A.S. Yurchenko, A.P. Kozlov _About Working set for Dynamic Memory Allocation 121

UDC 689.3.19/16 (045)

'A. S. Yurchenko,
’A. P. Kozlov

ABOUT WORKING SET FOR DYNAMIC MEMORY ALLOCATION

Aviation Computer-Integrated Complexes Department, National Aviation University, Kyiv, Ukraine
E-mails: 'ayurchenko@yahoo.com, “ap_kozlov@ukr.net

Abstract—A New approach to dynamic allocation of memory paging is described. The approach is dis-
tinguished for a choice of the dynamic allocation of memory paging algorithm parameters during a com-
putation process for achieving maximum loading of the central processor.

Index Terms—Dynamic paging memory allocation; working set; model for program behavior;

fragmentation; memory simulation.

I. INTRODUCTION

Memory management is the act of managing
computer memory at the system level. The essential
requirement of memory management is to provide
ways to dynamically allocating portions of memory
to programs at their request, and free it for reuse when
it is no longer needed. This is critical to any advanced
computer system where more than a single process
might be underway at any time [1].

Several methods have been devised that the in-
creasing the effectiveness of memory management.
Virtual memory systems separate the memory ad-
dresses used by a process from actual physical ad-
dresses, allowing separation of processes and in-
creasing the effectively available amount of RAM
using paging or swapping to secondary storage. The
quality of the virtual memory manager can have an
extensive effect on overall system performance [1].

II. A DYNAMIC MEMORY ALLOCATION ALGORITHM

For the last years most of the articles about dy-
namic paging memory allocation (DPMA) have been
described algorithms, which contrasts with a “work-
ing set” WS algorithm represented by Denning [2].
From the programmer's standpoint, the working set of
information is the smallest collection of information
that must be presented in random access memory
(RAM) to assure efficient execution of the program,
without interrupting because of lack of pages.

There are main working set algorithm’s actions: to
remove a page from the working set, if this page is
not referenced within the preceding » (working set
parameter) time units, to include a page in the
working set, if this page is referenced, but it is not in
RAM. By the working set principle, program can use
central processing unit (CPU), when program’s
working set is in RAM and pages cannot be removed
from RAM.

There are advantages of using this algorithm: va-
riable size of RAM, removal from working set use-

less pages of this program. Disadvantages: hard to
choose appropriate value of parameter », which must
be permanent, lack of control algorithm work to as-
sure efficient execution of the program.

That parameter » must be changed, showed in [2],
where was introduced a modified working set paging
algorithm, that has functions as following.

1. Any page, which was not referenced within the
preceding » time unites to, is removed from the main
memory.

2. At the time of a page fault, if the time since the
last reference is greater than K-» (0 < K < 1), then the
new page is replaced to the least recently used page,
otherwise there the space allocation increases by one
page frame.

This algorithm was introduced to remedy one of
the defects of the previous algorithm, peak expansion
of working set, which caused by sharp changes in
program locality (for example during alternation of
translator phases), old locality pages is not removed,
when new locality page is entered.

As opposed to the working set algorithm, Chu and
Opderbeck introduced the algorithm PFF, which uses
the measured page fault frequency as the basic pa-
rameter for the memory allocation decision process.
This algorithm try to control itself actions. In general,
a high page fault frequency indicates that a process is
running inefficiently because it is short of page
frames. A low page fault frequency, on the other
hand, indicates that further the increase in the number
of allocated page frames will not considerably im-
prove the efficiency and, in fact, might result in waste
of memory space. Therefore, to improve system
performance one or more pages frames could be
freed.

The basic policy of the PFF algorithm is: when-
ever the page fault frequency rises above a given
critical page fault frequency level P, all referenced
pages which were not in the main memory — therefore
causing page fault — are brought into the main mem-
ory without replacing any pages.

© National Aviation University, 2016
http://ecs.in.ua

122

ISSN 1990-5548 Electronics and Control Systems 2016. N 1(47): 121-126

In [3] — [5] it is affirmed that as the result of
modeling this algorithm it is better than the working
set algorithm. Work [6], where are represented results
of modeling algorithms LRU, WS and PFF and in-
vestigated one of the principle of optimal multipro-
gramming [7], is contradicted to the previous con-
clusion. 8 types of program are showed that for ef-
fective WS algorithm work, different » values (the
same with parameter P for PFF algorithm). For ef-
fective work for both of those programs, is necessary
less different » value for WS algorithm, than different
P value for PFF algorithm. The conclusion is: WS
better than PFF, but one question is still opened. How
does to choose those different » and P values?

