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I. INTRODUCTION

In semiconductor manufacture among all
processes included in a wafer processing it is re-
quired the most rigid control of air purity at the
workplace.

Since the main contribution to the pollution of
the environment in clean room manufacture (CRM)
is accounted for the operator and process equipment,
there is a necessity of local clean volumes, free from
human presence. Thus the major air pollutant be-
comes an atmospheric aerosol which was missed by
the high purity filter, i.e. the fraction of submicron
aerosol.

Only hygroscopic (hydrophilic) particles are able
to increase its size with increasing relative humidity
¢. Therefore it is important to analyze the nature of
aerosol particles which are present in clean rooms,
their origin, as well as their impact on the quality of
microelectronic products.

The particles, formed by mechanical friction, can
remain after the grinding of silicon wafers. The micro
particles are formed in air guide networks because of
erosion of the inner pipe surface as well as the air
flow may comprise solid particles of salts formed in
the irrigation chamber at the contact of air with water
[1]. Minor decrease of density in fine air filters can
greatly reduce their effectiveness. Powerful source of
technologically very dangerous aerosol are leaking
exhaust system oil.

Intensity of oil mist generation consisting of
droplets ranging in size from 0.01 to several micro-
ns, is very high. Generators of aerosol particles are
all moving and friction knots, joints, control ele-
ments, a places subjected to thermal shock and vi-
bration. The main source of aerosol particles is a
human. The micro particles in 60 % of cases are the
cause of defect, of which the share accounted for-
man is 40 %.

As impurities in the air of the room may present
different gases in the residual amount , as well as a

pairs of chemicals and organic solvents. Large mo-
lecules of gases such as NO,, H,S also cause conta-
mination during wafer processing. At a concentra-
tion of oxidant about 10” % on unexposed areas dur-
ing photolithography process photo resist areas are
observed. This is the result that in a negative resist
and unexposed areas the cross-linking reaction is
also developed.

Depending on the chemical properties of the mi-
cro particles a serious impediment can be both large
and ultrafine particles. The required purity of the air,
corresponding to a given class CRM exists only at a
certain height from the final filter to the place of wa-
fer processing. During the dust generation indoors
large particles fall down, and small scatter in differ-
ent directions and, if not picked up by the flow of
conditioned air, are accumulates in stagnant zones of
CRM.

Water micro droplets presented in air can absorb
soluble gases (SO,, NO) and the oxidant (H,O,
ozone) which react in a liquid phase with the pro-
duction volatile substances.

II. THEORY OF CONDENSATION GROWTH
OF AEROSOL PARTICLES UNDER SATURATION CON-
DITIONS

Solutions of condensation droplet growth problem
are studied in [2] — [4] and many others [5] — [14].

The system of equations describing the transport
of heat, steam and drops growth, or droplet with
r <30 micron evaporation can be represented as:

T.
ap LA LATS
=D, Ap; ot
ot
8_m = 47tr2Dn @ ks
ot dr

where p, D, are the density and the diffusion coeffi-
cient of the pair respectively; 7,7, are temperature,
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thermal diffusivity of air (i = 1) and of liquid (i = 2);
m is the mass of the droplet surface.
Equation must be solved under the following
conditions:
pP=p,. =T, at r—oo;

p=py, 1=7,=T at r=R;

(10,201,551, )
or

=0,

r=

or or
where L is the heat of condensation; &, and k, are
the coefficients of thermal conductivities of air and

k
X =,
pc,

water, respectively; where ¢, is specific

heat of a substance.

However, this system also in practical calcula-
tions leads to a rather complex mathematical calcu-
lation. Further simplification can be done if the ex-
ternal conditions (temperature, pressure) are chang-
ing very slowly, using the so-called quasi-stationary
approximation.

The drop growth in the atmosphere can be consi-
dered quasi-stationary approximation, not taking
into account the internal and external convection and
taking into account as an amendment temperature
jump at the drop surface and concentration jump.

