БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ МЕТРОЛОГИИ

НАЦИОНАЛЬНЫЙ НАУЧНЫЙ ЦЕНТР «ИНСТИТУТ МЕТРОЛОГИИ»

ХАРЬКОВСКИЙ НАЦИОНАЛЬНЫЙ УНИВЕРСИТЕТ РАДИОЭЛЕКТРОНИКИ

БОЛГАРСКОЕ АКАДЕМИЧЕСКОЕ МЕТРОЛОГИЧЕСКОЕ СООБЩЕСТВО

XIII Международный научно-технический семинар «Неопределенность измерений: научные, законодательные, методические и прикладные аспекты» (UM-2016)

СБОРНИК ДОКЛАДОВ

г. Минск, Республика Беларусь 13 – 14 апреля 2016 года

> Минск БелГИМ 2016

УДК 006.915(06)(476) ББК 30.10ф(4Беи) Т67

Под общей редакцией: Гуревич В.Л. (Беларусь) Захаров И.П. (Украина) Жагора Н.А. (Беларусь)

Т67 **XIII Международный** научно-технический семинар «Неопределенность измерений: научные, законодательные, методические и прикладные аспекты» (UM-2016). Сборник докладов / Под общ. ред. канд. техн. наук Гуревича В.Л.– Мн.: БелГИМ, 2016 – 186 с. – ISBN 978-985-6726-59-3

Издание содержит доклады участников XIII Международного научно-технического семинара «Неопределенность измерений: научные, законодательные, методические и прикладные аспекты» (UM-2016). Адресован специалистам, занимающимся вопросами оценивания неопределенности, контроля качества и точности измерений, а также специалистам-метрологам, студентам, аспирантам, преподавателям, инженерно-техническим и научным работникам, проявляющим интерес к концепции неопределенности.

УДК 006.915(06)(476) ББК 30.10ф(4Беи)

СОДЕРЖАНИЕ

Альравашдех Бакер, Сергиенко М.П. Идентификация параметров средств измерительной техники, моделируемых динамическим звеном колебательного типа, по передаточной функции
Андриишин М.П., Чеховский С.А., Чернышенко Е.Н., Афанасьєв А.П. Применение элементов теории неопределенности для оценки влияния физических параметров текущей среды на работу счетчика газа во время его калибровки и эксплуатации
<i>Боцюра О.А., Захаров И.П.</i> Исследование применения метода конечных приращений для оценивания неопределенности измерений
Будко А.Г., Крылов А.И., Нежиховский Г.Р. Оценивание неопределенности измерений массовой доли концентрации общего органического углерода в технологических водах атомных и тепловых станций
<i>Бурмистрова Н.А., Степанов А.В, Чуновкина А.Г.</i> Вычисление расширенной неопределенности измерения в случае двух источников неопределенности
Величко О.Н., Карпенко С.Р. Дистанционная калибровка прецизионных рабочих эталонов единицы электрической мощности
Владимирова Т.М. Оценивание неопределенности результатов количественного химического анализа при подтверждении компетентности научно-исследовательской лаборатории
Vladimirova T. Uncertainty of the measurement of level and flow using EHP-TEKNIIKKA measurement system
Вьюгин П.С., Шайняк И.Р. Инструментальная неопределенность, связанная с неидеальностью передаточной характеристики прибора
Глухова Н.В. Оценка неопределенности измерений геометрических параметров изображений газоразрядного излучения
Гринев Б.В., Гурджян Н.Р., Зеленская О.В., Любинский В.Р., Мицай Л.И., Молчанова Н.И., Тарасов В.А. Оценка качества цилиндрических детекторов на основе полистирола49
Данилов А.А., Бержинская М.В., Голубинский Ю.М., Спутнова Д.В. Об оценке нестабильности средств измерений, применяемых при калибровке
<i>Ефремова Н. Ю.</i> Недостатки и причины пересмотра «Руководства по выражению неопределенности измерения»
<i>Ефремова Н. Ю.</i> Что принесет новое «Руководство по выражению неопределенности измерения»»
Клочко Н.Б., Долишний Б.В., Пиндус Н.Н., Чеховский С.А. Использование теории неопределенности для оптимизации алгоритма обработки измерительной информации турбинных счетчиков газа