This work will try to give the answer for that
question. Here is offered algorithm that use all bene-
fits of WS algorithm, but does not have disadvantages
that was discussed in the literature (time system costs,
problem with choosing critical » parameter), disad-
vantage that was represented in this work (lack of
control algorithm work to assure efficient execution
of the program).

The main efficient execution of the DPMA system
must not be the measured page fault frequency or
using RAM, it must be the coefficient of using CPU
(Kcpy)- Dynamic paging memory allocation with this
efficient execution can easy detect and avoid
“thrashing”, because Kcpy can tell about computer

Beginning

v

L

Fdes'™= 0
Kepui=0
STEP:=0
I = I'min

much more than, for example the page fault fre-
quency, which control PFF algorithm work.

The offered algorithm (AI) can change parameter
r for maximum Kcpy value. Figure 1 shows the
flowchart that represents algorithm for determining
parameter, Where 7min, Fmax» Vacts Vdes ar€ minimum,
maximum, actual and desired value of the parameter
7, Kcpuand Kcpy are actual and desired value of the
coefficient of using CPU. Calculative process is
performed to determine Kcpy value at the extended
time 7 (7>>r). Algorithm can work in one of two
regimes: searching (STEP = 0) and stable (STEP =1).
Algorithm uses searching regime to determine K py
value for different 7 (to find next value of r, previous
value multiply by f") and to choose value of r
maximum Kcpy. Selected value of » is desired for
stable regime for this algorithm. As such, this algo-
rithm can be investigated for DPMA.

III. MODEL FOR PROGRAM BEHAVIOR

To get the results of DPMA modeling, it is ne-
cessary to work out two models: model for program
behavior and model for DPMA system. The first
describes system resource requirements of executed
program and the second divides those resources be-
tween different programs. In this research, models are
based on the models that described in [8] — [10].

vy

during T (T>>r)

Calculative process to
determine Kcpy value

Fdes:= I

Kepui:= Kepy

F = Fes

Fig. 1. The determination of parameter

During the DPMA algorithm researching several
different type of program were modeling. There are
just two of them. All ith programs can be determined

by using some page numbers N;, full time 7}, time
interval inside 7}, when some page must be in RAM,
thus program can work. N; and 7; can be determined

A.S. Yurchenko, A.P. Kozlov About Working set for Dynamic Memory Allocation

123

by using uniform distribution with parameters (2, J;),
(B3, Ba). First page of all programs is resident and
must be in RAM during full time 7.

Different types of programs have different way to
create pages (live time) intervals. Assumed that lo-
cality is so important for programs, it means that
during one time interval T; for solving a program it is
necessary to have one page group of that program in
RAM, during other time interval other page group of
that program.

First program type can be described as following:
every jth page of any ith program can be determined
by using time intervals #; and t, (t;1 + tijp = T, t;
can be found by using uniform distribution with pa-
rameters (0, a-T;) for some a(0 < a < 1), and
tip = Ti — tij1.

For any program page with probability y interval
t;1 is time interval, when page is necessary (presence
interval), and during second time interval ¢;, that page
isn’t necessary (absence interval). With probability
1 —y interval ¢;; for this page is absence page interval,
and interval ¢, — presence interval.

Second program type can be described as
following: every jth page of any i-th program can be
determined by using three time intervals 7, t;; and
tis(tyn + tip+ tp = T, ty1and £ can be found by
using uniform distribution with parameters (0, a'T;),
(0, b'T;) for some a(0 < a < 1)and b(0 < b < 1), and
tiz = T;— tij) — t;». Further for any program page with
probability y intervals #; and f;; are presence
intervals of that page in RAM (¢, is the absence
interval), with possibility 1 — y those time intervals
are absence intervals (#;, is the presence interval).