In this case, the equation of droplet growth can
be presented in the following form:

or_D,
ot  p,R

S (RD)[p.=po(R.T,c)],

where ¢ is the concentration of the solution; f is

amendment to the kinetic regime.

Decreasing of the vapor pressure is caused by the
presence of the solute in the droplet.

Saturated vapor pressure above the drop of the
solution can be represented as:

Py (RaT,C) =Py (R,T)[l—CD(c)] =

=po<r,,>[1—<b<c>1exp{ Ry }

+
RT, ~p,RTR

where ¢ is the concentration of the solute; ®(c) is
function characterizing the pressure decrease.

a
G =0, 1+F ,

o is the surface tension of the solute; o is surface

tension of pure water; a is a certain coefficient.
Define AT =T -1

This factor can be regarded as a not very signifi-
cant and confine account ®(c).

The quantity ®(c) taking into account electro-

lytic dissociation subject can be written as follows:
im, M iM
®(c)= im, __iM, ’

(:nppR3 —mchC (pp _C)MC

where m, and M, are weight and the molecular
weight of the solute; M is molecular vapor weight; ¢
is the concentration of the solute substance, g/sm’;
p, is a density of the solution; i is Van’t Hoff fac-

tor characterizing the degree of dissociation of the
solute, which depends on the concentration and
temperature.

For dilute solutions of the Van’t Hoff factor tak-
en equal to a constant value, which is determined by
the number of ions formed by the dissociation of
one molecule (for NaCl — i=2, for CaCl, -

—i=3etc. ). As condensation nucleus contain a

mixture of solutes, B. Meyson [4] suggests that for
all nucleus we can take the number 1 =2.22.

In [9], the following empirical formula ford)(c)

is determined:

where p. — the density of the salt; R, — radius drops

of a saturated solution; ¢ and » — some constants.

In [13], a numerical solution of the problem. In
it, unlike the previous work accounted Kelvin effect,
the latent heat of condensation and dissolution ef-
fects. The method does not account for the coagula-
tion, sedimentation and the presence of sources. So-
lution of the system of differential equations is ob-
tained by “moving section”. Domain size of aerosol
particles is divided into n classes, each of which can
move with time. The results of calculations per-
formed for the same conditions as in the previous
case.

It is clear that within thousandths of a second
from the beginning of the process (i.e., almost in-
stantaneously) a dramatic increase in the smallest
fraction of the aerosol (more than an order of magni-
tude), then it is as if the redistribution of moisture
due to the capture cross a larger particle size. This
shows the danger of sharp fluctuations in humidity,
which can cause immediate sharp rise in some of the
aerosol particles.
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To determine the droplet growth with reasonable
accuracy in practical calculations using the Lang-
muir equation:

pRT(d*—d;) pRT(d”-d )
T 8DM(p, —py) 8DMp, (1-5)

(D
where & is the degree of supersaturating; D is dif-
fusion coefficient; M is molecular weight of the so-
lute in gram moles.

Taking into account the clarification given by
Fuchs [2], (1) can be written as:

2
,__PRT d’, dD _éd+A21n(d+2Aj ’
DMp,| 8 20v, 2 2A

X

where A is the distance that the evaporating mole-
cule must pass before its collision with a gas mole-

cule
1
Ay Tt m 2
m, ’
o (water) = 0.034; m, and m, are the mass of the

gas molecules and vapor, respectively; A is the
1

kT )2
2nm, )

The estimate of the characteristic time of estab-
lishing equilibrium between the drop of the solution
to the equilibrium radius and its environment given
in [13]. It showed, for not very low super saturation

mean free path of the gas molecules; v, = [

or under saturation |8| :

2
r

1= 0,4k, |8

b

Dp,

1+Dvvav i—l pf
T \RT

where D, — a vapor diffusion coefficient; p, — a

ky =

vapor density; L, — the heat of vapor condensation
of vapor; R, — vapor gas constant; y — the thermal
diffusivity of air; 7' — air temperature; p . — density
of the fluid is formed by condensation of vapor.

