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Abstract—A numerical solution method of Prandtl integro-differential equation for a finite span wing
was presented. Comparative calculations with Glauert’s analitycal method were performed. A good
agreement of results on the non-uniform mesh was obtained.
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I. INTRODUCTION

Calculation methods of aircraft aerodynamic cha-
racteristics must represent physical phenomena and
on the other hand must be simple, universal and au-
thentic. It is better to have effective methods based
on simplified algorithms at the precedent stage of
computer aided design (CAD) systems process.

II. REVIEW OF PUBLICATIONS

Till now there was no accurate solution in a
common form for the Prandtl singular integro-
differential equation. There were approximate me-
thods only. The first who engaged in the equation
was Betz. He considered a wing with the rectangular
plan-form. Munk proved the minimal induced drag
was observed for the wing with an elliptical circular
distribution. Betz and Fuchs [1] wrote the desired
solution in a form of the elliptical distribution mul-
tiplied to infinite polynomial series. The complicated
calculations and slow convergence restricted the us-
ing of these approaches.

The Trefftz’s approach turned out to be more ef-
fective and, developed lately by Glauert [2], began
to be used in practice for wings with simple plan-
forms. The Glauert’s method still remains as basic
one within the lifting-line theory. Its essence was in
the expansion of circulation distribution in a form of
infinite Fourier’s series that converged quickly. In
practice one kept the first several terms of series
which may be obtained from solution of the linear
algebraic equations system.

The Glauert’s method was developed by such au-
thors as Golubev, Lotz, Carafoli, Karamchetti, Mul-
thopp, J. Anderson, R. Anderson, Burago, Nuzhin,
Risberg, Yuriev and many others.

Efforts were made for developing the method and
getting a common approach by means of taking into
account of the plan-form. Carafoli [1], Karamchetti,
Lotz used Fourier’s series expansions for chord
length and incidence over the span. Carafoli de-
scribed a chord variation with three terms of series.

A lot of methods (Multhopp, Couethe and Chow,
Bertin and Smith), as well as Glauert’s one based on
the collocation method, were made. Multhopp [3]
presented an approach using the Gauss’s quadrature
formulae. Accuracy of collocation methods depends
on the choice manner of points especially when a
chord and an incidence have harshnesses along the
span.

R. Anderson and Milsappe [4], Bera, Berbente
passed over the difficulties of the collocation points
choice using variational approach for determining
the Fourier’s expansion coefficients.

Monegato and Pennachietti [5] made a quadra-
ture of the Prandtl equation with Chebyshev’s poly-
nom expansion.

Later Rasmussen and Smith [6] developed an in-
teresting method based on the rigorous analysis of
Fourier’s series. It was shown their method con-
verges faster than a collocation manner having the
same number of equations. However this method
was devised only for symmetrical and smooth inci-
dence distribution over the span.

It should be noted, in spite of all sorts of devel-
opments, mentioned above analytical methods were
rather complicated and lengthy.

As for numerical methods the Yuriev’s [7] and J.
Anderson’s [8] works may be named where they
used iteration approach with consecutive improve-
ment of tentatively set circulation. Results slowly
converged to constant magnitudes. However it was
noted [7] that in comparison with the analytical me-
thods numerical ones may be used also for wings
with: complicated plan-forms, non-smooth incidence
distribution along the span and non-linear airfoil
characteristics.

III. TASK STATEMENT

The goal of this work was to present a nonitera-
tive numerical solution method of the Prandtl
integro-differential equation, that had a simple
algorithm and would enable to compute fast a valid
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enough span-wise circulation distribution, which
may be used later for predicting aerodynamic cha-
racteristics of finite span wings.

IV. DESCRIPTION OF METHOD

The Prandtl singular integro-differential equation
for finite span wings [2] was written in a form:
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where I'(z) is the span-wise circulation distribution;
z is the coordinate along the span;
Cy is the airfoil lift slope;
b is the chord length;
V' is the incoming flows velocity;
a. is the angle of incidence counted from an aero-
dynamic chord;
[ is the wing span;
{ is the coordinate for integrating along the span.
Generally speaking magnitudes of C},b,V,a

may be variable over the span.
Boundary conditions [2]:

!
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Equation (1) was rewritten in a form of a singular
integral one:
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where y({)=T({) is the vortex intensity at the
point .

