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Abstract—A numerical solution method of Prandtl integro-differential equation for a finite span wing 
was presented. Comparative calculations with Glauert’s analitycal method were performed. A good 
agreement of results on the non-uniform mesh was obtained. 
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I.  INTRODUCTION 
Calculation methods of aircraft aerodynamic cha-

racteristics must represent physical phenomena and 
on the other hand must be simple, universal and au-
thentic. It is better to have effective methods based 
on simplified algorithms at the precedent stage of 
computer aided design (CAD) systems process. 

II.  REVIEW OF PUBLICATIONS 
Till now there was no accurate solution in a 

common form for the Prandtl singular integro-
differential equation. There were approximate me-
thods only. The first who engaged in the equation 
was Betz. He considered a wing with the rectangular 
plan-form. Munk proved the minimal induced drag 
was observed for the wing with an elliptical circular 
distribution. Betz and Fuchs [1] wrote the desired 
solution in a form of the elliptical distribution mul-
tiplied to infinite polynomial series. The complicated 
calculations and slow convergence restricted the us-
ing of these approaches. 

The Trefftz’s approach turned out to be more ef-
fective and, developed lately by Glauert [2], began 
to be used in practice for wings with simple plan-
forms. The Glauert’s method still remains as basic 
one within the lifting-line theory. Its essence was in 
the expansion of circulation distribution in a form of 
infinite Fourier’s series that converged quickly. In 
practice one kept the first several terms of series 
which may be obtained from solution of the linear 
algebraic equations system.  

The Glauert’s method was developed by such au-
thors as Golubev, Lotz, Carafoli, Karamchetti, Mul-
thopp, J. Anderson, R. Anderson, Burago, Nuzhin, 
Risberg, Yuriev and many others. 

Efforts were made for developing the method and 
getting a common approach by means of taking into 
account of the plan-form. Carafoli [1], Karamchetti, 
Lotz used Fourier’s series expansions for chord 
length and incidence over the span. Carafoli de-
scribed a chord variation with three terms of series. 

A lot of methods (Multhopp, Couethe and Chow, 
Bertin and Smith), as well as Glauert’s one based on 
the collocation method, were made. Multhopp [3] 
presented an approach using the Gauss’s quadrature 
formulae. Accuracy of collocation methods depends 
on the choice manner of points especially when a 
chord and an incidence have harshnesses along the 
span. 

R. Anderson and Milsappe [4], Bera, Berbente 
passed over the difficulties of the collocation points 
choice using variational approach for determining 
the Fourier’s expansion coefficients. 

Monegato and Pennachietti [5] made a quadra-
ture of the Prandtl equation with Chebyshev’s poly-
nom expansion. 

Later Rasmussen and Smith [6] developed an in-
teresting method based on the rigorous analysis of 
Fourier’s series. It was shown their method con-
verges faster than a collocation manner having the 
same number of equations. However this method 
was devised only for symmetrical and smooth inci-
dence distribution over the span. 

It should be noted, in spite of all sorts of devel-
opments, mentioned above analytical methods were 
rather complicated and lengthy. 

As for numerical methods the Yuriev’s [7] and J. 
Anderson’s [8] works may be named where they 
used iteration approach with consecutive improve-
ment of tentatively set circulation. Results slowly 
converged to constant magnitudes. However it was 
noted [7] that in comparison with the analytical me-
thods numerical ones may be used also for wings 
with: complicated plan-forms, non-smooth incidence 
distribution along the span and non-linear airfoil 
characteristics. 

III.  TASK STATEMENT 
The goal of this work was to present a nonitera-

tive numerical solution method of the Prandtl 
integro-differential equation, that had a simple 
algorithm and would enable to compute fast a valid 
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enough span-wise circulation distribution, which 
may be used later for predicting aerodynamic cha-
racteristics of finite span wings. 

IV.  DESCRIPTION OF METHOD 

The Prandtl singular integro-differential equation 
for finite span wings [2] was written in a form: 
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where ( )z  is the span-wise circulation distribution; 
z is the coordinate along the span; 

yC  is the airfoil lift slope; 
b is the chord length; 
V is the incoming flows velocity; 
α is the angle of incidence counted from an aero-

dynamic chord; 
l is the wing span; 
ζ is the coordinate for integrating along the span. 
Generally speaking magnitudes of , , ,yC b V   

may be variable over the span. 
Boundary conditions [2]: 
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Equation (1) was rewritten in a form of a singular 
integral one: 
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where '( ) ( )      is the vortex intensity at the 
point ζ. 