IV. ABOUT MODELING PROGRAM

In this work DPMA algorithms are investigated by
using designed modeling program, which allows
imitate implementation of different program types.
Programs behaviors are described earlier.

We assumed that at the beginning all pages of any
program are in secondary memory (disk storage).
Resident page must be moved from secondary
memory to RAM to start the program processing. It is
necessary to create input descriptor of desired page in
RAM. Time that is necessary for moving the page
from secondary memory to RAM is equal to waiting
time of corresponding descriptor in input/output turn
and immediate time of page moving.

After inputing the resident page, program stays in
turn of programs that are ready to be used in CPU.
This turn is called- turn of active programs. To each
program which wait in that turn is given quantum
time to be processed in CPU. During that quantum
time program can address to the page fault in RAM,

process of the program can be finished or given
quantum time exhausted before the end of program
processing. In the first case program is deleted from
the turn of active programs and addressing to the
procedure of RAM occurs for deserved page of given
program. If memory for deserved page can be pro-
vided, then input descriptor will be created of de-
served page from the disk to RAM. When deserved
page is inputted into RAM, given program will stay at
the end of the turn of active programs.

If in the result of addressing the fault page it is no
place for in RAM, then we remove all pages of that
program from RAM to secondary memory. When all
pages are removed to secondary memory, then that
program will stay in the turn of discarded programs.
Discarded programs can become active again, if there
is a possibility to input all pages of that program,
which were present in the RAM before removing that
program to secondary memory. The processing of
new program will start in a condition when there is no
queue of discarded programs and when there is
enough space for resident page of that program in
RAM. The end of the program occurs during the
program processing. In that case, all pages of given
program, which are sated in RAM are removed to
secondary memory. When all pages are removed,
program processing considered as-done. If quantum
time ends before the end of the program processing,
then program will be removed from the beginning to
the end of the queue of active programs.

The modeling programs, and DPMA algorithms,
were written in high-level language (C++). The ac-
tivation procedure of received and discarded pro-
grams, the formation of input/output descriptors,
memory provision and deallocation were written in
microinstruction language, where the runtime for
microinstruction is known. After those procedures
were written in two languages branches of facilitation
programs in C++ then they were calibrated in time by
using appropriate programs that were written in mi-
croinstruction language, because for such programs it
is possible to determine right time of different
branches processing.

After calibration, modeling runs in C++ for which
it was chosen continuous - discrete systems. As mi-
croinstructions it was chosen language of developed
computer. The time to execute microinstructions like:
register transfer, reading from RAM to local memory,
CPU respectively equal 16x10° and 112x10°° C.
Distributed memory consists of 32-bits words, and
memory is provided with accuracy to the word.

The assessment of modeling results of proposed
DPMA algorithm is done by the using of an utiliza-
tion ratio CPU, that can be determined as follows:

124

ISSN 1990-5548 Electronics and Control Systems 2016. N 1(47): 121-126

Kepy = ((T_ Tgown — Tsys. out)/T)' 100%:

where T is the long time interval; Tyown is the CPU
downtime and Ty o is the system delay during time
T.

V. MODELING RESULTS

The main goal of modeling — is to show, how
proposed algorithm Al works. It is based on Den-
ning’s algorithm, but at the same time has changeable
value of » step. As the result of searching, algorithm
choses any r at which Kcpy is maximum and only
when r is already found, the further processing of
program will be performed. Below, the results mod-
eling results for these cases are shown, for example
when algorithm has following parameters: 7, = 0.01,
Fmax = 10.0, f=10.0, T = 120.0. The results of mod-
eling were determined as follows: values of CPU
utilization ratio were determined during researching
the » parameter by algorithm Al for different 7,
represented in Table I.