It is defined,that k, =10 °cm”-c” for water va-

por under normal conditions. For these conditions,
the ratio becomes:

T=4-107r7/3|.

In an atmosphere with a relative humidity values
of the temperature change processes; and hence the
humidity, occur slowly enough. Therefore, the study

of submicron particles with sizes of atmospheric
aerosol sprays can always be considered in equili-
brium.

III. MATHEMATICAL DESCRIPTION OF HEAT
AND MASS TRANSFER PROCESSES

As shown above, the condensing increasing of
particles is conected with changes in relative hu-
midity. This change can be observed not only in the
air entering the clean room from the outside, but a
certain gradient of relative humidity change takes
place in the room due to the changes of temperature
fields, pressure, partial pressure of vapor in the pres-
ence of air flow.

All the pattern of distribution of heat and humidi-
ty fields in the room can be described by the follow-
ing system of differential equations:

8_u+8_u+v8_u_u @4_@ +la_p—0-
o ox oy o ) pox
@'FM@'F@—U 8_2‘}4_& +la_p—0-
ot ox oy or o) pdy
2
6_u+@—0-
o oy
ot ox oy o’ oy’ cpp’
Pro +8p10 +v8p10 _D 82plo +82p]0 —J
a  ax  ay  lar gt ) "

here u and v — the velocity components along x and
y; p — a pressure; T — a temperature; p1g = pi/p — a
relative partial pressure of vapor; p — a density of
the air; v — a kinematic viscosity of air; @ — a ther-
mal diffusivity of air; Dy, — a diffusion coefficient of
water vapor; ¢, — a heat capacity; /, and [, —

sources.

First equations (Navier-Stokes equations) de-
scribe the motion of a viscous incompressible me-
dium in the space (and the continuity equation of
conservation of momentum). The last two character-
ize the distribution of temperature and relative par-
tial vapor pressure, i.e. thermohygrometric field
clean room.

The first three equations uniquely determine the
velocity and pressure and can be considered as a
separate system. Thus when determining the pres-
sure it is arose some difficulties that can be avoided
by applying the algorithm Poisson for pressure.

In solving of this equations system is convenient
to execute the following transformations. Differen-
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tial members in the system are transformed by sum-
mation of first two equations into equalities

O(ou ov Of(0ou ov
—|—+—|=0; —| —+—1|=0.
ox\ ox oy oy\ ox oy

Then we obtain the system:

2 2 2
o%u aL;Jravj:_la_p; 3)

—tu—+v—-

Ou ov ou [

_+_
ot ox Oy o’ 9yt oxdy p Ox

2 2 2
LALLM Lot FLL: O
o ox Oy Ox0y  Ox ox p oy

Differentiating with respect to x and y and adding
the resulting expression, we obtain for the pressure
Poisson equation of the form

lvzpz{W2 oy

p ox oy
o ovou_oudr
Ox 0y Ox Oy
+20ViW _ﬁ_w’
ot

where

ox Oy
members

w? +u@+va—u and 20V’w,

ox Oy
can be neglected and write the equation in the form
Vzp:— @4_2 @8_u_8_u@ . (%)
ot Ox 0y Ox Oy

Equations (3), (4), (5) together allow us to de-
termine the unknown.

Analytical solutions of such a system does not
exist, so there are different numerical methods for
solving systems of differential equations (finite dif-
ference or finite element).

In this paper, the solution of this problem is ob-
tained using the finite element method.

IV. ALGORITHM FOR SOLVING THE PROBLEM
OF HEAT AND MASS FINITE ELEMENT METHOD

The finite element method is that any continuous
value can be approximated by a discrete model,
which is based on the set of piecewise continuous
functions defined on a finite set of subdomains or
elements.

