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Abstract—Computational finite volume method to solution of Navier—Stokes equations for vertical axis
wind turbines was presented. Discrete forms of these equations were obtained that brought to nonlinear

equations system.
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1. INTRODUCTION

Development and improvement of alternative
energy sources is an urgent problem for the Energy
of Ukraine. One of the most promising ways to solve
this problem applies to wind energy. Two- and
three-bladed horizontal-axis (HA) propeller type
wind turbines (windmills) are widespread in the
world. This is due to the high rate of wind energy
use. As for the vertical-axis (VA) wind turbines only
a Darrieus rotor has the close values of the power ef-
ficiency.

Increasing of the power of wind turbines and in-
creasing of wind energy utilization makes very im-
portant the task of selecting the efficient aerodynam-
ic shape of the rotor. The leading role in the wind
turbine plays unsteady aerodynamic processes, SO
the main focus of research should be the develop-
ment of new generic methods of calculation of tran-
sient processes in the flow stream of wind turbines.

II. REVIEW OF METHODS TO SOLVE
NAVIER—STOKES EQUATIONS

To create a discrete analog of the original equa-
tions is necessary to choose calculated grid method.
The term “grid” refers to a preliminary decomposi-
tion of the computational area into a finite number of
elements and its relationships (computational grid).
There are 3 main grid methods.

1) Finite differences method.

2) Finite elements method.

3) Finite volumes method (FVM).

Finite volumes method [1] — [3] has two impor-
tant advantages in applying to describe flow of com-
pressible and incompressible fluids. Firstly, it has
good conservation properties (conservation of mass,
etc.). Secondly it allows to sample out complicated
computational areas to simpler forms.

III. PROBLEM STATEMENT

Processes of aerodynamics and dynamics of the
wind turbine are described by Reynolds-averaged

Navier—Stokes equations of incompressible fluid
flow and of rigid body rotation about a fixed axis
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where x; i = 1, 2 are Cartesian coordinates (x, y); ¢ is
time; u; is the Cartesian vector components of aver-
age speed (u, v); p is the pressure; p is the density;
v, 1s the effective turbulent kinematic coefficient of
viscosity; I, is the rotor moment of inertia; ® is the
angular velocity of rotation; Q is torque determined
from the solution of the problem of aerodynamics;
QO is payload moment attached to the shaft of an
electric generator; Qg is the resulting friction mo-
ment in the electromechanical system of wind tur-
bine.

Vg =V TV,

where v and v, are molecular and turbulent kinematic
coefficients of viscosity, respectively.

We have to obtain the torque (aerodynamic mo-
ment) using the relations:

0=p[(x=%)F,—(r=1)F,]ds,
N
F = —pcos(ﬁ,?) + TCOS(;,;),
F, = —pcos(ﬁ,}')+ rcos(;,}'),

where F, F, is the components of the aerodynamic
forces on the axes of Cartesian coordinates, referred
to elemental area; x, y are Cartesian coordinates; xo,
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o are Cartesian coordinates of the axis of rotation
about which the moment characteristics is deter-
mined; S is surface of the rotor blades;

T= u(@UT /ﬁln) is the tangential stress; p is the dy-

namic coefficient of viscosity; U, is the tangential
component of the velocity vector; /, is the distance
along the normal to the surface of the rotor; n is
normal vector to the surface of the rotor; t is tan-

gent vector to the surface of the rotor; T,] is unit

orts of the Cartesian coordinates.

After reaching a certain angular velocity, the ro-
tor is able to perform useful work.

The moment of payload (useful torque that ap-
plied to the shaft of the electric generator) is deter-
mined from the condition of maintaining a prede-
termined angular speed my

0,0 <o,
O, =

Ou>®20y.

The resulting friction moment in the electrome-
chanical system of wind turbine is given by a qua-
dratic function of the angular velocity of rotation

0, = A®’ + Bo+C,

where 4, B, C are the empirical coefficients that de-
pend on the specific parameters of the wind turbine.

IV. BUILDING OF ADAPTIVE COMPUTATIONAL GRID

One of the important stages of the numerical so-
lution of three-dimensional problems of mechanics
is the stage of construction of the computational
grid. Construction of the computational grid is the
process of sampling of an investigated region with
the aim of transforming the original differential
Navier—Stokes equation to the equivalent system of
algebraic equations, for which you can use the com-
puter. At the same time the sampling algorithm of
computational domain should be maximally auto-
mated.

For certain types of tasks automatic grid genera-
tion can be carried out directly on the partition of
discrete area on elements, but in most cases it is
more convenient a different approach, which con-
sists of the construction of pre-cubic grid and its
subsequent deformation. At this stage, the initial
physical area represented as a cubic computational
domain, which is initially evenly (or unevenly) is
crushed on three basic directions of three-
dimensional space. The resulting cubic cell in the
grid structure is a “parent” cell, which can contain
eight cubic cells “descendants”.

