
2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings pp.59-62

978-1-5090-1052-3/16/$31.00 c© 2016 IEEE 59

Integrated Computer-Aided Design System
Software of Navigation Complex

Victor Sineglazov
National Aviation University

Kyiv, Ukraine
svm@nau.edu.ua

Andrew Godny
National Aviation University

Kyiv, Ukraine
andrewgodny@gmail.com

Abstract—Presented scheduling mechanisms for computer-
aided design system for unmanned aerial vehicles with an
integrated environment introduces a new approach to
managing hardware resources and design time management.
Usage of this mechanism allows to improve scheduling
efficiency of multi-tasking applications with shared
resources by allowing simultaneous operations with multiple
shared data task-readers.

Keywords—unmanned aerial vehicles; dynamic integration;
computer-aided design; integrated environment; design;
scheduling mechanism.

I. INTRODUCTION
Nowadays unmanned aerial vehicles (UAV) have

become an essential part in every aspect of over lives. UAV
are used in all sectors of production. In addition, more than
50 countries are using them. Due to the high demand for
such devices, it is necessary to develop new methods for
designing drones. New approach will decrease time used to
develop new UAVs and significantly reduce the cost of the
final product.

Let us consider the possibility of developing software
tools that ensure the economic integration of relational
data on the proposed method of computer-aided design
environment [1]. To this end, we developed a set of
software tools, consisting of a control processor,
coprocessor and thematic performing processors. For the
convenience of a software implementation, the control
processor is presented as a server node. Thematic
coprocessors are grouped as a means of dynamic data
integration. Separately considered auxiliary software:
drivers (D), library operations (UO DB) and data library
manager.

Computer-aided design (CAD) system using the
method of dynamic data integration is a structure consisting
of a control processor (CP) and thematic co-processors:
graphic coprocessor (GP), table coprocessor (TbP), math
coprocessor (MP) and text coprocessor (TP) (Fig. 1). The
design process is ensured by the design scenario of the
Control processor. Designing scenario is a set of generic
operations that can be represented as a graph. Generic
operation consists of multiple commands for thematic co-
processors with a common semantic completeness.

Since the developed system has to guarantee the
optimal use of computing resources and to ensure a
minimum command processing time, system that
organizes the task scheduler is required, which will be
responsible for compliance with the required criteria of
the system.

Fig.1. Computer-aided design system using the method of dynamic
data integration.

Mechanisms of planning tasks - an integral part of
integrable CAD, largely determines the efficiency of the
use of hardware resources. Different classes of systems
require different criteria to determine the efficiency of
different algorithms [5]. The specifics of the planning
process in the CAD defined by the requirement of timely
execution of applications.

Mechanisms for CAD scheduling must specify the
execution order of tasks, ensuring timely execution of
design tasks with limited resources. The need to comply
with deadlines brings to the fore such scheduler property
as predictability [3]. This means that at any time the
execution order of tasks determined by the scheduler must
be unambiguous.

II. PROBLEM STATEMENT
Computer-aided design scheduling mechanisms have

a specific performance criterion that determines the
degree of enforcement of time limits problems [2]. A
more efficient scheduler ensures execution of more tasks
than less effective. Hence the definition: the optimal
scheduling algorithm is an algorithm that provides
execution of tasks with strict time constraints whenever
possible. Or, in other words, if the order of the tasks
defined by the optimal algorithm, leads to disruption of
deadlines tasks, no other algorithm can ensure the timely
execution of all tasks.

Integrated Computer-Aided Design System Software of Navigation Complex

60 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings

Computer-aided design scheduler has two
components: scheduler for development period (off-line)
and a scheduler for run-time (on-line, run-time) [4]. At
stage of CAD development developer has information
about applications and the structure of their interaction.
Planning of development period is about handling of this
information prior to the start of the system [2]. During the
development phase processing of available information
can significantly reduce the costs of planning the
execution period. Scheduler is a run-time component of
the system being developed and starts working on its
startup; it uses the information obtained as a result of the
development scheduling period.

The total amount of work performed by the two
components of the scheduler remains unchanged when
switching from one plan to another. It changes the
distribution of work between the schedulers during the
development and execution. This distribution of work is
one of the main features of the classification of real-time
scheduler.

