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ESTIMATION OF COMPUTATIONAL WORKLOAD ON THE 
RESOURCES OF UNMANNED AVIATION COMPLEX IN THE PROCESS 
OF AERODYNAMIC PROBLEMS SOLVING 

A mathematical description of the amount of data and computational operations in-
tended for solving aerodynamic problems in real time of flight on the distributed com-
puting resources of an unmanned aviation complex is considered. The given estima-
tion is made for solution based on the large eddy simulation approach.  

The requirements to the quality of movement of modern drones may be for-
mulated for each of the stages and modes of flight. In accordance with the formula-
tion of these requirements, the components of the aircraft control algorithms should 
also be structured. In particular, in the unsteady regimes of flight, the algorithm of 
finding the vector of control actions may include procedures for ongoing refinement 
of the aerodynamic coefficients of the object by means of solving the corresponding 
computational aerodynamic problems. Given the large amounts of computation 
when the numerical solution of such problems, it is expedient to distribute computa-
tion among onboard and ground-based computing resources. Thus, it is necessary to 
solve the problem of optimal distribution of computational workload, based on 
known characteristics of unmanned aerial vehicles piloting, such as the distant loca-
tion of the operator, presence of time lags in communication channels, the probabili-
ty of temporary interruptions of communication, and other factors that reduce the 
quality of controlling the object. 

An UAC distributed computing system consists of an onboard computer 
(with the RAM volume Mop uav [bytes], CPU speed Pproc uav [operations per second] 
and a ground computer with the corresponding factors Mop gnd [bytes ], the speed of 
the processor Pproc gnd [operations per second]. In the first approximation, the struc-
ture of ground area network and the corresponding impact of this structure on the 
results of solving the optimization problem can be neglected, considering that the 
amount of memory of the on-ground computing resources, the performance of these 
computing resources and the bandwidth of communications between ground nodes 
are significantly higher than the respective values for the UAV on-board computer 
and the communication channel "surface-to-air." 

For formulation of the problem of information processing for the computa-
tional aero-dynamic problem in this system it is necessary to assess the amount of 
operations required at each step of the calculation. Let us consider solving the aero-
dynamic problem on the basis of the Large Eddy Simulation (LES) approach, which 
is a mathematical model for turbulence used in computational fluid dynamics, based 
on low-pass filtering. This operation is applied to the Navier-Stokes equations to 
eliminate small scales of the solution. This reduces the computational cost of the 
simulation and makes affordable the computational cost for solving practical hydro- 
and aerodynamic problems with complex geometry or flow configurations, such as 
can be met with turbulent jets, pumps and flows around vehicles. In contrast, direct 
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numerical simulation, which resolves every scale of the solution, is quite expensive 
for nearly all systems with complex geometry or flow configurations. The governing 
equations are thus transformed, and the solution is a filtered velocity field. The thre-
sholds of filtering, that is, the length and time scales to be considered as "small" and 
to be eliminated, are selected as the compromise between the requirements of turbu-
lence theory and available computational resources. 

The calculations in the workflow of application of this method include the 
two basic steps: 

1) calculation according to the governing equations, which are, in their es-
sence, the partial differential equations governing the flow field u(x,t). 

2) filtering, which mathematically turns out into calculation of convolution 
integrals.  

An LES filter can be applied in the spatial and/or in the temporal field, and 
thus perform a spatial filtering operation, a temporal filtering operation, or both 
these operations, correspondingly. In the general form, for an arbitrary scalar field 

),( tx determined over the space {x}, the filtered field is defined as 

rrxrx ddtttGtt ')',()',(),(   ,                      (1) 

and may be written in brief as *G , where G(�) is the filter convolution kernel. 
Using the provided filter definition, one may split any field up into a filtered and 
sub-filtered fractions. 

For incompressible flow, the continuity equation and Navier-Stokes equa-
tions are filtered. The continuity equation may be used in the differential or in the 
integral form [1]: 

S dS
dt
dq

t
jj ;   , 

where:  is the volume density of the fluid, calculated as the amount of the mass of 
the fluid q per unit volume V ; 
q is the total amount of the fluid in the volume V; V dVq ; 

j is the flux of q (a vector function which describes the flow of q per unit area and 
per unit time);  
 is the generation of the matter per unit volume per unit time. Terms  > 0 reflect 

mass generation (production or income) and referred to as "sources"; terms  < 0 
reflect mass absorption (disappearing, or removal) and referred to as "sinks"; 

S dS  denotes a surface integral over a closed surface S that encloses volume V ; 

 is the total income (if positive, in the case of generation) or loss (if negative, in the 
case of removal) of matter per unit time due to the sources� and sinks� activity in the 
volume V; V dV ; 

 denotes divergence;  

 t is time. 
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The filtered continuity equation and the filtered Navier-Stokes equations for 
the incompressible case have the forms: 
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where p  is the filtered pressure field,  is viscosity, and jiS is the rate-of-strain 
tensor.  

The nonlinear filtered advection term  is the main cause of difficulty in 
LES modeling. Its evaluation requires knowledge of the unfiltered velocity field, 
which is unknown, so it must be modeled [2]. In addition, the nonlinearity of the 
problem leads to interaction between large and small scales, thus preventing separa-
tion of scales. The filtered advection term can be split up as: 

= iiji uu  ,                                           (4) 

so that the filtered Navier-Stokes equations (3) get the form 
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where ji  is the residual stress tensor, which includes all unclosed terms. This stress 

tensor may be decomposed as  

jijijiji RCL   ,                                       (6) 

where jiL (referred to as the Leonard tensor) represents interactions among large 

scales; jiR  (referred to as the Reynolds stress-like term) represents interactions 

among the sub-filter scales (SFS), and jiC  (referred to as the Clark tensor) 
represents cross-scale interactions between large and small scales [3].  

For the governing equations of compressible flow, one should take into ac-
count and also filter the equation that describes the conservation of mass. In order to 
avoid necessity to model the sub-filter scales associated to the mass conservation 
equation, the Favre density-weighted filtering operation, or Favre filtering, was pro-
posed [4]. This type of filtering is defined for an arbitrary quantity  as ,  
which, in the limit of incompressibility, becomes the ordinary filtering operation. 

The Favre-filtered momentum equation for compressible flow gets the fol-
lowing form [5]: 
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where ji  is the shear stress tensor; for Newtonian fluids  

kkijijji STST )(
3
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For each step (e.g. for each iteration) of solving the problem in accordance 
with the enumerated equations, the amounts of data and calculations may be esti-
mated as provided in the Table 1. (Supposed the 3-dimentional problem, the fineness 
of integration is L, the tensor representing the u(�) field consisting of N numerical 
components.) 

Table 1 
Estimations for the amounts of data and calculations 

 
Equation No. Data volume Amount of calculations 

(1) Not less than N Order of the (N·L)3 
(2) N Not less than 3N 
(4) 2N Not less than 23·N 
(5) 4N 9·12N 
(6) 4·3N Not less than 9·3N 
(7) 4·9N 9·17N 

Conclusions 

1. An estimation of the amount of computational operations intended for 
solving aerodynamic problems in real time of flight of an unmanned aviation com-
plex is proposed. The used model supposes using the Large Eddy Simulation ap-
proach. Some estimations are obtained in the form «not less than», because the cor-
responding equations include the terms that need additional evaluation, which may 
be done in various ways. These ways differ in the mathematical approaches and, 
respectively, in required computational resources. 

2. The possible directions of the further research may include numerical 
modeling, accounting for the features of an on-ground computing structure, applica-
tion of the methods of the theory of mass service (queueing theory). 
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