
Metallurgical and Mining Industry340 No. 7— 2015

Machine building

Method of measurement of stress in a loaded structures

Kvasnikov V. P.

Dr.Sci.Tech 
National Aviation University, Ukraine, Kiev, 

Email: kvp@nau.edu.ua

Ganevа T. I. 

Odessa State Academy of Technical Regulation and 
Quality, Ukraine, Odessa, 

Email: oc.odivt-taisiia@mail.ru

Abstract 
The method of penalty functions is analyzed. Methodology of finding of optimal parameters of complex 
loaded components is used. In this report also there described how to determine the directions of principal 
strain tensor axes, major strains and stresses by measuring deformations in complex loaded details.
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Introduction
Strains and stresses during full-scale trials of var-

ious machines, construction vehicles and other prod-
ucts (springs, brackets, levers) are measured through 
a widely used method based on using discrete metal 
and semiconductor strain gauges. A specific feature 
of complex details testing is the presence of a large 
number of strain-gaging points. Therefore, for test-
ing purposes we use the multichannel strain-gauge 
station, information and measuring system. This will 
enable the accuracy of the testing. 

It should be noted that practical calculations on 
optimization of parameters of complex loaded com-

ponents require a number of different algorithms. 
In the tasks where many local solutions are expect-
ed you can use different combinations of calculation 
methods for finding the global minimum functional. 
The feasibility of using such combinations is dictated 
by the nonlinearity of the problem matter [1-3].

The purpose is to develop measuring method for 
strain and stress in difficult parts of loaded cars and 
aircraft based on the penalty function method.

Statement of basic material
It is established that in case where the objective 

function is continuous and the acceptance region 
forms a closed set then determining of optimal design 
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parameters of the parts is not sufficient. All settings of 
loaded complex parts presented in the form of restric-
tions are divided into intervals. Each interval corre-
sponds to a segment. The penalty function method is 
used for nonlinear system limits. In the penalty func-
tion method task to constrained minimum is replaced 
by a sequence of tasks to the absolute minimum.

It is necessary to minimize the function f(ki), 
і=1,…,n, in the presence of constraints g(х)=0. We 
will minimize this function without conditions. How-
ever on every attempt where restrictions arise we will 
pay a fine. The easiest method of penalty functions is 
as follows [3]. We construct a sequence of points хk, 
k/1 satisfying the equation:

distribution coefficient ξу=1.
The relative displacement values are defined via the 
formula [5, 6]

(1)

where kλ →∞  at k →∞ ; ( )2g Xkλ  
- is the simplest 

penalty function; Ɛ - required accuracy of calcula-
tions. 

The values kλ  
can be interpreted as relative unit 

fines for violation ( )( )1g X =  of restrictions, i.e. is 
the barrier function. When minimizing this penalty 
we prevent a deviation from the border. This border 
allows a deviation to the both sides in the region: a 
(+) and a (-). We also use all restrictions, accuracy of 
solution and the procedure calculation of functional 
( ),F X R .
The proposed method of finding the optimal 

parameters of complex loaded parts may be carried 
out in 4 stages:

Step 1. Call up the subroutine for calculating the 
penalty function.

Step 2. Start an iterative process that is aimed to 
construct a set of penalty functions and penalty pa-
rameters.

Step 3. Solve linear equations to determine the 
current value of variable functional. In case of non-
linear effect, one should linearize. 

Step 4. Check the used constraints where the val-
ues of variables fully fall into the limitation. If the val-
ue of functional deviates from previous calculations 
by the minimum value DKi the solution is found. If 
not, then go to the next iteration (successive approxi-
mation). All subsequent processes are to be repeated.

The next step will be to calculate new coefficients. 
Then we construct the penalty factors and the final-
ly we construct the penalty functions. This provides 
the appropriate level of problem relaxation by using a 
particular algorithm [4-6].

To calculate the amplitude-response characteris-
tics we assume an idealized road, considering its mi-
croprofile and harmonic current. We also assume that 

(2)
where ν - frequency of operations exciting force. 
The relative amplitude of oscillation at the com-

ponent test

(3)
where ω0, ωk – are partial frequencies of element.

(4)
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factor of resistance; 

k - factor of resistance of inelastic suspension.
Phase angle is calculated

(5)

We know that 
Zt π
ν

=
 then the equation (1) can be 

presented in the following form:

(6)
The vibration speed and vibration acceleration 

can be found by differentiation of equation (6):

(7)

(8)
In order to ensure the minimum weight of com-

plex details’ an experimental verification of the struc-
tures is required. 