TABLE I

RESULTS OF SIMULATION

First type of program Secporr(l)(;rt;p;]e of

a=0.1 a=0.1 o=04 0=04| a=0.01

t vy=0.99 y=0.5 y=0.99 | =0.08 p=0.99

B,=2.1 By;=2.1 | B4=1.0 | y=0.99 y=0.5

B,=2.1| B,=4.2
0.01] 51.15 43.62 334 27.88 | 63.33
0.1 | 68.08 58.05 35.8 37.04 | 65.06
1.0 | 49.87 53.10 31.1 50.90 | 72.12
10.0 48.81 49.96 26.9 48.56 | 67.01

For first type programs (2) 7; = 1.05, t;; = 0.05,
tij» = 1.0, and the optimal value r,, = 0.1 was chosen
by Al algorithm, Kcpy = 68.08%. In (3) it is
represented modeling results of first type program,
but with y = 0.5, not a 0.99. Optimal r,, = 0.1 and
Kepy = 58.06. Results of comparison between (2) and
(3) shows that in both cases optimal value 7o, = 0.1 is
less than full time of program processing. It means
that during program processing it dedicates first local
program page, which removes from RAM, before the
end of program processing, to exempt space for other
programs. It is easy to see that in the first case dif-
ference between maximum and minimum Kcpy val-
ues is bigger than in the second one. It occurs because
in the first case the first program locality occupies
99% of all memory, which is needed for the program
(in the second case 50%). Therefore, during the
transition to the second locality, when first one hasn’t
removed yet, it is occupied more memory than in the
second case. That is why here is the difference be-
tween maximum and minimum Kcpy value.

The parameters, which have the same values for
these types of programs: B, = 0.0; J, = 20; size of
page = 256.

Let us consider the modeling results, given in (4)
for first type program. In this case: ¢; = 0.1 and
t;» = 0.4. Optimal value — 7o, = 0.1 was found by Al
algorithm, Kcpy = 35.8%. These results shows that
difference between maximum (first program page
locality can be detected) and minimum (cannot be
found) is equal to Kcpy = 9%. This difference is quite
small because t;, ~ 0.4 (4) < t;n = 1.0 (2).

The modeling results of algorithm Al works dur-
ing second type processing are represented in (5) and
(6). There are represented programs with small value
of t;n(tin = 0.04) (type A) in (5) and programs with
high value #,5(t;» = 1.0) (type B) in (6), where ¢, —
time interval, when programs don’t need the first
locality pages. That interval is set to be between two
time intervals #; and 73 during which program needs
pages of the same locality.

For type A programs algorithm Al determines
Toot = 1.0 and Kcpy = 50.90%. o value much bigger
tio(tin = 0.04), because after program processing
during #;;(t;; = 0.2) first page locality doesn’t remove
from RAM, because after time ¢, its needed again .
That solution is better than removal of the first page
locality and imputing them back to RAM.

For type B program (6) when time #;, expired, the
first program page locality is better to be removed,
and after inputted again. Such a conclusion can be
drawn from the condition when 7y, < #;, so the first
page locality removes, otherwise that locality doesn’t
remove and coefficient Kcpy decreases in comparison
with Kcpy at . In this way, modeling results shows
that algorithm Al provides searching for parameter
at which value of CPU utilization ratio is maximum.

VI CONCLUTION

In this work new approach is described for the
DPMA. The main feature of that approach is possi-
bility to choose DPMA algorithm parameters during
computational process with the goal to achieve
maximum CPU utilization.

The given approach was investigated also to
choose the optimal level of multiprogramming. It is
known, that the main purpose of multiprogramming
is to achieve full utilization of different computer
devices, firstly CPU. The sense of this approach is to
find level of multiprogramming at maximum CPU
utilization ratio by measuring level of multipro-
gramming. So during further program processing the
founded value will be used like optimal, until the
input stream of processing programs will require to
search for the new value of multiprogramming level.

A.S. Yurchenko, A.P. Kozlov About Working set for Dynamic Memory Allocation 125

REFERENCES

[1] Donald Knuth, Fundamental Algorithms, Third Edi-
tion. Addison-Wesley, 1997. ISBN 0-201-89683-4.
Section 2.5: Dynamic Storage Allocation,
pp. 435-456.

[2] P. J. Denning, “Working sets part and present.” [EEE
Trans. Software Eng., 1980, 6, no. 1, pp. 64 — 84.

[3] A. J. Smith, “A modified working at paging algorithm.”
IEEE Trans. Comput., 1976, 25, no. 9, pp. 907-914.

[4] W. W. Chu, and H. Opderbeck, “Performance of the
page fault frequency replacement algorithm in multi-
programming environment.” In: IFIP Congress—74.
Stockholm, 1974, pp. 235-241.