Sequence of construction of the discrete model is
as follows:

1. The area under consideration is fixed in a finite
number of points (nodes). Meaning uninterrupted
value at each node is considered variable.

2. Continuous domain of values is partitioned in-
to a finite number of subdomains that have common
nodes and collectively approximate the shape of the
region.

3. Continuous value is approximated by a poly-
nomial on each element of which is determined by
the nodal values of this quantity. For each item, its
polynomial chosen so as to maintain continuity of
values along the boundary.

Since we solve the planar problem, as adopted by
the finite element second-order triangular element
having six nodes (Figure, a).

m
k
n 4
&
A iy
L d H d
a b
Triangular finite element: a is the quadratic;
b is linear
Nodal values of a scalar ¢ 1is denoted

®,,®,,..,P,and the coordinates of these nodes —.

(X.%)., (X,.7)).(X,.1,).

27 Jj2rj n> n
Interpolating the polynomial for a quadratic tri-
angle has view:

0=aq +a2x+a3y+a4x2 +c15y2 +agxy.  (6)
The nodes of the following conditions:

=0, at x=X,,y=Y;

Substituting (2) into (3) leads to a system of six
equations with unknowns %% Solving the system
and substituting the resulting values in (6), we write

the polynomial in the form:

¢=NDO, +N,®, +..+N,D,,

9

where N,, N,, N, are some algebraic function of x

and y, called shape functions of this element. In ma-
trix for mexpression canbewrittenasfollows:

¢ =[N|{®D}.

Derived from ¢ to x and y have the form:
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. ON .
@:%(Di+ "(I).+...+6N”d>n;
ox Ox ox Oox

. ON .
6_@:_6]\/1(1) +—Ld . + +6N”d)

v o o T oy "

Orinmatrixform:

%9 _ a[N]{cp},
Ox Oox
%‘yf’:_agyv]{qn}.

Interpolation relations conveniently written in the
coordinate system associated with the element. For
the triangular element is the most common local
coordinate system defined by three relative coordi-
nates L, L,, L;. Each coordinate is the ratio of the

distance from the selected point of the triangle to
one of its sides to the height, pubescent on this side
of the opposite vertex. The values of these coordi-
nates vary from “0” to “1”. Obviously these coordi-
nates are not independent, they satisfy

L+L,+L;=1.

Shape functions for the quadratic elements have
the form:

N, =L, (2L, -1);
N, =4LL;
N, =L, (2L, -1);
N, =4L,L,;
N, =L;(2L; - 1);
N, =4L/L,.

To compute the partial derivatives of

ON, ON,

a_xﬁ a_yﬁ (B=i,j...n).

Use the Jacobi matrix coordinate transformation.
Jacobi matrix has the form:

ox Oy
0 0
-0 ok
Then
Ny ON,
e
ON, Ny |
oL, oy

Thus, to obtain the derivatives:

Ny ||
OL
0y
My | = 7| 2Ny
Oy oL,

9

For the pressure p as the final element uses a li-
near simplex element with three nodes (Figure, b).
Interpolaring polynomial for it have the form:

¢=a +a,x+a,y.

Shape function, in contrast to the quadratic ele-
ment, expressed in terms of L is coordinates pre-
sented expressions:

M,=L; M,=Ly; M,=L,

Derivative forms of the functions of x and y are
determined by the same procedure as for the qua-
dratic element.

V. CONCLUSION

Improved integration of VLSI imposes more
stringent requirements for air quality (number of
dust, temperature and humidity) in clean rooms.
Transition to clean local volumes, allowing to ex-
clude contamination introduced by the operator and
the equipment, leads to the fact that the main source
of atmospheric aerosol pollution becomes. Mathe-
matical modeling of the internal environment of the
clean room, conducted using a known system of dif-
ferential equations of heat and mass, allows the cha-
racterization of the velocity distribution of the air
temperature. Relative partial pressure of water vapor
in the room.
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