<i>Левин С.Ф.</i> Принцип Ньютона-Эйлера, концепции вероятности и руководство по выражению неопределенности измерения
Малецкая О.Е., Москаленко М.В. Поверка и калибровка средств измерительной техники: единство и отличие
<i>Мачехин Ю.П., Курской Ю.С., Гнатенко А.С.</i> Измерение величин со сложной динамикой как основная задача нелинейной метрологии
<i>Миранович-Качур С.А.</i> Применение различных подходов по оцениванию неопределенности измерения в аналитической химии90
Мокийчук В.М., Монченко Е.В., Олейник Ю.А. Оценивание неопределенности измерения модуля Юнга
Неежмаков П.И., Грищенко Л.В., Купко А.Д., Балабан В.М., Терещенко В.В. Модернизация первичного государственного эталона единицы силы света96
Новоселов О.А. Аккредитация калибровочной деятельности – гарантия достоверности и объективности результатов измерений
Петришын И.С., Присяжнюк Т.И., Бас А.А. Уменьшение суммарной неопределенности измерений при воспроизведении единиц объема и объемного расхода газа эталонными установками
Прокопов А.В., Подколзина Е.Н. О возможности уточнения уравнения (модели) измерения на основе использования экспериментальных данных
Середюк О.Е., Компан А.И., Бондарь С.П., Лютенко Т.В., Ильенко А.С., Смирное М.А. Результаты сличений промышленных средств учета природного газа в условиях полигона «Днепрогаз»
Середюк О.Е., Малисевич В.В., Середюк Д.О., Малисевич Н.М. Исследование неопределенности измерения энергетической ценности природного газа вычислителями на базе расходомера переменного перепада давления
Скляров В., Довженко Я. Исследование влияния времени действия предварительной и основной нагрузок при измерении твердости
Хакимов О.Ш., Джаббаров Р.Р. Неопределенность измерения частотной зависимости коэффициента отражения поперечной ультразвуковой волны от границы раздела плавленый кварц-растительные масла 123
Horsky J., Horska J. Piloted interlaboratory comparisons and evaluation of the reference value
<i>Чалый В.П., Чалая О.В.</i> О смене парадигмы метрологии
<i>Чуйко М.М., Витвицкая Л.А.</i> Применение концепции неопределенности для установления достоверности контроля процесса смачивания жидкостями твердых тел
Яремчук Н.А., Года О. Ю. Оценивание неопределенности ординального измерения140
ПРИЛОЖЕНИЕ К СБОРНИКУ ДОКЛАДОВ Rabinovich S.G. A Guide to the Evaluation of Measurement Accuracy

В.М.Мокийчук, Е.В.Монченко, Ю.А. Олейник

Национальный авиационный университет, Киев, Украина

ОЦЕНИВАНИЕ НЕОПРЕДЕЛЕННОСТИ ИЗМЕРЕНИЯ МОДУЛЯ ЮНГА

В статье рассмотрен способ определения упругих констант материалов на основе прецизионного измерения толщины материалов и приведено методику оценивания неопределенности для данного способа.

Ключевые слова: модуль Юнга, ультразвуковая эхо-импульсная толщинометрия, неопределенность, объект контроля.

Введение

В наше время активно разрабатываются новые конструкционные материалы, такие как разного рода композиционные, армированные высокопрочными и высокомодульными непрерывными волокнами, которые имеют широкое применение в разных отраслях народного хозяйства. В связи с этим определение значений упругих констант новых материалов является актуальной задачей.

Для эксплуатации надежной материалов необходимо достоверно оценить ресурс износа, прогнозирование остаточного ресурса конструктивных узлов в процессе эксплуатации объектов, продление службы после отработки объектами нормативного срока. необходимо Также точно величину упругих констант определить прогнозирования ситуации.

Известно много способов экспериментального определения упругих констант материалов [1]. Их суть сводится в основном к сравнению частот собственных колебаний упругих систем, полученных путем расчетов и определенных экспериментально.