The structure of such network is a tree shown in
Fig. 1.
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Fig. 1. Sample of tree structure for the cubic grid

As a result of the partition of the cubic “parent”
cell, it's formed eight “descendants” cubic cells of
the same size. It is necessary to take into account
that new heights of “descendants” cells are located
in the middle of the sides and edges of the “parent”
cell. The process of creating of adaptive cubic grid is
realized step by step by adaptation levels. The first
level of adaptation those cells that contain the ele-
ments of the considered body surface (rotor blades)
and do not have a “descendants” (Fig. 2). After all of
the considered level “parent” cells have been
adapted, we move to the next level of adaptation
(Fig. 3). Results of construction of the grid are the
coordinates of the nodes that allow to receive a dis-
crete model of the investigated area.

-
T

Fig. 2. Uniform grid for the blades of Darrieus rotor
V. INITIAL AND BOUNDARY CONDITIONS

As initial conditions the parameters of the undis-
turbed flow in the whole computational domain are
defined.
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For the time ¢ parameters of the undisturbed flow:
u=U_ V=0, p=p,,

where U, V are the components flow velocity to the
coordinates x and y respectively; p is the pressure.
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Fig. 3. Uniform grid for the blades of Darrieus rotor with
the adaptation

On the streamlined body surface:

P _,

n

U=o0Xxr;

where r is the radius-vector of the point; n is the
unit normal to the surface.

Inflow boundary (inlet).

For the input border the following boundary con-
ditions are imposed:

u=U_ V=0, p=p,.

Outflow boundary (outlet).
Neumann condition is placed on outflow boun-

dary:

aU=0; a—V=0; P _y,

o Oy on

where n is the normal to the outflow boundary.
The initial angular speed of the rotor is assumed
to be zero.

VI. APPROXIMATION OF NAVIER-STOKES
EQUATIONS

Because of the nonlinearity of the Navier—Stokes
equations solving problems can be obtained only
numerically. As a method of numerical solution it is
selected the FVM due to its unique ability to use ir-
regular grids of all shapes and effective approxima-
tion of curved boundaries.

Rewrite the source equations (1) in a form:

2q OF oG _oM  oN

o ox oy ox oy
where
v+ 2
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Finite volumes method is to apply the method of
subdomains to each equation (2) in a finite volume
ABCD (Fig. 4). To calculate the first derivatives ap-
ply the Green theorem [1]:

Fig. 4. The finite volume of deformed grid

j (8—q+8—F+8—Gdedy=%Jqu+ J H - nds,

ot ox oy

ABCD ABCD

where H = (F;G). In Decartes coordinates:
H - nds = Fdy — Gdx.

For our case:
d DA
S i5ep = + Z(FAy - GAx),
dt AB

where S is the area of quadrilateral ABCD.

ABCD
obtain:
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dq .
S ssen d—ftJ‘ +(FAy-GAx)  +(FAy-GAx), . 3
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where for example
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As for the second derivatives apply again the me-
thod of subdomains in a finite volume ABCD
(Fig. 5) apply the Green theorem also. For example
we have:

2 2
I [6 IZJ+6 ({dedy+ I H -nds,
ABCD ax ay ABCD
where
H -nds =a—Udy—a—de.
ox oy

Fig. 5. The finite volume of deformed grid

Similarly to (3) obtain again:

[6_UAy_a_UMJ +[8_0Ay_6_UAxJ
AB BC
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where for example
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Finally we obtain equations system of the form
bU +nV =mP.

where b, n, m are the matrix coefficients to un-
known functions U, V, P.

The solution of equations is produced separately
by coordinates:

1) Solve the system, taking into account that de-
rivatives to y are constants.

2) Solve the system, taking into account that de-
rivatives to x are constants.

RESULTS

Dynamic characteristics were calculated for the
three bladed Darrieus rotor. The diameter and the
length of the rotor were 0.26 m and 0.4 m respec-
tively. Revolutions per minute (RPM) versus the
wind speed were presented in Fig. 6. The rotor cut in
at wind speed of about 2.5 m/s.
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400

3001
200+

100+

0 o T T T
2 3 4 5
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Fig. 6. Dependance of RPM versus the wind speed
CONCLUSIONS

Computational FVM to solution of Navier—
Stokes equations for vertical axis wind turbines was
presented.

Discrete forms of these equations were obtained
that brought to nonlinear equations system.

The solution of equations with respect to veloci-
ties and the pressure was produced separately by
coordinates.
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