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Abstract—Real world test equipment design optimization
problems are a class of challenging multiobjective optimization
problems, which may contain two levels of optimization tasks.
In these problems, the optimal solutions to the lower level
problems become possible feasible candidates to the upper
level problem. A bilevel optimization is used for the navigation
equipment test table design. The six lower level optimizations
are driven by a top system level optimization by approach
based on hybrid bilevel evolutionary algorithm using quadratic
approximations.
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I. INTRODUCTION

The complexity of modern highly integrated designs has
sparked increasing interest in multiobjective optimization.
Navigation equipment test table as means of providing
technical testing navigation equipment in conditions close to
the real flight [1]. Navigation equipment test table must
ensure tests on the parameters close to real, namely the
angular positions, overload, angular velocity, acceleration,
etc at the same time conforming the requirements of the
very device under the test. Moreover it must ensure required
reliability and credibility performance.

A dozen performances of dynamic platform, gears,
electric drives, electric drive control subsystem, data
acquisition subsystem, power supply sub-system, signal
processors during design process must be optimal to ensure
all test conditions with the reasonable test table cost (Fig. 1).

This design approach provides the results to a global
design problem which improves the lower level objective
functions while at the same time producing the highest
possible improvement at the system upper level.

Bilevel optimization as a branch of optimization, which
contains a nested optimization problem within the
constraints of the outer optimization problem can be
described as a methodology for the design of systems,
where the optimization of sever-al lower level objective
functions must be considered and they are constraints at the
same time to the upper system level problem.

To address complexity of the navigation equipment test
table design task hierarchical decomposition approach may

be used. A hierarchic system is defined as one in which a
subsystem exchanges data directly with the system only but
not with any other subsystem. Such data exchange occurs in
analysis of structures by substructuring. A concept to
exploit this in structural optimization was formulated in
Schmit and Ramanathan [2] and generalized in
Sobieszczanski–Sobieski [3] and [4]. It was then shown in
the latter how the hierarchic decomposition derives from the
Bellman's optimality criterion of the dynamic programming.
The concept was also contributed to by Kirsch, [e.g., Kirsch,
5]. It was demonstrated in several applications, including
multidisciplinary ones, e.g., Wrenn and Dovi [6] and
Beltracchi [7].

But the hierarchical optimization structure may
introduce difficulties such as non-convexity and
disconnectedness even for simpler instances of bi-level
optimization like bilevel linear programming problems.
Bilevel linear programming is known to be strongly NP-
hard [8], and it has been proven that merely evaluating a
solution for optimality is also a NP-hard task [9]. This gives
us an idea about the kind of challenges offered by bilevel
problems with complex (non-linear, non-convex,
discontinuous) objective and constraint functions.

Fig. 1. Navigation equipment test table.

In the field of classical optimization, a number of studies
have been conducted on bilevel programming [10], [11].
Approximate solution techniques are commonly employed
to handle bilevel problems with simplifying assumptions

Multi Objective Optimization for UAV Navigation
Equipment Test Table Design

V.M. Sineglazov
Aviation Computer-Integrated Complexes Department

National Aviation University, Kyiv, Ukraine
svm@nau.edu.ua

S.O. Dolgorukov
Aviation Computer-Integrated Complexes Department

National Aviation University, Kyiv, Ukraine
sdolgorukov@nau.edu.ua

Abstract—Real world test equipment design optimization
problems are a class of challenging multiobjective optimization
problems, which may contain two levels of optimization tasks.
In these problems, the optimal solutions to the lower level
problems become possible feasible candidates to the upper
level problem. A bilevel optimization is used for the navigation
equipment test table design. The six lower level optimizations
are driven by a top system level optimization by approach
based on hybrid bilevel evolutionary algorithm using quadratic
approximations.

Keywords—multiobjective optimization; bilevel optimization;
simulation table; evolutionary algorithm.