Часто возникают задачи, когда необходимо определить упругие константы в условиях одностороннего доступа у объекту, поэтому целью статьи является разработка метода оценивания неопределенности измерения [2] упругих констант новых конструкционных материалов на основании прецизионного измерения толщины материалов.

Постановка задачи

Прецизионный способ измерения толщины материала основывается на ультразвуковом эхо импульсном методе, согласно которому упругая волна посылается в объект контроля (ОК) и после отражения от дна ОК регистрируется время ее распространения т в толщине ОК. Дальше, при известной скорости распространения ультразвуковой волны в ОК толщина определяется по формуле $h = 0.5c\tau[3]$. Этот способ невозможно использовать контроле композиционных материалов, поскольку существует затухание донного сигнала в шумах.

Детально прецизионный способ измерения толщины, который использует две шкалы, представленный в работах [4,5].

Решение поставленной задачи

Оценим неопределенность измерения модуля Юнга. Экспериментально модуль Юнга $Y^{\text{Ю}}$ связан со скоростью распространения продольной ультразвуковой волны в толщине объекта контроля (ОК) h:

$$c = \sqrt{\frac{Y^{1O}}{\rho}} \; , \; c = \frac{2h}{\tau} \; .$$

Следовательно, подстановкой $\rho = m/V$ - плотность материала, имеем:

$$Y^{IO} = \frac{4h^2m}{\tau^2V},$$

где с — скорость звука в материале; h —толщина OK; τ — время распространения ультразвукового сигнала в OK.

Для прецизионного измерения толщины используем двушкалный способ. Суть предложенного способа определения толщины заключается в определении временной задержки т прохождения ультразвуковой волны в толщине материала. Далее по «грубой» шкале измеряется первое (но co значительной возможной погрешностью) значение т по скачкам фазовых характеристик донных сигналов; по «точной» шкале производится прецизионное измерение части т в пределах полупериода несущей; полученные результаты объединяются и вычисляется оценка $\hat{\tau}$.

Способ реализуется на примере известных функциональных блоков и устройств. Устройство содержит: программированный генератор сигналов: формирователь фазоманипулированного сигнала, усилитель мощности; совмещенный пьезоэлектрический преобразователь П211-5-П20; одноканальный дефектоскоп Socomate USPC 3100 LA: входное устройство формирует выборку мгновенных значений сигнала, АЦП; персональный компьютер: измеритель фазовой характеристики

(ФХ) сигнала, преобразователь Гильберта (ПГ), дифференциатор, измеритель фазовых смещений сигналов, измеритель временных интервалов, устройство стыковки (согласовывает грубо-точно); блок программного обеспечения. Все этапы моделирования осуществлялись с использованием пакета Матлаб.

В генераторе формируется фазоманипулированный радиоимпульсный сигнал вида:

$$u(t) = \begin{cases} U \sin 2\pi f t, & t \in \left[0, \ \tau_1\right], \\ -U \sin 2\pi f t, & t \in \left[\tau_1, \ \tau_i\right], \\ 0, & t \not\in \left[\tau_i, T_n\right], \end{cases}$$

где U – амплитуда сигнала; f – несущая частота заполнения радиоимпульса; $\tau_{_{\rm I}}$ – момент манипуляции фазы; $\tau_{_{\rm I}}$ – длительность радиоимпульса; $T_{_{\rm II}}$ – период повторения радиоимпульса.

Фазовая характеристика фазоманипулированного сигнала содержит скачки в моменты времени, которые соответствуют выполнению манипуляции несущего колебания. Положение во времени скачков ΦX сигналов может быть определено по ее производной $\frac{\partial \tilde{\Phi}(t)}{\partial t}$. Эти скачки с

целью повышения достоверности результатов измерения могут быть выделены при помощи стробирования ΦX огибающих отраженных сигналов:

$$A(j) = \sqrt{u^2[j] + \widehat{u}^2[j]},$$

положение во времени которых соответствует задержке сигнала при распространении в ОК.

Грубое значение задержки определяется как временной интервал τ_3 . Значение этого интервала измеряется с погрешностью, вызванной воздействием шума, который сопровождает процесс излучения, распространения в ОК и приема ультразвукового сигнала.

