Mouton effect. The 
analogue of Kerr effect is Cotton-Mouton effect discovered in 1910. 
Without the external magnetic field molecules of a substance are 
oriented chaotically.  

If the substance is placed in the strong magnetic field, the orientation 
of the molecules magnetic moments appears. As a result, an optically 
isotropic substance in the magnetic field acquires properties of a 
uniaxial crystal which optical axis is parallel to the direction of the 
magnetic field induction B .  

Double refraction under magnetic field has application similar to 
Kerr effect. The laws of both phenomena are absolutely identical. 
Dependence of difference oe nn −  on B  if light propagates crosswise to 
direction of the magnetic field induction is: 

2
0e on n C B− = λ ,                                 (4.31) 

where C is constant depending on the substance properties.  
     It is determined experimentally and, for example, for nitrobenzene 
C6H5NO2 

2 1 22.25 10 m TC − − −= ⋅ . This substance in the magnetic field 
with the induction 1 T creates the difference of phases between e and o 
rays after passing 1 m distance 

2

0 0

2 2 ( ) 2 0,14 rade on n l ClBπ πδ = Δ = − = π =
λ λ

. 

4.3.7. Rotation of polarization plane  
 

Natural rotation. A lot of substances named optically active have a 
property to revolve direction of polarization of a linearly polarized light. 
In particular, such properties are characteristic for crystalline substances 
(quartz, cinnabar, crystalline sugar), clean liquids (turpentine, nicotine), 
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and also for solutions of optically active substances in inactive solvents 
(water solution of sugar, glucose).    

A phenomenon of rotation of polarization plane was discovered by 
Arago (1811) during observation of propagation of the linearly 
polarized light along the optical axis of quartz plate. If the linearly 
polarized light falls on the optical system that consists only of two 
crossed polarizers PP ′⊥ , the optical system does not transmit the light.  

However, if the quartz plate K, cut out 
crosswise to the crystal optical axis is 
placed between two crossed polarizers 
(Fig. 4.24), the system begins to transmit 
light. Revolving the analyzer P′   
(Fig. 4.24) can shut down the light and find 
the angle of rotation of polarization plane by the quartz plate K. 

Experiments show that the angle of rotation depends on the path l of 
light in a crystalline plate 

,lϕ = α                                             (4.32) 

where α  is a rotation constant, which is measured in radian per meter 
or in degree per millimeter.  
     It significantly depends on a falling light wavelength that means 
rotatory dispersion of light. Indeed, for a quartz plate in the case of red 
light о15 / mmα ≈ , green о27 / mmα ≈ , violet о51 / mmα ≈ .   

Rotatory property of quartz is caused exceptionally by its crystalline 
structure, as melted quartz is not optically active. There are 
distinguished levorotary and dextrorotatory modifications of quartz 
depending on the direction of rotation of the polarization plane. The 
magnitude of rotation in both cases is identical. All other optically 
active crystals, liquids, and solutions also exist in two modifications.  

The direction of rotation changes if we change the direction of 
propagation of light (Fig. 4.25). In other words, the direction of rotation 
(levorotary or dextrorotatory) is «tied» to the ray direction. 

Therefore, when the linearly polarized 
light passes through a quartz plate, reflects 
on a mirror, and passes through the plate 
again, the direction of the linear polarization 
restores. In solutions, the angle of rotation of 
the polarization plane is determined by Biot law (1832) 

P K P'

 
Fig. 4.24

 

 
Fig. 4.25 
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[ ]clϕ = α ,                                        (4.33) 

where c is a solution concentration; l is a ray path in the solution; [ ]α  is 
a specific rotation constant, which depends on the wavelength and 
temperature.  
     Experiments show that the dependence on the temperature is weak, 
and the dependence on the wavelength is approximately inversely 
proportional to the square of the wavelength. For chemically clean 
liquids [ ] /α = α ρ , where ρ  is a liquid density. For solutions it means 
the density of active substance that is its mass in the solution unit 
volume. 

It appears that all optically active substances in the liquid state 
(including solutions) have the same properties in the crystalline state. 
But some optically active crystals (quartz) are not active in the liquid 
state. Consequently, optical activity can be determined both by the 
structure of molecules and their ordering in the crystal lattice. 

If we add the same amount of dextrorotatory molecules to the 
optically active solution with levorotary molecules, the solution loses 
optically active properties and becomes the racemic mixture. 

The dependence of the polarization plane rotation on concentration 
(4.33) is a basis of methods of determination of concentration of the 
optically active substances, in particular, sugar (sugar refining) and 
biological objects (blood). 

Fresnel made the first theoretical explanation of rotation of the 
polarization plane. He assumed that a linearly polarized ray passing 
through a crystal along the optical axis is separated into two circular 
polarized rays that move with the different phase speeds and have 
different indexes of refraction.  

Quick rays rotate clockwise in the dextrorotatory crystals, if we look 
towards the rays; quick rays rotate counter-clockwise in the levorotary 
crystals. 

Fresnel confirmed the hypothesis experimentally. The linearly 
polarized light is transmitted through a complex prism that consist of the 
levorotary and dextrorotatory quartz (Fig. 4.26, the optical axes of the 
three prisms are parallel to the basis AD). As a result, he got two 
spatially divided circular polarized rays. Analysis by means of the / 4λ  
plate states that a declined downward ray is dextrorotatory, and a 
declined upwards ray is levorotary. Hence, Fresnel fixed the 
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phenomenon of double circular refraction. These rays are added after 
the prism and create again the linearly polarized ray but its plane of 
polarization is turned to the angle ϕ . 
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            Dextrorotary Dextrorotary

 

Fig. 4.26 
 
Magnetic rotation of polarization plane. In 1846 Faraday 

discovered that the optically inactive substances in the strong magnetic 
field rotate a light polarization plane when the light propagates along the 
magnetic field direction. Such phenomenon is named Faraday Effect. 