I. INTRODUCTION

The complexity of modern highly integrated designs has
sparked increasing interest in multiobjective optimization.
Navigation equipment test table as means of providing
technical testing navigation equipment in conditions close to
the real flight [1]. Navigation equipment test table must
ensure tests on the parameters close to real, namely the
angular positions, overload, angular velocity, acceleration,
etc at the same time conforming the requirements of the
very device under the test. Moreover it must ensure required
reliability and credibility performance.

A dozen performances of dynamic platform, gears,
electric drives, electric drive control subsystem, data
acquisition subsystem, power supply sub-system, signal
processors during design process must be optimal to ensure
all test conditions with the reasonable test table cost (Fig. 1).

This design approach provides the results to a global
design problem which improves the lower level objective
functions while at the same time producing the highest
possible improvement at the system upper level.

Bilevel optimization as a branch of optimization, which
contains a nested optimization problem within the
constraints of the outer optimization problem can be
described as a methodology for the design of systems,
where the optimization of sever-al lower level objective
functions must be considered and they are constraints at the
same time to the upper system level problem.

To address complexity of the navigation equipment test
table design task hierarchical decomposition approach may

be used. A hierarchic system is defined as one in which a
subsystem exchanges data directly with the system only but
not with any other subsystem. Such data exchange occurs in
analysis of structures by substructuring. A concept to
exploit this in structural optimization was formulated in
Schmit and Ramanathan [2] and generalized in
Sobieszczanski–Sobieski [3] and [4]. It was then shown in
the latter how the hierarchic decomposition derives from the
Bellman's optimality criterion of the dynamic programming.
The concept was also contributed to by Kirsch, [e.g., Kirsch,
5]. It was demonstrated in several applications, including
multidisciplinary ones, e.g., Wrenn and Dovi [6] and
Beltracchi [7].

But the hierarchical optimization structure may
introduce difficulties such as non-convexity and
disconnectedness even for simpler instances of bi-level
optimization like bilevel linear programming problems.
Bilevel linear programming is known to be strongly NP-
hard [8], and it has been proven that merely evaluating a
solution for optimality is also a NP-hard task [9]. This gives
us an idea about the kind of challenges offered by bilevel
problems with complex (non-linear, non-convex,
discontinuous) objective and constraint functions.

Fig. 1. Navigation equipment test table.

In the field of classical optimization, a number of studies
have been conducted on bilevel programming [10], [11].
Approximate solution techniques are commonly employed
to handle bilevel problems with simplifying assumptions

Multi Objective Optimization for UAV Navigation
Equipment Test Table Design

V.M. Sineglazov
Aviation Computer-Integrated Complexes Department

National Aviation University, Kyiv, Ukraine
svm@nau.edu.ua

S.O. Dolgorukov
Aviation Computer-Integrated Complexes Department

National Aviation University, Kyiv, Ukraine
sdolgorukov@nau.edu.ua

Abstract—Real world test equipment design optimization
problems are a class of challenging multiobjective optimization
problems, which may contain two levels of optimization tasks.
In these problems, the optimal solutions to the lower level
problems become possible feasible candidates to the upper
level problem. A bilevel optimization is used for the navigation
equipment test table design. The six lower level optimizations
are driven by a top system level optimization by approach
based on hybrid bilevel evolutionary algorithm using quadratic
approximations.

Keywords—multiobjective optimization; bilevel optimization;
simulation table; evolutionary algorithm.

I. INTRODUCTION

The complexity of modern highly integrated designs has
sparked increasing interest in multiobjective optimization.
Navigation equipment test table as means of providing
technical testing navigation equipment in conditions close to
the real flight [1]. Navigation equipment test table must
ensure tests on the parameters close to real, namely the
angular positions, overload, angular velocity, acceleration,
etc at the same time conforming the requirements of the
very device under the test. Moreover it must ensure required
reliability and credibility performance.