Planning the development period often includes a
feasibility study (schedulability analysis, feasibility
analysis), the need for which arises in the case where the
limits on the performance of system tasks clearly defined,
and the violation of the timing of the results of
calculations can lead to a corrupted system. Successful
completion of the feasibility analysis ensures that when
any possible load of all tasks to be completed on time.

Studies have shown that almost all systems
comprising interacting tasks, accurate method of
feasibility analysis is NP-hard task. Therefore, most often
in practice, special mechanisms of interaction between
tasks and methods of analysis are used, which gives a
positive result for the feasibility of real-time applications.

When designing a scheduler for integrated CAD is
necessary to solve the following problems: interlocking of
shared resource, multiple lock of high priority tasks with
a lower priority, composite blocking, etc. In order to solve
these problems priority inheritance protocols have been
developed that describe the algorithm of the scheduler
based on problems mentioned above [5]. But each of
these protocols has many drawbacks as they are designed
for a wide range of tasks. It is necessary to develop a
protocol specifically for the integrated CAD, which
avoids the disadvantages of general purpose protocols.

III. ASYMMETRICAL PRIORITY INHERITANCE PROTOCOL
Operation of synchronizing mechanism, implementing

the principle of priorities inheritance, characterized by a
high degree of predictability. However, the cost of
predictability is excessive strictness in defining access
rights for applied problems to shared resources.

The properties of the protocol. High priority task can
be blocked by the task with a lower priority in the two
cases. Firstly, it is apparent case of blocking, the situation
in which a high-priority task trying to capture the shared
resource, captured by task with low priority for
incompatible operations. Secondly, it is an indirect
blocking situation in which the task with medium priority
is blocked by task with lower priority which inherited
priority from higher priority tasks.

Asymmetrical priority inheritance protocol (APIP)
does not exclude the possibility of a deadlock – a
situation in which a directed graph problems blocking
relationship has a cycle. Also it does not exclude multiple
block, task execution may be repeatedly locked, both
explicitly and indirectly. In the worst case, the number of
blockings will be equal to the number of resources used,
both the task itself and other tasks with higher priority.

Deadlocks can be eliminated through the introduction
of a uniform procedure for the capture of shared
resources, which has no cycles. However, the problem of
multiple locks is not so easily solved.

Execution of high-priority tasks can be blocked during
access to each shared resource, but the time of explicit
blocking of task-writer with high priority on the resource
may be equal to the sum of the lengths of several critical
sections of lower priority tasks-readers. Generation of a
high priority task-writer could be preceded by a series of
captures by low priority tasks of shared resource. In this
case the task-writer is forced to wait for the fulfillment of
all critical sections of tasks-readers.

This problem is related to the endless waiting, but not
as serious, priority inheritance effect ensures that the
number of critical sections of tasks-readers with lower
priority, which are blocking task-writer with higher
priority, will not exceed the number of low-priority tasks-
readers. This is the third problem, which exists in systems
using APIP. The possibility of its occurrence will be called
the problem of the composite block. Composite blocking
problem causes an increase blocking time in the worst case,
which may cause a decrease in the efficiency of planning.

In some cases, this drawback pays off by the ability to
work simultaneously with the data shared by multiple
tasks-readers. Ability to overlap in time critical sections
of multiple tasks readers reduces task blocking time in the
worst case, that can increase scheduling efficiency.

Most common asymmetrical priority inheritance
protocol has three significant drawbacks: deadlocks,
multiple and composite blocks. In some cases, APIP
provides less efficient scheduling than the original PIP.
The reason for reducing the effectiveness of scheduling is
a possibility of composite blocks.

The use APIP can, in some cases, improve scheduling
efficiency of multi-tasking applications with shared
resources by allowing simultaneous operations with
multiple shared data task-readers. Therefore, it is
impossible to determine unequivocally which of the
priority inheritance protocol is more efficient, original or
asymmetrical.

IV. ASYMMETRICAL CEIL PRIORITY PROTOCOL
The asymmetrical ceil priority protocol (ACPP) based

on the idea of separation of references to a shared resource
on the inverse for reading and writing of shared data.