Experiments of Faraday and then more detailed experiments of 
Verdet had showed that for a certain wavelength the angle of rotation of 
polarization plane is proportional to the light path and intensity of the 
external magnetic field: 

V lHϕ = ,                                         (4.34) 

where V is a Verdet constant or specific magnetic rotation; l is a light 
path in the substance; H is a magnetic-field intensity.  

Verdet constant depends on the nature of the substance, the 
temperature, and the wavelength. The equation (4.34) describes the 
angle of rotation of the polarization plane for paramagnetic and 
diamagnetic materials. For these materials values of V are small, that is 
why the angles of rotation are small too. For ferromagnetic materials the 
angle of rotation of polarization plane is expressed through the 
magnetization J.  

Thus, in the formula (4.34) H is replaced by J, and a Verdet constant 
is replaced by a Kundt constant. Very huge rotation of the polarization 
plane is observed in ferromagnetic materials (Fe, Ni, Co), which thin to 
such a degree that they are transparent. In particular, for Fe l = 0.1 mkm 
thickness in the magnetic field with intensity 4~ 8 10 A/m⋅ , the angle of 
rotation is о2ϕ = .  
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The direction of rotation of the polarization 
plane is determined by the magnetic field 
direction and does not depend on the direction of 
the light propagation. It allows creating the 
optical valves that let pass light only one-way. It 
is explained on Fig. 4.27; the polarizers Р and P′  
form the angle o45 . Natural light passes through 
the polarizer Р and becomes linearly polarized, 
then the magnetic field rotates the light 

polarization plane by о45ϕ =  and the light passes through the analyzer 
P′ . After that the light reflects on the mirror surface and passes through 
the magnetic field again; the field rotates the light polarization plane by 

о45ϕ = . As a result, the light polarization plane becomes perpendicular 
to the polarizer P plane and it cannot pass backward. 

 
 
 
 
1. What is the difference between polarized and natural light? 
2. What types of polarization of light do you know? 
3. Give a definition of linearly polarized light. 
4. Give a definition of elliptically polarized light. 
5. Give a definition of partially polarized light. 
6. What methods of polarization of light do you know? 
7. Give a definition of Brewster's angle. 
8. Give a definition of Malus law. 
9. What is the nature of birefringence? 

10. Give a definition of optical anisotropy. 
11. Give a definition of the crystal optical axis. 
12. Give a definition of the uniaxial crystals. 
13. What is the feature of the polarized light interference? 
14. How can the artificial anisotropy be obtained? 
 
 
 
 
 
Problem 1. The intensity of light transmitted through the polarizer 

and the analyzer is four times less than the intensity of light transmitted 
through the polarizer. Find the angle between the basic planes of the 
polarizer and the analyzer. Absorption of light is neglected.  

H  
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Fig. 4.27 

Test Questions ? 

     Sample Problems 
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Solution: Let us denote the intensity of light transmitted through the 
polarizer by I0 and the intensity of light transmitted through the polarizer 
and the analyzer by I1. According to the Malus law I1 = I0 cos2α. 
Therefore  

2 1

0

cos 0.5I
I

α = = , cos α = 0.25 and α = 45˚. 

 
Problem 2. The beam of the natural light falls on the polished 

surface of a glass plate submerged in a liquid. The light beam reflected 
on the plate forms the angle of 97° with a falling ray (Fig. 4.28). Find 
the liquid index of refraction if the reflected beam is completely 
polarized. 

 

i1i1

n2 

i2 

n1 

 
Fig. 4.28 

 
     Solution. By Brewster law, reflected on a dielectric light is 
completely polarized if the incidence angle tangent is:  

Br 21tgi n= ,  

where 21n  is a relative index of refraction of the second substance 
(glass) relatively to the first one (liquids).  
     The relative index of refraction equals the relation of the absolute 
indexes of refraction of these substances. Thus, 

2
Br

1

tg ni
n

= . 

According to the problem data and the reflection law, we get: 
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Br 97° 2i = ; ( ) 2 1tg 97° 2 n n= ; hence,     ( )2tg
2

1 ϕ
=

n
n . 

Calculations give: 1n  = 1.33. 
 
 
 

1. Find the angle between the Sun ray and the horizon when the ray 
reflected on the surface of a lake is maximally polarized. (37°) 

2. A beam of natural light falls on the surface of glycerin (n = 1.47). 
Find the angles of incidence and refraction of the beam if the reflected 
beam is completely polarized. (55°; 34°) 

3. The limit angle of complete reflection of the beam on the liquid-
air border is 45°. Find the Brewster angle for the beam falling from the 
air on the liquid surface. (55°) 

4. Find the angle between the main planes of the polarizer and the 
analyzer if a natural light intensity is diminished by five times after 
passing the polarizer and the analyzer. (51°) 

5. A natural light passes through two polarizers the main planes of 
which are placed under the angle of 30°. Then the light falls on a mirror 
and reflects on it. The reflected light passes through the two polarizers 
again. What is the light intensity after two passing through the two 
polarizers? 
 

Problems 


