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Abstract. This paper deals with adaptive regulation of a dise-time linear time-invariant plant with
arbitrary bounded disturbances whose control ingutonstrained to lie within certain limits. Theagive
control algorithm exploits the one-step-ahead coinstrategy and the gradient projection type estiora
procedure using the modified dead zone. The corweryproperty of the estimation algorithm is shaavn
be ensured. The sufficient conditions guarantedéiegglobal asymptotical stability and simultaneguttie
suboptimality of the closed-loop systems are ddriliumerical examples and simulations are presetted
support the theoretical results.
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Introduction Analysis of previous resear ches

All real control systems usually have in facé agaptive control methods have been an active
some nonlinearity, such as input actuator saturaligesearch area during the past decades. Stability as
constraints. Therefore standard control objectivegell as optimality (suboptimality) and robustnes$s o
including, in particular, regulation have to be rret adaptively controlling linear time-invariant plants
the presence of these constraints. Unfortunataly, Wwith no restrictions on the magnitude of the cadntro
many situations, dynamic systems with hard limit§put has studied and presented in several textbook
on the magnitude of the control input may exhibiand papers; see, for example, [1-6], etc.

unexpected performance and can even becomeStability results in the sense of the ultimate
unstable if the saturation is not taken into actun boundedness conceming the adaptive discrete-time

. . c?ntrol systems that contain the input saturated
the system design. Hence, the achievement o . .
ants of certain type classes and use a dired¢taton

desirable con'trt.)l objectives in .the Close_d'lof)gpproach are reported in [7-9], and an indirect

systems containing control saturation constra®e i ¢qnirol approach in [10-13].

very important problem from both theoretical and |y gl these works, however, it has not been

practical point of view. proved that the output error and the control input
In the case of parametric uncertainties requiringequences converge. Nevertheless, it turns out that

an adaptive approach, stability and good contralthough these signals remain bounded, such control

performance of the amplitude constrained close§ystems may not be asymptotically stable even when

loop systems are a difficult problem that needsemof plant whose parameters are known is strictlylestab
attention and stably invertible (minimum phase). Again, in

This paper sheds light on such a diﬁicultcontraSt with their unconstrained counterparts,

. . _ neither the optimality as in [6] nor the suboptiityal
problem. It deals with adaptive regulation of a. ;, [1: 5] can be achieved in the presence of

discrete-time linear time-invariant  plant - witharpitrary bounded disturbances if their “size”dsge
arbitrary bounded disturbances whose control inpehough while it will be asymptotically stable when
is constrained to lie within certain limits. they are absent.

The main effort is focused on establishing the Significant progress in ensuring a desirable
sufficient conditions of the global asymptoticalultimate behavior of adaptive control systems with
stability and suboptimality. saturation input constraint was achieved by
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M. M'Saad and his colleagues who presented their A4) The disturbance sequenpg} is bounded in
first results at the ECC'95 and extended in thgodulus by are to be known:
aper [14].

P I{')rhe[y h]ave derived the condition under which, in |Vt|_s et “)

the disturbance-free case, the output error coegerg AS N [2, Remark 6.3.3], the control sequence

to zero and the control input stops saturatingr afte 14} IS constrained in amplitude so that

finite time instant. A novel breakthrough was later —oo<u_, <U, SU_, <+, (5)

made by these authors to deal with boundggherey

disturbances of some class [15]. m
Unfortunately, their restriction on these

, andu,_. are specified minimum and
maximum input levels to be known.

disturbances seems to be hardly verifiable. Let y (y =const)denote a desired output
Meanwhile, there are no another strong resultg. The output error will then be defined as
available in the literature regarding the adaptive g .= y" -y (6)

control of discrete-time plants with arbitrary
bounded disturbances in the presence of inpfr’ﬁ
constraints.

More certainty, the question of how the desirable
asymptotical  properties, in particular, thecontrol objective in the form
suboptimality, might be achieved in these cases has lim Sup|q| <e (7)

not been resolved as yet. _ oo _ )
is achieved withe, given by (6).

Now, one needs the following definitions
roduced in [1, Definition 4.1.1].

