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Abstract—The paper deals with flight control system development in a form of successive loop control that 
involves “crisp” and fuzzy contours. The paper explores peculiarities of sharing the control functions 
between “crisp” and fuzzy parts of the developed autopilot. The division of the autopilot structure into 
“crisp” and fuzzy parts is performed by applying the H -robust stability theory of fuzzy systems and the 
describing function approach. The design procedure is illustrated by a case study of unmanned aerial ve-
hicle lateral channel control. It was proved that application of the fuzzy control is expedient for outermost 
contour in the successive loop structure of flight control system.  
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I.  INTRODUCTION 

Nowadays the application and the deployment of 
the UAV systems are rapidly broadening (see, for 
example [1], where further references are cited). 
These circumstances lead to increasing of the com-
plexity of the UAV flight missions and consequently 
to permanent improvement of their flight control laws 
[2]. One of the stages of this process is the incorpo-
ration of the elements of the artificial intellect and the 
fuzzy logics in particular in the UAV flight control 
laws [3] – [6] and creation of the combined control 
structures consisting of the “crisp” and the fuzzy 
parts. The key problem of the incorporation of the 
elements of the artificial intellect into the UAV au-
topilots is the distribution of the control function 
between the “crisp” and the fuzzy components of the 
combined autopilot. This problem was considered in 
[4], where it was proposed to solve it on the basis of 
the robust control theory. However, results obtained in 
[4] were mostly descriptive and did not contain nu-
merical estimation of the flight control systems (FCS) 
robustness. This paper is devoted to the further subs-
tantiation of the structures of the combined FCS and to 
the principles of the sharing of the control functions 
between the “crisp” and the fuzzy parts of these 
structures. This substantiation uses theory of the 
H -robust stability of fuzzy systems [7] and their 
description via describing function method [10], [11]. 

The basic FCS structure explored in this paper is 
very well-known structure created via successive 
loop closure method [2]. This structure is typical for 
majority of manned [8] as well as unmanned aircraft 
[2]. In order to obtain numerical results we consider 

lateral motion control including roll angle stabiliza-
tion as the inner loop, heading angle stabilization as 
the intermediate loop, and the reference track stabi-
lization in the horizontal plane as the outer loop. The 
mathematical model of the UAV lateral motion was 
taken for the UAV “Aerosonde” [9], which is fre-
quently used as the “benchmark” model of the UAV. 
Despite of the particular case of the considered UAV 
flight control system, the final result could be ex-
tended on the other classes of the aircraft flight con-
trol systems, using application of the procedure de-
scribed in this paper to other particular systems 
created via successive loop closure method [2]. Some 
more generalized conclusion, which could be derived 
from this investigation, consists of designing the 
inner loops in the successive loop architecture via 
traditional “crisp” control theory; meanwhile the 
design of the outer loop via fuzzy control theory is 
much more preferable from the viewpoint of the ro-
bustness and performance criteria. 

II. SENSITIVITY FUNCTIONS AND 
H -ANALYSIS OF THE “CRISP” SUCCESSIVE 

LOOP FCS 

We consider the standard linearized mathematical 
model of the controlled plant (UAV Aerosonde) in 
the state space: 

x x u
y x,

A B
C

  


   (1) 

which is determined by:  
– the state vector , , , , , Tx p r y   [ ] with com-

ponents: sideslip angle  , roll and yaw rates p,r  
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respectively, and roll and yaw angles ,  and 
cross-track error y ; 

– the control vector  , T
a ru    with compo-

nents: the deflection of ailerons and rudder respec-
tively;  

– the observation vector T
yy p,r , , , y,V ,      

where yV  stands for the side velocity;  
– the state propagation, control and observation 

matrices A, B, C  respectively.  
In order to diminish the order of the considered 

system we will neglect the dynamics of the actuators. 

This assumption doesn’t influence on the final con-
clusions, because they depend on ratio between the 
orders of mathematical models of each consecutive 
loops rather than on the actual values of these orders 
[2]. The block diagram of the UAV lateral motion 
control system with successive loop closure (SLP) 
and “crisp” control laws in each loop is shown in 
Fig. 1. It represents 3 successive closed loops with 
standard PD control laws, so the innermost loop (roll 
angle control) has control law  

a pK K p   .  (2) 
 

 

1 s

 
Fig. 1. Block diagram of the UAV lateral motion with successive loop control 

The same PD control laws are accepted for the 
yaw angle control (intermediate loop) with coeffi-
cients K , rK  as well as for the outermost 

cross-track error y  loop with coefficients yK  ,
yVK . 