[5] W. W. Chu, and H. Opderbeck, “The page fault fre-
quency replacement algorithm.” In: Proc. AFIPS

[6] W. W. Chu, and H. Opderbeck, “Performance of re-
placement algorithm with different page sizes.”
Computer, 1974, 7,no.11, pp. 14-21.

[7] G. S. Graham, and P. J. Denning, “On relative con-
trollability of memory policies.” In: Computer per-
formance: Proc. of the inert. symp. on comput. per-

formance modeling, measurement and evaluation.
New York, 1977, pp. 411-428.

[8] A New approach to minimize page fault. 2012 Interna-
tional Conference on Information and Computer Net-
works (ICICN 2012) IPCSIT vol. 27 (2012),
http://www.ipcsit.com/vol27/20-ICICN2012-N048.pdf

[9] Hidden costs of memory allocation.
https://randomascii.wordpress.com/2014/12/10/hidde
n-costs-of-memory-allocation/

[10] Memory profiling for application performance.

1972. Fall joint computer conf., 1972, no. 41.

597609 https://blogs.windows.com/buildingapps/2012/01/31/
pp. 597-609.

memory-profiling-for-application-performance/.

Received January 04, 2016

Yurchenko Alexander. Candidate of Engineering. Assistant professor.

Aviation Computer-Integrated Complexes Department, National Aviation University, Kyiv, Ukraine.
Education: Moscow Phisics-thechnical Institute, Moscow, Russia (1975).

Research area: operating system, dynamic allocation memory.

Publication: 56.

E-mail: ayurchenko@yahoo.com

Kozlov Anatoliy Pavlovich. Candidate of Engineering. Assosiate Professor.

Aviation Computer-Integrated Complexes Department, National Aviation University, Kyiv, Ukraine.

Education: Kiev State University named T. G. Shevchenko, Kyiv, Ukraine (1965).

Research interests: Capacitive transducers with non-uniform electromagnetic field. Capacitive meters of parameters
small altitude of the flight aircraft. The use of capacitive transducers in automatic control small-altitude of the flight
aircraft.. Publications: 48.

E-mail: ap_kozlov@ukr.net

0. C. IOpuenko, A. I1. Ko3nos. I[Ipo po6ouuii Habip 151 {MHAMIYHOT0 po3noaiay nam’aTi

OnwucaHo MOCIHiPKEHHS] HOBOTO MiIXOAY VISl TUHAMIYHOTO PO3IOJITY CTOPiHKOBOI mam’siTi. OCOONUBICTIO 1IBOTO M-
X0y € BUOIp mapaMerpiB alropuTMiB MPOTSIIOM OOYMCIIOBAIBHOIO MPOLECY 3 METOI JIOCSTHEHHS MaKCUMaJbHOIO
3aBaHTa)XEHHs [IEHTPAJILHOTO MpoLiecopa.

Karou4oBi cioBa: quHaMiyHUI pO3MOJII CTOPIHKOBOI Mam’siTi; poOounii Habip; MOENb MOBENIHKU Iporpamu; dpar-
MEHTAIlisT; MOAENIOBaHHS PO3MOILITY ITaM sITi.

FOpuenko Ouexcanap CepriiioBny. Kanannat rexHiuHuX HayK. JIOUEHT.

Kadenpa aBiariifHux KOMIT FOTEpHO-IHTETPOBaHUX KOMIUIEKCiB, HanionansHuii aBiariinuii yniBepcuret, Kuis, Ykpaina.
Ocsita: MockoBchKuit (hizuko-TexHiYHMH iHCTUTYT, MockBa, Pocis (1975).

HamnpsiMm HayKoBOi JisTBHOCTI: OnepaiiiiHi CHCTEMH, TMHAMIYHAN PO3IOLT TaM’ sTi.

Kinpkicts myoOmikarii: 56.

E-mail: ayurchenko@yahoo.com

Ko3nos Anarodiit [TaBopuy . Kanaunat TexHIYHUX HAyK . JIOICHT.

Kadenpa koM’ roTepHO-iHTErpoBaHix KoMIuiekciB, HationanpHuit aBianiinuii yHiBepcuter, KuiB, Ykpaina.