The verification can identify real stresses in the 
load-bearing parts in various types of loads. Strain 
gauges were created for this purpose. However, di-
rect stress measurement is impossible. During exper-
iments the tension in research facilities can only be 
determined by a direct measurement of deformations 
occurring in these facilities. Stresses are indirectly 
identified by measuring deformations using the elas-
ticity theory, which links components of strain and 
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(9)

(10)

(11)

Value (11) shows that the problem of determining 
the normal stresses is reduced to finding the major 
strains in them. In general, in the load-bearing ele-
ments neither the directions of the principal axes of 
the tensor strain, nor the main strain are unknown. In 
deformation theory it is believed that the main axis of 
strain and stress tensor coincide. To determine the di-
rections of the principal axes of the deformations ten-
sor and the main strain on the surface of the object we 
install a device (“tenzorozetka”) consisting of three 
strain gauges. The axes of the gauges are located at 
45° [10].

If we accept that the unspecified axes X and Y are 
the main axes of the strain tensor and that there is an 
analogy between the theories of stresses and strains, 
then we can determine the strain on sloping sites us-
ing the formula

(12)
where ςх, ςу – are major strains on the surface of 

the subject of research. 
Based on the formula (12) we may find the strains 

in directions of installed strain gauges on the surface

of the socket. Experimental studies are conducted for 
the lower arm front suspension of the car

(13)

(14)

The ratio for major strains is found via

(15)
The main stress on the surface of the object of 

study:

(16)

Therefore “tenzorozetka” is used for many pur-
poses: 

- determination of the direction of the tensor strain 
principal axes;

- determination of principal strain;
- determination of the main stress measured by 

strain method.
Using the determinations stated above we get to 

a formula of identification the direction of the main 
strain tensor axes and a formula for major strains [11, 
12]

(17)

Studies show that formulas (15) and (17) are not 
equivalent. However, the accuracy of the solution is 
doubted when we  identify the main strain using (15) 
and (17). Note that (12) is taken under condition of 
complete analogy between the theories of stress and 
strain. When we have an uniaxial loading element the 
formula takes the form presented below:

(18)

According to the stresses theory, normal stresses 
for uniaxial loaded elements on sloping sites is de-
fined as

stress [4-7]. 
The easiest way to achieve this result is to deter-

mine stresses in uniaxially (linearly) stressed element 
of the research object, where the dependence of nor-
mal stresses σ from the normal strain ε is described 
by Hooke’s law 

where Е - spring constant of the material studied 
element object. 

The results of the stress and strain measurements 
in deformed loaded elements are found using gener-
alized Hooke’s law, which has the following form in 
the main axes of stress tensor:

where μ – Poisson’s ratio of the material element; 
σ1, σ2, σ3 - the major stress in element subject of re-
search; ς1, ς2, ς3 - major strain in element [8-9]. 

The main tensions take the following form when 
main changes in the tension of the main strains are 
altered:

After conversion into (13) we obtain
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(19)

The results of this formula are confirmed ex-
peri-mentally. 

Formula (18) when used in the strains theory to 
determine strains for uniaxial loaded elements on 
sloping sites does not produce the results that can be 
experimentally confirmed. In this case we should use:

(20)

However, uniaxial load element strain tensor can 
be represented by the formula

(21)
The formula corresponds to the boundary condi-

tions. A strain of a complex loaded element on sloping 
sites is determined by formula (22) rather than (12)

(22)

Сonclusion 
In the biaxial loaded elements the geometric 

surface model of stresses and strains is the sum of 
uniaxial  surface models of stresses and strains. It has 
been found that in the directions of the tensor strain 
axes we get tensions and accompanying strains:

(23)

There are two types of strain tensor: mixed tensor 
with major strains ςх, ςу containing the main tensed 
strain ςІ, ςІІ and related strains μςІ, μςІІ; as well as stress 
tensor strain containing only the main strains ςІ, ςІІ.

Stress tensor strain is determined using formula 
(20), if μ = 0 and if we replace mixed main strain ςх, 
ςу by tensed strains ςІ, ςІІ

(24)

It must be emphasized that this major tension will 
be put as follows:

(25)

Thus, in practice, the directions of the principal 
the tensor strain axes are often known in advance. It 
has been proven that in such cases the major strain ςх 
and ςу can be found by setting up gauges in these di-
rections or by using “tenzorozetka”. The main stress-
es are found via formulas (15) at σI = σХ and σII = σY.. 
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