The output of the outer control law serves as the ref-
erence (command) signal to the corresponding inner 
loop. It is known [2], [8] that in order to suppress 
sideslip angle  for the coordinated turn execution, 
the standard washout filter with transfer function  

( ) ,
1

wf
wf wf

wf

T s
W s K

T s



 

is applied as a local feedback from the yaw rate r  
sensor to the deflection of rudder r . For the sake of 
the further simplification we neglect the dynamics of 
this local loop, so we will consider only main contour 
with single input – deflection of the aileron a , as it 
is shown in the Fig. 1. Taking into account accepted 
assumptions, we can determine the numerical values 
of A, B  and C  matrices for linearized model (1) of 
the UAV Aerosonde [9] for trim conditions H = 300 m 
(altitude) and U0 = 26 m/sec (true airspeed) as fol-
lows:

0

0.72 1.07 25.98 9.81 0 0
4.73 23.3 11.22 0 0 0

0.77 3.02 1.17 0 0 0
A ;

0 1 0 0 0 0
0 0 1 0 0 0
26 0 0 0 26 0
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 
 
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  0
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0
0
0

 
  
 

  
 
 
 
  
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0 0 1 0 0 0
0 0 0 1 0 0

C .
0 0 0 0 1 0
0 0 0 0 0 1
26 0 0 0 26 0

 
 
 
 

  
 
 
 
  

     (3)

As it is known [12], the H -norm of the com-
plementary sensitivity function (CSF) can be used as 
the robustness measure of the closed loop system. For 
the innermost loop this norm is equal 

( ) ( )
( )

1 ( ) ( )
p roll

p roll

K K s W s
T s

K K s W s


 
 




 
, (4) 

where  

( ) ( )a
rollW s W s ,   (5) 

( )aW s  is the transfer function from the aileron to the 
roll angle determined from the model (1). The same 
norms for the middle and outermost loops will have 
the following forms:  
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( ) ( )
( ) ;

1 ( ) ( )

( ) ( )
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   (6) 

where ( )cl
rollW s , ( s j  ) is the transfer function of 

the closed-loop roll hold system with input as the 
reference value of the roll angle ref  and output as 

the actual value of this angle ,  meanwhile ( )cl
yawW s  

stands for the transfer function of the closed-loop 
yaw hold system with input as the reference value of 
the yaw angle ref  and output as the actual value of 
this angle .  It would be expedient also to introduce 
the sensitivity function with respect to the error of 
system. This function for the innermost loop of roll 
angle control will have the following form [12]: 

1( ) ,
1 ( ) ( )p roll

S s
K K s W s




 

  (7) 

where ( )rollW s  is determined by expression (5). The 
same sensitivity functions for other closed loops have 
the same forms: 

1( ) ;
1 ( ) ( )

1             ( ) .
1 ( ) ( )

y

cl
r roll

y cl
y V yaw

S s
K K s W s

S s
K K s W s





 


 



      (8) 

As it is known [12] H -norms of these sensitivity 
functions:  

( )S j 
 , ( )S j 

 , ( ) ,yS j


  

are used as the measure of system performance.  
It is also useful to introduce sensitivity functions 

with respect to the parameters of controller; in our 
case these are proportional ( K , K , yK  ) and diffe-
rential ( pK , rK , ,

yVK ) coefficients of corresponding 
control laws. In accordance with [13] they can be 
determined for the innermost loop in the frequency 
domain by the following expressions: 

0

0 0

0

0 0

( , ) ( ) ( );
1 ( ) ( )

( , ) ( )
        ( ),

1 ( ) ( )

roll

p roll

p roll

p p roll

T K s W s S s
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S s
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




  




  

 (9) 

where 0K , 0pK are constant values of the propor-
tional and differential gains determined from some 
certain procedure of the closed-loop system design. 
The same expressions could be derived for the middle 
and outermost loops using expressions (7). 

H -norms of the sensitivity functions defined by 
expressions (9) are the numerical characteristics of 
the robustness with respect to the parameters varia-
tions of corresponding controller. 