A dozen performances of dynamic platform, gears,
electric drives, electric drive control subsystem, data
acquisition subsystem, power supply sub-system, signal
processors during design process must be optimal to ensure
all test conditions with the reasonable test table cost (Fig. 1).

This design approach provides the results to a global
design problem which improves the lower level objective
functions while at the same time producing the highest
possible improvement at the system upper level.

Bilevel optimization as a branch of optimization, which
contains a nested optimization problem within the
constraints of the outer optimization problem can be
described as a methodology for the design of systems,
where the optimization of sever-al lower level objective
functions must be considered and they are constraints at the
same time to the upper system level problem.

To address complexity of the navigation equipment test
table design task hierarchical decomposition approach may

be used. A hierarchic system is defined as one in which a
subsystem exchanges data directly with the system only but
not with any other subsystem. Such data exchange occurs in
analysis of structures by substructuring. A concept to
exploit this in structural optimization was formulated in
Schmit and Ramanathan [2] and generalized in
Sobieszczanski–Sobieski [3] and [4]. It was then shown in
the latter how the hierarchic decomposition derives from the
Bellman's optimality criterion of the dynamic programming.
The concept was also contributed to by Kirsch, [e.g., Kirsch,
5]. It was demonstrated in several applications, including
multidisciplinary ones, e.g., Wrenn and Dovi [6] and
Beltracchi [7].

But the hierarchical optimization structure may
introduce difficulties such as non-convexity and
disconnectedness even for simpler instances of bi-level
optimization like bilevel linear programming problems.
Bilevel linear programming is known to be strongly NP-
hard [8], and it has been proven that merely evaluating a
solution for optimality is also a NP-hard task [9]. This gives
us an idea about the kind of challenges offered by bilevel
problems with complex (non-linear, non-convex,
discontinuous) objective and constraint functions.

Fig. 1. Navigation equipment test table.

In the field of classical optimization, a number of studies
have been conducted on bilevel programming [10], [11].
Approximate solution techniques are commonly employed
to handle bilevel problems with simplifying assumptions



Multi Objective Optimization for UAV Navigation Equipment Test Table Design

118 2016 4th International Conference on Methods and Systems of Navigation and Motion Control (MSNMC) Proceedings

like smoothness, linearity or convexity. Some of the
classical approaches commonly used to handle bilevel
problems in-clude the Karush-Kuhn-Tucker approach [12],
Branch-and-bound techniques [13], and the use of penalty
functions [14]. Most of these solution methodologies are
rendered inapplicable, as soon as the bilevel optimization
problem becomes complex. Heuristic procedures such as
evolutionary algorithms have also been developed for
handling bi-level problems with higher levels of complexity
[15]. Most of the existing evolutionary procedures often
involve enormous computational expense, which limits their
utility to solving bilevel optimization problems with smaller
number of variables.

There are a number of practical problems which are
bilevel in nature. They are often encountered in
transportation (network design, optimal pricing) [16], [17],
economics (Stackelberg games, principal agent problem,
taxation, policy decisions) [18]–[20], management (network
facility location, coordination of multi-divisional firms)
[21], [22], engineering (optimal design, optimal chemical
equilibria) [23], [24]. Complex practical problems are
usually modified into a simpler single level optimization
task, which is solved to satisfy instead of an optimal
solution. For the complex bilevel problems, classical
methods fail due to real world difficulties like non-linearity,
discreteness, non-differentiability, non-convexity etc.
Evolutionary methods are not very useful either because of
their enormous computational expense. Under such a
scenario, a hybrid strategy could be solution.
Acknowledging the drawbacks associated with the two
approaches, we propose a hybrid strategy that utilizes
principles from classical optimization within an
evolutionary algorithm to quickly approach a bilevel
optimum. The proposed method for multi objective
optimization for navigation equipment test table design is a
bilevel evolutionary algorithm based on quadratic
approximations of the lower level optimal variables as a
function of upper level variables.