Согласно двушкального способа измерения временная задержка на распространение сигнала в ОК определяется через фазовое время его задержки:

$$\tau_{_3} = \left(n + \frac{\Delta \phi}{2\pi}\right) \frac{1}{f}.$$

Значение времени задержки в периодах несущего колебания n/f определяется на основе измерения временного интервала между скачками ΦX сигнала. Уточняющее значение задержки определяется на основе измерения фазового смещения сигналов $\Delta \varphi$ в конце и в начале этого интервала, которое осуществляется относительно фазы гармонического сигнала:

$$\Delta \tau = \frac{\Delta \phi}{2\pi f} \, .$$

Согласование грубого и точного значений (уточнение целого количества фазовых циклов) выполняется по формуле:

$$n = \left[f \tau_{_3} - \frac{\Delta \phi}{2\pi} + 0.5 \right]^{+}.$$

С учетом известной скорости с распространения ультразвука в ОК, толщина ОК определяется по формуле:

$$h = \frac{c\tau_3}{2} = \frac{c}{2f} \left(n + \frac{\Delta \phi}{2\pi} \right) = \frac{c}{2f} \left[\left[f\tau_3 - \frac{\Delta \phi}{2\pi} + 0.5 \right]^+ + \frac{\Delta \phi}{2\pi} \right].$$

Данный способ дает возможность прецизионного измерения толщины изделия при условии действия шумов в электроакустическом тракте толщиномера.

Методика вычисления неопределенности включает следующие этапы:

1) построение диаграммы воздействующих факторов (диаграмма Ишикавы). Исходя из формулы для вычисления толщины определим основные и дополнительные воздействующие факторы (рис. 1):

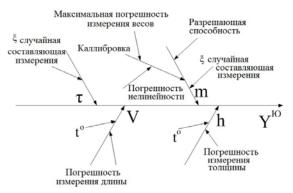


Рисунок.1. Диаграмма Ишикавы

2) Формирование бюджета неопределенности согласно с диаграммой Ишикавы. Для задачи, которая рассматривается, бюджет неопределенности представлен в табл. 1.

При составлении бюджета неопределенности предполагалось, что случайные составные неопределенности являются не коррелируемыми.

Неопределенность, обусловленная неточностью определения массы, толщины ОК, объема, времени распространения ультразвукового сигнала в ОК.

Неточность измерения массы ОК зависит от разрешающей способности весов, калибровки, которая, в свою очередь, обусловлена максимальной погрешностью измерения весов и погрешностью нелинейности, а так же, случайной погрешностью измерения.

Время распространения продольных волн в определенном материале зависит от многих факторов. Значение времени распространения ультразвуковых волн в разных материалах определяются по справочным данным. Неопределенность, обусловлена погрешностью

измерения длины (параметров ОК), а именно: длины, высоты, ширины.

Влияние таких факторов как температура, влажность, несовершенность аппаратурной реализации устройства, неоднородность материала ОК может быть уменьшена многоразовым повтором измерения и их статистической обработкой.

3) Получение выражения для оценивания комбинированной стандартной неопределенности. Для рассмотренного примера:

$$u_{Y^{xo}} = \sqrt{\left(\frac{8hm}{\tau^2 V}u_h\right)^2 + \left(-\frac{8h^2m}{\tau^3 V}u_\tau\right)^2 + \left(-\frac{4h^2m}{\tau^2 V^2}u_V\right)^2 + \left(\frac{4h^2}{\tau^2 V}u_m\right)^2}$$

В работе был проведен эксперимент для определения неопределенности модуля Юнга стального образца размером 2x2x10 см. Частота дискретизации 100 МГц. Согласно приведенной методике неопределенность составила $u_{y^{10}}=9,75\cdot10^9$ Па.