Using mathematical models (1) – (4) with vector 

0P


 of the adjustable unknown parameters 

0 0 0 0 0 0 0, , , , , ,
y

T

p r y VP K K K K K K 
     

we applied the PD control law optimization proce-
dure included in the Simulink Design Optimization 
Software in order to determine this vector. This pro-
cedure was applied consecutively from the innermost 
to the outermost loop and the following values of 
these parameters were determined: 

 0 12 9 9 5 7 5 3 5 0 3 0 2 TP . , . , . , . , . , . .


         (10) 

Partial derivatives in expressions (9) are deter-
mined in the vicinity of these numerical values. Using 
parameters defined by (10) it is possible to determine 
the characteristics of robustness and performance of 
considered closed loop system defined by expres-
sions (4) – (9). They are represented in the Table 1. 
As it could be seen from the Table 1, the numerical 
characteristics of robustness ( )iT s


and perfor-

mance ( )iS s


 ( i  denotes state variables  ,  , y ). 
are deteriorating from the inner to the outer loop; 
especially it is noticeable for the cross-track mode. 
Transient processes in different loops for the input 
step function 20refy m  are shown in the Fig. 2. 
They demonstrate pretty good performance of the 
lateral motion control system.

TABLE 1 

PERFORMANCE AND ROBUSTNESS INDICES OF THE CLOSED LOOP SYSTEM WITH SUCCESSIVE CONTROL 

Roll mode Yaw mode Cross-track mode 

( )T s 

 
( )S s 

 

T
K


 





 

p

p

T
K







 

( )T s 

 
( )S s 

 

T
K


 




 r

r

T
K






 ( )yT s
  ( )yS s



 

y

y

T
K










 

y

y

V

V

T
K






 

1 1.001 0.001 0.052 1 1.66 0.077 0.275 3.29 3.48 0.077 0.57 
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Fig. 2. Transient processes with successive loop control: (a) φ is a roll angle, deg; p is a roll rate, deg/sec; 
(b) r is a yaw rate, deg/sec ; ψ is a heading angle, deg; (c) y  is a cross-track distance, m; yV  is a side velocity, m/s

III.  ESTIMATION OF THE ROBUSTNESS 
AND PERFORMANCE OF THE LATERAL MOTION 
CONTROL SYSTEM WITH FUZZY CONTROLLER 

IN THE CROSS-TRACK STABILIZATION CONTOUR 

As far as robustness of the fuzzy control systems 
is declared in many sources [3] – [7], [10], [11], it is 
obvious that it is expedient to apply the fuzzy con-
troller in the outermost contour of successive loop 
closure structure. As it could be seen from Table 1, 
that inner roll and yaw contours provide pretty good 
performance and robustness with the simplest “crisp” 
structures, which are much simpler and less expen-
sive than fuzzy controllers. 

The estimation of the robustness and performance 
of system with fuzzy outer controller and the com-
parison of these characteristics with “crisp” system 
must be done using the same estimation for both 
cases. That is why it is necessary to estimate the 

H -norms of corresponding sensitivity functions of 
system with fuzzy controller. So we begin with the 
choice of the fuzzy controller. As it is shown in [5], 
[6], [11] the Mamdani type fuzzy controller provides 

more flexible and robust structure comparatively with 
other structures. So we used this fuzzy PD-controller 
with 5 triangle membership function with following 
linguistic variables: “negative big” (NB), “negative 
small” (NS), “zero value” (ZV), “positive small” 
(PS), “positive big” (PB); variable “value” is “error” 
(e) and “error derivative” (de) for inputs and “con-
trol” (u) for output of the fuzzy controller. Here the 
normalized universe of discourse for all variables is 
used [-1, 1], that is why we are using the input and 
output scaling factors SFin = 0.05 for both input va-
riables (e, de) and SFout = 0.6 for output variable (u). 
The technique of adjustment of membership func-
tions distributions over the universes of discourse for 
better fuzzy controller performance represented in 
[4], [11] and based on the MRAC (Model Reference 
Adaptive Control) principle was applied and final 
results of this adjustment is represented in Fig. 3 for 
variable (e). The same distribution was used for other 
variables (de) and (u).  