Definition 1.{u,} is said to be optimal if the

Formulation of the problem o ] ] ] ]
Definition 2.{u,} is said to be suboptimal if

The plant to be controlled is a single input — Ising
output (SISO) discrete-time system whose outputbean

describe_<lj by the Iine_?r difference equation whered is an arbitrary sufficiently small positive
A7)y, =B(@ )y, +Vv, (1) number chosen by the designer.

where{y,}, {u} and{v} denote the output, control  The aim s to derive conditions under which a

input and external disturbance sequencet |,mtple céwect dadagtlwta tcotrr\]trol alg?rl'ght[n S|5m|lar 0
respectively; at in [6] and subject to the constraints (5) can

Ay =1+ alq_l feta g, ) ensure the objective (8) for ady> 0.

B(q™)=bg™+--+b,g™" A3)

represent the polynomials in the backward Shlfctan be able to achieve the goal (8), it makes sense

_l . .
operatorq~ with b, # 0, |an| +|bn| > 0. evaluate whether the regulation problem has a
Suppose the coefficients &% and B in (2), (3) solution. in' the abse.nce of plarjt parameter
are unknown and the disturbaneeis unmeasured. uncertainties. To this end, define the variable

lim suple,|<e+3, (8)
t-o0

Non-adaptive case

Before going to design an adaptive controller that

, . : P R
The following basic assumptions are made. u =—[y +ay +...+
Al) The plant orden is known. b, ()
A2) W,(zY):=B(zY)/ A(z?) has no unstable  + @Yy ~BoUy = = DU ]

poles and zeros, i.e., the plant is asymptoticalwat is the signal formed by the usual one-ste@ahe
stable and strictly minimum phase. linear controller employed in [1, sect. 3.2.2];

A3) One knows a convex compact regiorﬂz' sect. 8.2.1].Th.en,taking (5) into.accoune'th
amplitude constrained control input is determined

by
u, =safu,}, (10)
where saifjl is the saturation nonlinearity defined as

Q[ R? to which the B-dimensional coefficient
vector

e:[a:l.""’ a,, bl,...,bn]T
belongs.
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x . for x>x__, y =05
sa{x =X for X, SX<X.o  (11) y, =-100;
Xpin O X< X - Y, =20

Notice that the past constrained control signals u_, =10,0;
Uyq,.-., U_n, are used to calculate; but not the u_, =100.

past signalaJ,_,, ..., U,_.,, (as in the linear case). For this case, the system behavior, showing that

It is obvious that ifA(z™") has no unstable roots, {U;} and {y,} may not converge even when

then the closed-loop system (1), (9)—(11) will alwa A(z™) and B(z™) are strictly stable and, =0 is
be BIBO stable. Furthermore, noting that (5) Causef)resented in fig. 1

|AU{|5U+, (12) Definition 3. A nonlinear closed-loop system
where with any finite y° and v, =0 is said to be
o 0
Au; =u, —u”, asymptotically stable in the large (globally) ifeth
u+ — umax B umin (13)|ImltS . .
2 uwzllmut, ywzllm Y,
with exist for all initial conditions within a compactts
4® = Jmin + Upnax (14) To establish the global stability conditions foe th
2 ' regulation system considered in this section, £9) i

and wusing (1) together with (4), within therewritten as follows:
framework of the modern control theory, one can y +[AqY)-1]y=hg u+] B q) -

write B
-ba™y. (15)

||u||oo = SUp|Ut| = maxﬂumin|’ |umax|}’
PN 0 ) Multiplying both sides of (15) byA(q™) and
”y”ss B hr?ﬁsmudﬂ <V (@) +” Wnl ur utilizing (1) for v, =0 one obtains

+a e <, bAG) M= Aq) Y- B d)-
where ([, and|[]] are the corresponding,, - and -b A gy (16)
{,-norms; Further, (10)—(14) yield

|ih, denotes the semi-norm. u, =sat{Au} +u®, (17)

However, the boundedness 6f,} and {y,} wheresa{Au;} is now the saturation nonlinearity

does not imply the asymptotical global stability obf the form (11) having the symmetrical bounds
t.hIS. system in the sense of the e>.<|stenc<_e _o_f the*rmin =-u* and X, =U". With these equations
limits as t tends to « (for arbitrary initial