As a means of controlling the inversion of priorities
ACPP uses priority inheritance idea. Use of ceil priorities
leads to the emergence of a new type of blocking -
blocking by ceil priorities. Solely due to the addition of
this type of blocking is achieved the beneficial properties
of the protocol discussed below.

V. Sineglazov, A. Godny

2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings 61

The first four provisions of the protocol implicitly
define the order of capture of shared resources and, thus,
eliminate the possibility of system failures due to
deadlock [2]. In addition, the task with a high priority can
enter in the first critical section not earlier than the low
priority task will free all the resources it needs, therefore,
task execution due to allocation of a shared resource can
be postponed only once, that is no multiple blocking.
Indeed, the beneficial properties are provided exclusively
through the introduction of a mechanism of blocking by
ceil priorities. At the same time, method of calculation of
the ceil priority value does not matter. Consequently,
ACPP eliminates multiple blocks and deadlocks.

Using ACPP allows simultaneous access to the shared
resource by multiple tasks-readers, with the blocking
compound is excluded.

Additional useful property of ACPP is achieved by
adding to the parameters of shared resources second ceil
priority - ceil priority for tasks-readers. Ceil priorities for
readers are optional, since the value of ceil priorities of
writers always matches the value of ceil resource
priorities. The value of ceil priorities for readers selected
so as to block all tasks writers, that is in some cases the
value of the ceil priority of readers will be less than the
value of ceil priority of writers. At the same time, tasks-
readers, that have higher priority than task-writers will not
be blocked by other tasks-readers, which may lead to
overlap in time execution of critical sections of several
tasks-readers. On the other hand, the ceil priorities for
readers are blocking tasks-readers whose priorities are
lower than priorities of tasks-writers. Due to this problem
of a composite block is solved.

The asymmetrical ceil priority protocol allows
simultaneous access to the same resource, for one low-
priority and several high-priority tasks-readers. Thanks to
this feature ACPP provides greater planning efficiency.

V. ASYMMETRIC PREVENTIVE INHERITANCE PRIORITY
PROTOCOL

Using the ideas embodied in the PIP, modifications
APIP, APIPP also leads to a positive result. APIPP has
much in common with the PIP. Therefore, asymmetric
PIPP (APIPP) will be considered at a reduced level.

A. Determination of Protocol
Operation of synchronizing mechanism, implemented

in APIPP, characterized by the following provisions:

Each resource is assigned with two threshold
priorities: a threshold priority of readers and threshold
priority of writers.

Ceil priority for readers used as meeting the objectives
of readers’ requests and is numerically equal to the
priority of the task with the highest priority of those tasks
that can capture this resource for writing:

 _ ()_ max .ii r modifield by iceil read pri (1)

Ceil priority for writers is used while satisfying the
query of task-writer and is numerically equal to the

priority of the task with the highest priority of those tasks
that can that can capture this resource for reading:

 _ ()_ max .r ii r used by iceil write pri (2)

Task  , which has the highest priority among all the
active tasks, takes control. Before entering the critical
section in relation to the resource r, task  must capture
the resource for reading, if it does not modify data, or for
writing, if it would modify the data.

Task  is performed with a base priority only if it has
no shared resources. Otherwise, its priority is the greatest
ceil priority among all ceil priorities captured its shared
resources:

  ,, (,) _ ()_ max .r r tr t r t got by ieffective pri ceil (3)

When shared resources are released task  gets base
priority back.

Task 1 can supplant task 2 only if 1 priority
strictly greater than the effective priority 2 .

The task can’t be completed or voluntarily suspend
execution until the release of all occupied resources.

Critical sections are nested, i.e., shared resources are
released in reverse order to their capture (stack).

B. The properties of the protocol
The properties APIPP coincide with those of the

original PIP and APIP. Therefore, we confine ourselves to
the following list of APIPP advantages:

1) APIPP eliminates the possibility of deadlocks.
2) APIPP eliminates multiple blocks.
3) APIPP eliminates composite blocks.
4) APIPP reduces the number of task switches.
5) APIPP allows tasks to be performed in one stack

mode.
6) APIPP suitable for synchronizing with interrupt

handlers.
7) APIPP more effective than PIP and APIP.

For these reasons, in practice it is preferred to use
APIPP.

C. Example of using the protocol

Fig. 2. Example of APIPP.