II. TEST TABLE MULTIOBJECTIVE OPTIMIZATION

Consider the navigation equipment test table upper level
design problem formulated in terms of a design variable
vector xu [H, P, N, G, Q, L, E, R], where

H is the size of the mounting for the equipment under
test;

P is the mass of the equipment under the test;
N is number of test table rotation axes;
G is limits of the angular velocity;
Q is stability of the angular velocity;
L is test results measurement accuracy;
E is the accuracy of the setting the test results digital

information;
R is reliability.
There are two types of variables is the upper level

variables xu  XU  Rn, and the lower level variables xl  XL
 Rm.

Lower level objective function f is comprised of six
subproblems f1, f2, f3, f4, f5, f6. The design variables and
constraints for each of these lower level problems are
denoted by xl1, xl2, xl3, xl4, xl5, xl6, and gx1, gx2, gx3, gx4, gx5
and gx6, respectively (Table I).

TABLE I. DESIGN VARIABLE DEFINITIONS

Variable Definition

xl1 - dynamic platform

M Test equipment load capacity

m Mass of platform

D Dimensions of platform

xl2 - gears

r Dependability

d Types of sizes

a The degree of accuracy

s The gear ratio

T Output torque

B Mechanical backlash

xl3 - electric drives

b The mechanical stiffness of the drive

h Weight and dimensions

l Reliability

S Response performance of the drive

xl4 - electric drive control subsystem

u Performance of control equipment

j Smoothness of the drive motion control

g Control accuracy

xl5 - data acquisition subsystem

A Accuracy

n Sampling frequency

i Noise immunity

xl6 - power supply subsystem

K Efficiency

o Fault tolerance

The lower level multi-objective problem is solved with
respect to the lower level variables, while the upper level
variables act as parameters to the optimization problem. The
follower is interested in optimizing its own six objectives
and making its own decision for the test table upper level
vector. In this case the leader wants to solve such a problem
where the follower has sufficient decision making power, so
then it needs to have a complete knowledge of the
follower’s decision structure. The decision structure of the
follower may is represented in the form of a value function.
For the test table upper-level objective function F : Rn × Rm

 Rp and lower-level objective function f : Rn × Rm Rq

minimize F(xu , xl) = (F1(xu , xl),.., Fp(xu , xl))
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subject to

xl  argminxl {V(f(xu, xl) = (f1(xu, xl),..., fq(xu, xl);):
gj(xu, xl) ≤ 0, j = 1,.., J}

Gk(xu , xl) ≤ 0, k = 1, ..., K,

where V denotes the follower’s value function, and  is the
parameter vector of the assumed value function form.

We assume that the leader has a complete knowledge of
the follower’s value function. Based on this information, we
solve the bilevel problem to identify the upper level Pareto-
frontier. Once the upper level Pareto-frontier is available to
the leader, it becomes a multi-criteria decision making
problem for the leader.

An evolutionary algorithm [24] for solving bilevel
problems where the upper level has multiple objectives and
the lower level decisions are modeled using a value function
is known as multi-objective bilevel evolutionary algorithm
based on quadratic approximations (m-BLEAQ). The
proposed approach is based on estimation of unknown lower
level decisions using quadratic approximations, when lower
level decisions corresponding to a few upper level vectors
are known. The approximation helps in reducing the number
of lower level optimization calls that leads to computational
savings.

A steady state evolutionary algorithm1 for global
optimization is used at the lower level to find the optimum.
The fitness assignment at the lower level is performed based
on lower level function value and constraints. The upper
level vector for which lower level optimization is
beingperformed is kept fixed during the optimization run.

Step 1. Randomly initialize a lower level population of
size N. Assign fitness to the members based on lower level
objective functions and constraints.

Step 2. Randomly choose 6 members from the
population, and perform a tournament selection.

This gives 3 parents for crossover.

Step 3. Create 2 offsprings from the parents using
genetic operators on the lower level variables only.