. . . and also with (17), a resulting regulation system
conditions andv, =0). An illustrative example 7). g reg Yy

equivalent to the closed-loop system (1), (9)—(11)

demonstrates this fact. becomes similar to the nonlinear one studied by
Exilm.ple 1. Let Ya. Z. Tsypkin [17] and depicted in fig. 2.
n=2 Its open-loop circuit comprises the nonlinearity
Unin = 40; sa{Au,} and the linear dynamic part whose
Unay =100, transfer functionH (z ™) is determined from (16) as
A(Q)=1+15q9" + 0950
N I 4. _b'B(zY)-A(zHz?
B(q™) = =0,1g"- 0,05 H(z?) = 0 . (18)
be chosen to meet A2). The following conditions A(z7)z

were used:
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Fig. 1. Performance of non-adaptive controller xaple 1:

a — control input;

b — output

Nonlinearity Linear part
y Au; , _
=3 1b | sa{Au} H(z™)

Fig. 2. Feedback configuration for the stabilityastigation

. . -1 .
Since the denominator dfl (z™) is stable and 1+ min ReH (e ) >0,
saf{Au;} is the sector nonlinearity, the classical Osestr

(19)

Tsypkin's frequency stability criterion [16] is Where H (e) represents'the frequency response
applicable. This criterion allows to establish fimal  obtained by puttingz = exp(j«) in (18).

result summarized in the theorem below.

Corollary. The system (1), (9)—(11) is stable in

Theorem 1. Let A(z")be stable. Then, the the sense of Definition 3 if

sufficient condition for global asymptotical statyil

of the system (1), (9)-(11) is

IH|_ <1. (20)
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The proof follows immediately from (20) |im u =y'w, @™,
together with the definition toeo
H| = sup|H(e™®). )
” ||°° Oswsn‘ ‘ U S Y WO (1) T<u
The geometrical interpretation of the condition _ .
(19) is given in fig. 3. where W, (@) =B(@)/ A(l) represents the static
plant gain.
. . However, in the presence of the disturbance

whose amplitudes is large enough, this goal may

= not be achieved, in general. This fact is confirmed
il == by
v Unit Circle

max?

Example 2. Let

n=2,
% umin = 0’
= " LT T 2 u., =10,0;
2 y =05 A(z') andB(z™)
h (bl be induced by the vecto® corresponding to the

case @) in fig. 3.

- The control input and plant output in the closed-
loop system (1), (9)—(11) with; representing a
pseudo-random variable within the 4et0,2, 0,2]

2 are shown in fig. 4.

Real Axis It can be observed that the saturation occurs from
time to time during which the output errer may

exceed the admissible bounds equal to 0,2. In this

Fig. 3. Loci of H(z ™) for several6s:

(a) 8 = [15 095 01, 009" ; case, the goal (7) is not achieved.
(b) 8=[07; 02 01 007" ; Letu, =-U_. =Uu".
(c) 8=[15; 095 01 - 005" With this additional condition, the following

result can be shown to be valid.
It is seen that in the cases (a) and (b), the globa Theorem 2. Provided thay’ =0, u, O[-u*, u”]

asymptotical stability is guaranteed, whereas & ths satisfied in addition to the conditions of

case (C.)’ w_here_ the vector§ induces the Theorem 1, there is are’ >0 which is small
polynomials given in Example 1, the one may no

take place (fig. 1). Note that the case (b) obés ténonfgh o sans‘:fy
condition (20). € W, [, < u", 12

It can be established that iA(z')=1 and and such that iD<g<¢ then the goal (7) will be
B(z') represents the so-called hyperstablachieved, whergW,, [ denotes the/; -norms of

polynomial [17] satisfying the transfer function
[by] > o[ +--- +]o,| W, (z") = Az Bz,
then (20) always holds. when

It can also be proved that if the plant (1) is free Az = A 7%)-1.
from the disturbance then, under the conditions of
Theorem 1, the regulation goal (7) with=0 is
achieved and

Due to space limitation, the proof is omitted.
Note that condition (21) can always be verified.
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Adaptive controller design