There are four tasks in the system: 1 with the highest
priority, 2 medium priority, 3 low and 4 the lowest

Integrated Computer-Aided Design System Software of Navigation Complex

62 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings

priority; and a shared resource r. Task 2 tries to get
resource r for writing, other tasks are trying to get it for
reading. Behavior of the system in the case of APIPP is
shown on Fig. 2.

According APIPP, ceil priorities of resource are set as
follows: ceil priority for readers r established at the level
of the priority of task 2 (writer with the highest
priority), ceil priority for writers r established at the level
of the priority of task 1 (reader with the highest priority).

Task ߬ସ gets resource r for reading (ݐଵ). Then more
priority-reader task is generated ߬ଷ (ݐଶ). However, the
task switching does not occur, because at this time
priority of the task ߬ସ equal to a ceil priority of the readers
who captured resource, i.e. to the priority of tasks 2 .
Such a preventive blocking of tasks-readers, whose
priority is less than the ceil priority of readers avoids
composite blocks. The fact that the tasks which are using
resource that is captured by other task, do not get control
before its release (rather than blocking) reduces the
number of task switches and allows to perform all tasks
via single stack. Then higher priority task-writer is
generated ߬ଶ (ݐଷ). However, the task switch does not
occur again due to the same circumstances. This way of
organizing mutual exclusion mode prevents multiple
blocking of tasks and even more so – eliminates the
possibility of a deadlock. Next, task ߬ସ is superseded by
task ߬ଵ (ݐସ), which has been successfully performed (ݐ଻)
using the resource r (from ݐହ to ݐ଺) for reading, as the
priority ߬ଵ is strictly greater than the ceil priority of r
readers. As a result of this overlapping of critical sections
of two tasks-readers we accomplished an increase of the
efficiency of planning. Next, task ߬ସ releases r (଼ݐ). At this
point, the most priority task among proactively blocked
(߬ଶ) is unlocked and completed successfully (ݐଵଵ) using
the resource r for writing (from ݐଽ to ݐଵ଴). Thereafter,
control is passed to the task ߬ଷ, which also completed
successfully (߬ଵସ) using the resource r (from ߬ଵଶ to ߬ଵଷ).
Control again is passed to the low priority task ߬ସ.

VI. CONCLUSIONS
Reviewed asymmetrical priority inheritance protocol

has three significant drawbacks: deadlocks, multiple and

composite block. In some cases, the asymmetric priority
inheritance protocol provides less efficient planning than
the original priority inheritance protocol. The reason for
reducing the effectiveness of the planning is a composite
block.

The use of asymmetrical priority inheritance protocol
can, in some cases, improve the efficiency of the planning
of multi-tasking applications with shared resources by
allowing simultaneous operation with multiple shared
data by tasks-readers. Therefore, it is impossible to
determine unequivocally which of the priority inheritance
protocol is more efficient, original or asymmetrical.

The proposed asymmetric preventive inheritance
priority protocol eliminates the possibility of deadlock,
multiple and composite blockings. By permission of the
simultaneous reading of shared data for multiple tasks,
asymmetric preventive inheritance priority protocol
provides more efficient planning in comparison with the
original protocol, which is the most effective of the
known protocols.

The proposed protocol of asymmetric preventive
priorities inheritance, implementing the idea of inherent
in the asymmetric protocol of ceil priorities. Its use also
eliminates the possibility of deadlock, multiple and
composite blocks. Due to permission of the simultaneous
reading of shared resource in multitasking mode APPIP
provides more efficient scheduling in comparison with the
original protocols.

REFERENCES
[1] K. Lee, CAD Basics (CAD/CMA/CAE), Peter Press, 2004.
[2] V.M. Synehlazov, O.I.Chumachenko, A.P. and Godny,

“Information technologies of computer aided desin systems based
on dynamic data integration and simulation procedures”
2 International conference “Computer Algebra and Information
Technology.” Odessa, August 2016, pp. 9-10.

[3] G. Berezhnoj, “Problems building large IT systems”, PCworld,
1998. (in Russian)

[4] I. P. Norenkov, Basics of computer-aided design Peter Press, 2002.
(in Russian)

[5] Kristi Morton. Dynamic Workload Driven Data Integration U. of
Washington, 2012.