So instead of the source problem (1) we would 
solve the one (3) with boundary conditions (2). 

V.  COMPUTATIONAL ALGORITHM OF METHOD 

We implemented a discretization of the problem 
(3). A wing was divided span-wise into n elements. 
In the case of uniform distribution an elementary 
span was: 

lz
n

  . 

An assumption was made that a vortex intensity 
j  to be predicted was a constant one within each of 

elements and located in an internal point between 
the bounds. Coordinates j  indicated internal points 

and coordinates mz  indicated elements bounds. It 
enabled to avoid the singularity in the discrete 
model. 

Thus equation (3) may be written for every ele-
ment. Span-wise integration was approximately re-
placed with summation over the discrete elements of 
the wing: 
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where an index m meant, that appropriate magnitude 
was related to the section mz . 

Equation (3) with the boundary conditions (2) 
was brought to the linear algebraic equations system 
(4) with the unknown intensities j . The number of 
equations equaled the number of elements. 

After the solution of the algebraic equations sys-
tem the span-wise circulation distribution ( )z  may 
approximately be calculated by the left side expres-
sion of the formula (4). It would enable to calculate 
lift, induced drag and to evaluate pitching moment 
of the wing. 

VI.  THE WAY OF POINTS SELECTION 

Calculations of span-wise circulation distribution 
for wings with elliptical, trapezoidal (with taper ratio 

0.5  ), rectangular and triangular plan-forms were 
performed for approbation and reliability determin-
ing of the method. The wings had following parame-
ters: span 2 ml  ; aspect ratio 5.6  ; lift curve 
slope 15.6 radyC  . An angle of incidence 

1 rad   was accepted. 
Figures 1 – 3 presented results of comparative 

calculations with the basic Glauert’s analytical me-
thod. Graphics of the latter were marked with thick 
solid lines and computed for a collocation points 
number n = 8. 

Results of calculations for the wing with a rec-
tangular plan-form on the uniform mesh over the 
span were set on Fig.1. Internal points located in the 
middles of the elements. So in comparison with the 
analytical method this one undervalued entirely the 
span-wise circulation especially in the vicinity of the 
wing tips. Increase of number elements reduced un-
dervalueing only. It suggested itself elements crowd-
ing at wing tips. 

It was known that Glauert’s collocation points 
were set through angle coordinates with formula [2]: 

cos ,
2j j
lz                          (5) 

where j  is the angles obtained by means of uni-
form dividing from 90 to 180 degrees. 
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Fig. 1. Circulation distribution for the rectangular wing on 
the uniform mesh: 1 is the number of sections n = 4; 2 is 
the number of sections n = 16; 3 is the Glauert’s method 

 
Fig. 2. Circulation distribution for the rectangular wing on 
the non-uniform mesh: 1 is the number of sections n = 4; 

2 is the number of sections n = 16; 3 is the Glauert’s     
method 

 
Fig. 3. Circulation distribution on the completely non-

uniform mesh with n = 8 for the wing plan-forms: 1 is the 
elliptical; 2 is the trapezoid; 3 is the triangular; 4 is the 

rectangular 

Results of calculations for the same wing on the 
non-uniform mesh over the span were set on the 
Fig. 2. Here the coordinates of elements bounds 
were determined by the formula (5) through uniform 
distributed angles. Again internal points located in 
the middles of the elements. It may be asserted that 
convergence of the two methods was better. But 
again increase of elements number reduced underva-
lueing only. 

The results for the four plan-forms on the non-
uniform mesh over the span were set on Fig. 3. All 
the points were determined here by the eq. (5). The 
full convergence of results was observed. 

CONCLUSIONS 

The rewriting of the source Prandtl singular inte-
gro-differential equation in a form of singular 
integral one in combination with the special setting 
of the non-uniform mesh through uniform distri-
buted angle coordinates enabled to obtain the span-
wise circulation distribution without iterations. 

Generally speaking the results comparisons indi-
cate the presented numerical method may be used as 
an alternative one for calculating a circulation distri-
bution of a finite span wing. 

Since the method turned out to be the simple and 
the reliable one it may be employed as algorithm for 
CAD systems. 

It is recommended to test the method for wings 
with: complicated plan-forms, non-smooth incidence 
distribution along the span, non-linear airfoil charac-
teristics and also for nonsymmetrical, non-uniform 
and unsteady flows. 
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