The adaptive control law is chosen as

1
U =

t_@[y +Q(

_bz(t)u[_l—..._ b](t) l‘!—n+1:|

via replacing the unknown coefficiengs and b, in

40

a0

B0
Discrete Time

40 20 &0 70 g0 90

Discrete Time

20 30 100

b

Fig. 4. Performance of non-adaptive controller xamBple 2
a — control input;
b — output

=5 — T

& =Y~ et—lq)t—l
is the prediction error depending on the past egém
vector 6,_, and on the regresion vector

— T.

q)t—l_[_yt—l""’_yt—n’ ut—l"" ] ?
f (LD represents the modified dead-zone function
depicted in fig. 5 and defined as follows:

(24)

hy+...+a0) ¥,

(22) u

! Ht-n

(25)

(9) by their estimates, (t) andb, (t), respectively. e-¢ if e>¢°,
The estimation algorithm for updating the vector f(&,e %) =10 if |é1 <e® (°>¢), (26)
6, =[a,(t),....a,(t), by(®),.... b, (O] g+e if &<

is described by

6, =Proj<6, +v,

denot
necessary to ensuf®

where Proj

Y, is the coefficient chosen from the range

b1 oz o0 O<y' =<y sy'<2 (27)
S T(E.6€%)f (23) t
||¢t—1|| with some fixedy' and y" so thatb, (t) in (22) is
es the projection operatoponzem;
0o Ot [ﬂ]denotes the Euclidean vector norm.
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~ -1\ — 1.
Af (g, ¢, €% Az) =1
B(z™")=01z"+ 008z,
800— el _ With the initial
it L » & 8, =[0, 0, 009, 019"
0] ¢ o
€E-¢ and with{v,} as in Example 2, and® = 035, the
simulation results are presented in fig. 6.

It can be observed that the suboptimal behavior
in the input constrained adaptive case may not be
achieved (contrary to the unconstrained one).

Fig. 5. Modified dead-zone function Main result

A distinctive feature of the constrained adaptive Let A',B’ and A", B" be the polynomials

control is thate, # —€,, whereas in the absence ofinduced by someéd’ and 8" from Q. To establish
the control saturation constraints one gets— g, the  sufficient — condition under which the
suboptimality performance can be ensured in the

The convergence properties are given in the . ) .
) 9 prop g input constrained case, the following additional
following lemma.

L Az - bl q assumptions o2 will be required.
emma (z7) is strictly stable an A5) The regionQ is such that: (i)A’, B' and

—u" <u,<u” then the estimation algorithm A" B" are all stable for any®, 6'0Q: (i)

(23)—(27) with anye® >& converges at a finite B=B+AB" - A'B is stable; (ii) the condition

time t* so that: ()6, =6. =0 for all t=>t’, _ _ B
! 1+ min min ReH(6,,6,,e')>0

where 8" 0Q.; (i) limsup_,|&|<€° 8y, 8,00 O<wsm
(independently of hovju} is generated). is satisfied withH (6,, 0,, 27%) =
Proof. See [1, Theorem 2.1.1a]. S[(B) B(ZY - A2 A D) Z(

Remark As in the unconstrained case, the nqy, the main result is formulated as follows.
estimatesa, (t) and b, (t) which are frozen for  Theorem 3. Subject to Assumptions A1)-A5)
td[t", ) may not be close to their true values with €° =¢ +8, y =0,
and b, respectively. However, the desired controlhe adaptive controller described in (22)—-(27) and

performance in the form (8) is not guaranteed as y&pplied to the plant (1) whose control input is
To show this property, a simulation example will beonstrained to lie within[-u™, u*] has the

presented. For the purpose of comparisoproperties: (1) the goal (8) is achieved; (2) the
simulations are also conducted for an unconstraing@ntrol input stops saturating after a finite tians

adaptive control system. period.
Example 3. Let The proof proceeds similarly to the proof of
n=2: Theorem 2 by using the results of Lemma.
u, =0; Simulation
Uy =100; A simulated example, showing the successful
y =10 performance of the adaptive controller is presented

in fig. 7.
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Fig. 6. Performance of adaptive controllers in Egbn8:
a — control inputs;

b — outputs;

¢ — estimate parameters
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Fig. 7. Adaptive suboptimal control:
a — control input;
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