The standard rule base for fuzzy PD-controllers is 
represented in the Table 2. 
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Fig. 3. Membership functions distribution 

on the universe of discourse 

TABLE 2 

RULE BASE OF FUZZY CONTROLLER 

 
Output u Change-in-error, ∆e 

NB NS ZE PS PB 
 
 

Error, e 

NB PB PB PB PS ZU 
NS PB PB PS ZU NS 
ZE PB PS ZU NS NB 
PS PS ZU NS NB NB 
PB ZU NS NB NB NB 

The block diagram of the lateral motion control 
system with fuzzy controller in the outmost loop is 
represented in the Fig. 4. As far as fuzzy controller is 
complicated nonlinear control system, in [7], [10], 
[11] it was proposed to estimate robustness of such 
systems using describing function method. 

 
Fig. 4. Block-scheme of the lateral motion control system 

with fuzzy controller in the outmost loop 

It is known that if the linear part of system satis-
fies conditions of the filter hypothesis (i.e. it effec-
tively depresses high harmonics), then input signals 
( e and e ) to the nonlinear element (fuzzy controller 
in our case) could be considered as “sine” and “co-
sine” functions:  

( ) sin ( ); ( ) cos( ).e t A t e t A t         (11) 

Nonlinear transformation of these signals made 
by fuzzy controller in general case could be 
represented in general case as follows: 

( ) ( , ).u t F e e    (12) 

Output signal of controller u( t ) can be expressed 
in term of Fourier series [10], [11]: 

0

1
( ) [ cos( ) sin( )],

2 n n
k

au t a k t b k t




         (13) 

where 

0
1 ( , ) ( );

1        ( , )cos( ) ( );

1                 ( , ) sin( ) ( ).

k

k

a F e e d t

a F e e k t d t

b F e e k t d t













 


  


  














   (14) 

In our case the membership functions and rule 
base of fuzzy controller are symmetrical with respect 
to the input signals, that is why 0 0a   as well as 
amplitudes of all even harmonics. In accordance with 
describing function method it is necessary to estimate 
the 1st harmonic at the output of the fuzzy controller, 
so for 1k   and taking in account (13), (14) we have: 

1 1 1( ) cos( ) sin( )
            ( , )sin( ( , )),
u t a t b t

M A t A
   

    
 (15) 

where 
2 2 1
1 1

1

( , ) , ( , ) arctan ,aM A a b A
b

        
 

  (16) 

Taking in account (15), (16) we can define the 
describing function of fuzzy controller as follows 
[10], [11]:  

( , ) ( , )exp( ( , )),DD A M A A      (17) 

where 
2 2
1 1( , )D

a b
M A

A


   is the module of the 

describing function and ( , )A   is its phase.  
The influence of the higher harmonics could be 

estimated as follows: 

 
2 2

2

exp (( 1) ) ;

                                              arctan .

k k
k k

k

k
k

k

a b
j k t

a
A

b






  

    


 




 (18) 

The main problem, which arises in application of 
the expressions (14) – (18), consists of the complex-
ity of the nonlinear transformation (12) caused by 
difficulties of the analytical approximation in term of 
the traditional mathematical functions the fuzzy logic 
inference mechanism used in the fuzzy controller. In 
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order to avoid these difficulties it was proposed in 
[10] to use experimental estimation of describing 
function (17) and weight of higher harmonics (18), 
which can be easily executed in the Simulink pack-
age. The scheme of this experiment is shown in the 
Fig. 5.  

 
Fig. 5. Block-scheme for experimental determination 

of the describing function 

Changing the amplitude and frequency of the 
generator of sinusoidal signals “Sine Wave” and 
analyzing the output signal “out”, it is possible to 
estimate numerically describing function (17) and 
weight of higher harmonics (18). Results of simula-
tion can be summarized as follows. 

1. The module of describing function ( , )DM A   
(17) practically doesn’t depend on the frequency .  

2. The dependence of the module of describing 
function ( )DM A on amplitude of input signal A is 
shown in the Fig. 6. 

 
Fig. 6. Dependence of the module of describing 
function ( )DM A on amplitude of input signal A 

3. The dependence of the phase of describing 
function on the amplitude of the input signal for its 
different frequencies is shown in the Fig. 7. As it 
could be seen from this Figure, the dependence of the 
describing function’s phase on frequency   is more 
noticeable than in the previous case. 