So instead of the source problem (1) we would
solve the one (3) with boundary conditions (2).

V. COMPUTATIONAL ALGORITHM OF METHOD

We implemented a discretization of the problem
(3). A wing was divided span-wise into #n elements.
In the case of uniform distribution an elementary
span was:

[
Az=—.
n

An assumption was made that a vortex intensity

v, to be predicted was a constant one within each of

elements and located in an internal point between
the bounds. Coordinates ¢, indicated internal points

and coordinates z, indicated elements bounds. It

enabled to avoid the singularity in the discrete
model.

Thus equation (3) may be written for every ele-
ment. Span-wise integration was approximately re-
placed with summation over the discrete elements of
the wing:
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where an index m meant, that appropriate magnitude
was related to the section z,, .

Equation (3) with the boundary conditions (2)
was brought to the linear algebraic equations system
(4) with the unknown intensities v, . The number of

equations equaled the number of elements.

After the solution of the algebraic equations sys-
tem the span-wise circulation distribution I'(z) may
approximately be calculated by the left side expres-
sion of the formula (4). It would enable to calculate
lift, induced drag and to evaluate pitching moment
of the wing.

VI. THE WAY OF POINTS SELECTION

Calculations of span-wise circulation distribution
for wings with elliptical, trapezoidal (with taper ratio
n=0.5), rectangular and triangular plan-forms were
performed for approbation and reliability determin-
ing of the method. The wings had following parame-
ters: span /=2 m; aspect ratio A =5.6; lift curve

slope  Cj'=5.6 rad”'. An angle of incidence

o =1rad was accepted.

Figures 1 — 3 presented results of comparative
calculations with the basic Glauert’s analytical me-
thod. Graphics of the latter were marked with thick
solid lines and computed for a collocation points
number 7 = 8.

Results of calculations for the wing with a rec-
tangular plan-form on the uniform mesh over the
span were set on Fig.1. Internal points located in the
middles of the elements. So in comparison with the
analytical method this one undervalued entirely the
span-wise circulation especially in the vicinity of the
wing tips. Increase of number elements reduced un-
dervalueing only. It suggested itself elements crowd-
ing at wing tips.

It was known that Glauert’s collocation points
were set through angle coordinates with formula [2]:

z, =—écos9j, 5)

J

where 0, is the angles obtained by means of uni-

form dividing from 90 to 180 degrees.
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Fig. 1. Circulation distribution for the rectangular wing on
the uniform mesh: / is the number of sections n=4; 2 is
the number of sections n = 16; 3 is the Glauert’s method
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Fig. 2. Circulation distribution for the rectangular wing on
the non-uniform mesh: 1 is the number of sections n = 4;
2 is the number of sections n = 16; 3 is the Glauert’s
method
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Fig. 3. Circulation distribution on the completely non-
uniform mesh with n = 8 for the wing plan-forms: / is the
elliptical; 2 is the trapezoid; 3 is the triangular; 4 is the
rectangular

Results of calculations for the same wing on the
non-uniform mesh over the span were set on the
Fig. 2. Here the coordinates of elements bounds
were determined by the formula (5) through uniform
distributed angles. Again internal points located in
the middles of the elements. It may be asserted that
convergence of the two methods was better. But
again increase of elements number reduced underva-
lueing only.

The results for the four plan-forms on the non-
uniform mesh over the span were set on Fig. 3. All
the points were determined here by the eq. (5). The
full convergence of results was observed.

CONCLUSIONS

The rewriting of the source Prandtl singular inte-
gro-differential equation in a form of singular
integral one in combination with the special setting
of the non-uniform mesh through uniform distri-
buted angle coordinates enabled to obtain the span-
wise circulation distribution without iterations.

Generally speaking the results comparisons indi-
cate the presented numerical method may be used as
an alternative one for calculating a circulation distri-
bution of a finite span wing.

Since the method turned out to be the simple and
the reliable one it may be employed as algorithm for
CAD systems.

It is recommended to test the method for wings
with: complicated plan-forms, non-smooth incidence
distribution along the span, non-linear airfoil charac-
teristics and also for nonsymmetrical, non-uniform
and unsteady flows.
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