Таблица 1

Бюджет неопределенности для определения модуля Юнга

Величин	СКЗ	Воздействующий фактор		Категория неопределен ности	Закон распределения	Суммарная стандартная неопределенность	Коэффициент чувствительнос ти
h	u _h	t^0 –температура		В	Равномерный	$u_h = \sqrt{u_h^2 + u_{\text{\tiny TEM}}^2}$	8hm
		погрешность измерения толщины		В			$\tau^2 V$
τ	$\mathbf{u}_{_{ au}}$	τ _{AXC} – форма амплитудной характеристики сигнала		A	Симпсона	$u_{\tau} = \sqrt{u_{c}^{2} + u_{\pi}^{2} + u_{\xi}^{2}}$	$-\frac{8h^2m}{\tau^3V}$
		f _д – частота дискретизации		A			
		ξ случайная погрешность измерения					
V		t^0 –температура		В			41.2
		измерения длины	длина а ширина b высота с	В	Равномерный	$u_{\delta V} = \sqrt{u_{_{TEM}}^2 + u_{_a}^2 + u_{_b}^2 + u_{_c}^2}$	$-\frac{4h^2m}{\tau^2V^2}$
ξm		случайная погрешность измерения массы		В	Равномерный	$u_{m} = \sqrt{u_{\xi}^{2} + u_{d}^{2} + u_{n}^{2} + u_{v}^{2}}$	$\frac{4h^2}{\tau^2 V}$

Наибольший вклад в оценку неопределенности вносит непределенность измерения массы и объема образца.

Вывод.

В работе рассмотрено способ определения модуля Юнга на основе прецизионного измерения толщины исследуемого материала. В работе проведен детальный анализ неопределенности для способа определения модуля Юнга. Построено диаграмму Ишикавы, приведено бюджет неопределенности и проанализировано вклад составляющих неопределенностей в общую неопределенность.

Список литературы

- 1. Определение упругих констант металлов ультразвуком резонансным методом В.А.Ступин, Москва, 1985 г.
- 2.Uncertainty of measurement. Part 3: Guide to the expression of uncertainty in measurement (GUM:1995): ISO/IECGuide 98–3:2008. [Accepted 2008-09-30]. Geneva: ISO, 2008. 120 p. (International standard).
- 3. Неразрушающий контроль и диагностика. : справочник / В. В. Клюев, Ф. Р. Соснин, А. В. Ковалев и др.; под. ред. В. В. Клюева.— 3—е изд., испр. и доп.— М.: Машиностроение, 2005.— 656 с.: ил.
- 4. Ультразвуковий двошкальний спосіб вимірювання товщини виробів Патент України /Сременко В.С., Куц Ю.В., Олійник Ю.А., Монченко О.В. / Патент на корисну модель №100756.Бюл.№15, 10.08.2015 МПК G01В 17/02(2006.01) Номер заявки: и201501408 Дата подання заявки: 19.02.2015
- 5. Використання ультразвукового двошкального способу для підвищення точності вимірювання товщини

виробів / Близнюк О.Д., Куц Ю.В.,Куц В.Ю.,Олійник Ю.А., МонченкоО.В. / Системи обробки інформації. — 2015. — №7(132). — С. 6-10.

Рецензент: д-р техн. наук проф. Ю.В.Куц, Национальный технический университет Украины «Киевский политехнический институт».

Авторы: МОКИЙЧУК Валентин Михайлович,

Национальный авиационный университет, г. Киев, Украина, кандидат технических наук,доцент кафедры информационно-измерительных систем, e-mail – nau_307@ukr.net.

МОНЧЕНКО Елена Владимировна,

Национальный авиационный университет, г. Киев, Украина, кандидат технических наук,доцент кафедры информационно-измерительных систем, e-mail monchenko_olena@ukr.net

ОЛЕЙНИК Юрий Анатолиевич,

Национальный авиационный университет, г.Киев, Украина, аспирант кафедры информационноизмерительных систем, e-mail— <u>oliynik.y@gmail.com</u>

Evaluation of Uncertainty in Measurement of the Young's modulus

V.M. MOKIYCHUK, O.V. MONCHENKO, Y.A. OLIYNIK

The article describes the method of determining the Young's modulus base donprecisionmeasurements of the thickness of the materialandis a technique for estimating the uncertainty of the method.

Keywords: elastic constant, Young's modulus, ultrasonic thickness measuremet, echo-impulse measurement method, uncertainty, test object.