Step 4. Randomly choose 2 members from the
population, and pool them with 2 offsprings. The 2 best
members from the pool replace the chosen members from
the population.

Step 5. Perform a termination check. Proceed to next
generation (Step 2), if the termination criteria is not
satisfied, otherwise proceed to the next step.

Step 6. The best obtained lower level member is paired
with the corresponding upper level member in the upper
level population.

Fitness assignment for feasible upper level member is
performed based on their non-domination rank and
crowding distance [25]. For a given upper level member x,
if the non-domination rank is given as NR(x) and crowding
distance within its frontier is given as CD(x), then the fitness
for the member is calculated as follows:

Fu(x) =1/(NR(x) + e-CD(x)).

Fitness for an infeasible upper level member is
computed by subtracting the sum of upper level constraint
violations from the fitness value of the worst feasible
member.

The fitness during lower level optimization is given by
lower level function values for the feasible members. For
the infeasible lower level members, we subtract the sum of
lower level constraint violations from the fitness value of
the worst feasible member at that level.

The crossover operator is similar to the PCX operator
proposed in [26] with slight modifications. The operator
requires 3 parents to create an offspring that are selected
using tournament selection.

c = x(p) + αd + β (p(2) – p(1))/2,

where x(p) is the index parent; d = x(p) – g, where g is the
mean of µ parents; p(1) and p(2) are the other two parents;
α = 0.1 and β = dim(x(p))/||x(p) – g||1 are the two
parameters.

At any generation of the m-BLEAQ algorithm, we
attempt to maintain at least N/2 tag 1 members. These are
the upper level members for which the lower level optimal
solutions are accurately known. We utilize these members to
compute the lower level optimal solutions of the new upper
level members. When multiple lower and upper level
variables are present, we utilize all the upper level variables
to construct the quadratic approximation for each lower
level variable. Therefore, the number of quadratic
approximations are as many as the number of lower level
variables, and each lower level variable is a function of all
the upper level variables. We choose the closest upper level
members for quadratic approximation around the point for
which we intend to estimate the lower level decision. Such
an approximation is expected to provide a reliable local
estimate. It is necessary to utilize at least 1/2
[(dim(xu)+1)(dim(xu) + 2)] + dim(xu) upper level points for
constructing the approximation.

The upper level population is updated by choosing 2
random members from the population. The members are
pooled with 2 offsprings generated through genetic
operations, and the best members from the pool are chosen
to replace the selected population members.

At the upper level we terminate the algorithm based on
maximum upper level function evaluations (Tmax). We use
an improvement based termination at the lower level such
that if the improvement in the lower level function value is
less than 1e-5 for 100 consecutive generations then we
terminate the optimization.

Comparison of m-BLEAQ [24] and H-BLEMO [27]
performance by Inverted Generalization Distance (IGD)
[28] metric prove that H-BLEMO is capable of handling
multiple objectives at both levels, but in the current
formulation of simulation table design problem the lower
level is represented by a value function, which means that
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H-BLEMO is handling a single objective problem at the
lower level and a multi-objective problem at the upper level.
On the other hand m-BLEAQ cannot directly handle
multiple objectives at both levels. However, with multiple
objectives at upper level and single objective at lower level
m-BLEAQ is able to achieve much lower IGD values as
compared to H-BLEMO for the same number of upper level
function evaluations and much fewer lower level function
evaluations.

III. CONCLUSIONS

Hybrid multi objective optimization approach for
navigation equipment test table design based on
evolutionary algorithm for development is a rational
methodology by which the multilevel design problem could
be partitioned into a number of up- and low level problems.

Further implementation in development of the software
algorithm could be made to assess multiple design
alternatives of navigation equipment test table and
summarize their results for fast comparison. Such approach
enables engineers to quickly understand the benefits of
different design technical solutions to gain greater insight
into how individual components are performing.
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