Ocsirta: KuiBcbkuit nep:xaBuuii yHiBepcurer umenu T. I'. llleBuenka, Kuis, Ykpaina (1965).

HampsiMm HaykoBHX iHTepeciB: €MHICHI NMepeTBOPIOBaYi 3 HEOMHOPIJHIM €IEKTPOMArHITHIM MoyieM. €MHICHI Npuiiaan
BIMIpIOBaHHS T'€OMETPHYHMX MapameTpiB Majo BHCOTHOT'O IOJNBOTY MOBITPSHOrO CyaHa. BHKOpUCTaHHS €MHICHIX
MepeTBOPIOBAYiB B CUCTEMaxX aBTOMATUYHOTO YIIPABIIiHHS MajJ0 BUCOTHUAM IIOJILOTOM ITOBITPSIHOTO CY/THA.

[Ty6mikamii : 48 .

E-mail: ap_kozlov@ukr.net

126 ISSN 1990-5548 Electronics and Control Systems 2016. N 1(47): 121-126

A. C. IOpuenko, A. II. Ko3zsioB. O paGoueM Ha0ope Ajsl TMHAMHYECKOr0 pacnpeaejeHust NaMsiTH

OnwmcaHo HccienoBaHHE HOBOTO MOAXOa K JUHAMHYECKOMY DPAacCIpelesieHHI0 CTpaHMYHOH mamstH. OcoOeHHOCThIO
3TOr'0 MOJXO0/IA SBIIACTCS BBIOOD MMApaMETPOB aJTOPUTMOB B TEUCHUH BBIUMCIUTEIHLHOTO MPOIIECCa C eI JOCTHKCHUSA
MaKCHMAaJIbHOH 3arpy3Kd IIEHTPAILHOTO MpoLieccopa.

KaroueBble cjioBa: MUHaMUUYECKOE paclpe/ielieHue CTPaHWYHOW MamsTu; pabouynii HaOOp; MOJENb MOBEAEHHS IIPO-
rpaMMBbI; (hparMEeHTAIHS; MOJCTHUPOBAHHUE PACTIPEICICHIUS TaMSITH.

IOpuenko Anexcanap Cepreesud. KanaunaTt TexHuueckux HayK. JIOIEHT.

Kadenpa aBuanmoHHBIX KOMIBIOTEPHO-MHTETPUPOBAHHBIX KOMIUIEKCOB, HalMOHAIBHBIN aBHAIIMOHHBIN YHHBEPCHUTET,
Kues, Ykpaunna.

O0pa3oBanue: MocKoBCKuil (PU3NKO-TEXHUUECKUI HHCTUTYT, MockBa, Poccust (1975).

HamnpaBnenue HayqHOH ESITENFHOCTU: ONEPAMOHHbBIE CHCTEMBI, THMHAMUYECKOE pacipe/ieieHie TaMsITH.

Konugectro myOnukaruii: 56.

E-mail: ayurchenko@yahoo.com

Ko3nos Anaroamii ITapnoBuy. Kananaat TexHuueckux Hayk. JlOLeHT.

Kadenpa koMIbIoTepHO-MHTETPUPOBAaHBIX KOMIUIEKCOB, HaloHanbHBINH aBHAIIMOHHEIA yHUBepcuteT, Kues, YkpaunHa
Oo0pasoBanue: Kuesckuii rocynapcrBeHnsiii yausepceuter umenu T. . IlleBuenko, Kues, Ykpauna (1965).

O0macTbh HayYHBIX HHTEpECcOB: EMKOCTHBIE peoOpa3oBaTesy ¢ HEOJHOPOJHBIM 3JIEKTPOMAarHUTHBIM mojieM. EMKocTHBIE
yCTpOICTBa M3MEpEHHs T'eOMETPUYECKUX MapaMeTpoB Maslo BBICOTHOI'O IOJIeTa BO3AYIIHOTO CydHa. Mcmomb3oBaHue
€MKOCTHBIX TIpeoOpa3zoBartelieii B CHCTEMaX aBTOMAaTHYECKOrO YIPAaBJIEHHsS Majo BBICOTHBIM IIOJIETOM BO3ZYIIHOTO
CyIHa.

[Ty6nukanuu: 48

E-mail: ap_kozlov@ukr.net