In order to compare the robustness and perfor-
mance of fuzzy and “crisp” cross-track stabilization 
system we will restrict with comparison of the 

H -norms of sensitivity and complementary sensi-
tivity functions. In accordance with [7] we can in-
troduce quasi-linear open and closed loop cross-track 
systems respectively: 

( ) ( ) ( , ),
QL

op cl
yawW s W s D A               (19) 

( ) ( , )
( ) ( ) ,

1 ( ) ( , )QL

cl
yawcl

QL cl
yaw

W s D A
W s T s

W s D A


 
 

      (20) 

1( ) .
1 ( ) ( , )QL cl

yaw

S s
W s D A


 

           (21) 

It is obvious that (20) is the complementary sen-
sitivity function and (19) is the sensitivity function 
with respect to the error of system. 

 

 
Fig. 7. Dependence of describing function phase 

on the amplitude of the input signal 

IV. H -ANALYSIS OF FUZZY CONTROL SYSTEM 
As it was proved in [7], [14], the H -norm of the 

quasi-linear open loop system (19) can be expressed 
in the following form: 

( ) sup sup ( ( , , )) ,
QL QL

op op
AW s W A s
      (22) 

where ( ( , , ))
QL

opW A s  is maximal singular value of 
the quasi-linear open loop system. As far as the 

H -norm of the single variable system is the max-
imal value of the magnitude frequency response, then 
this norm could be estimated as: 

 ( ) ( ) sup sup ( ( , )) .
QL

op cl
yaw AW s W s D A

     (23) 

Taking in account results of the experimental es-
timation of the describing function ( , )D A   summa-
rized in Figs 6 and 7, it is possible to estimate nu-
merically the 2nd factor in the expression (23): 

 sup sup ( ( , ))A D A   = 0.148. Then it is easy to 
estimate H -norms of the sensitivity and comple-
mentary sensitivity functions (21) and (20). The es-
timation of the H -norms of the specific sensitivity 
functions with respect to the proportional and diffe-
rential gains of the PD-fuzzy controller defined by 
expressions (9) can not be done strictly, because the 
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output of this controller is complicated nonlinear 
function (12) of these gains. Nevertheless it is expe-
dient to estimate at least the orders of these norms 
rather than their numerical values, that is why we 
have formally used quasi-linear interpretations of the 
sensitivity functions (9) with respect to the propor-
tional and differential gains of fuzzy PD-controller.  

Comparison of the robustness and performance 
characteristics of the “crisp” and fuzzy outermost 

control loop of the cross-track stabilization system is 
represented in the Table 3. 

As it can be seen from this Table, all H -norms 
for fuzzy system are essentially smaller than the same 
norms for “crisp” system, therefore the usage of 
fuzzy system instead of “crisp” system in the outer-
most control loop is preferable. In the Fig. 8 the 
transient processes in the fuzzy control system are 
represented.

TABLE 3 

PERFORMANCE AND ROBUSTNESS INDICES FOR CRISP AND FUZZY CONTROL LOOPS 

Type 
of the system 
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“Crisp” system 3.29 3.48 0.077 0.57 

Fuzzy system 0.174 1.173 0.029 0.022 
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Fig. 8. Transient processes with fuzzy loop control: (a) φ is a roll angle, deg; p is a roll rate, deg/sec;  
(b) r is a yaw rate, deg/sec ; ψ is a heading angle, deg; (c) y  is a cross-track error, m; yV  is a side velocity, m/s
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These transient processes demonstrate good 
performance of the flight control system with fuzzy 
controller in the outermost contour. 

CONCLUSION 

1. As far as the characteristics of robustness and 
performance for the angular attitude control loops do 
not differ from each other essentially and both of 
them are sufficiently small, then it is not expedient to 
use fuzzy controllers for them, because traditional 
PD-controllers are cheaper and more reliable. How-
ever the cross-track control, which is actually control 
of the position of the UAV center of gravity with 
respect to the reference track, needs in usage of fuzzy 
controller, because it provides much better characte-
ristics of robustness and performance. 

2. There is some temptation to compare the hu-
man (and some high organized animals) central 
nervous system (CNS) with aforementioned struc-
ture. As it is known [15] that CNS consists of the 
brain and spinal cord. The spinal cord “allows for 
voluntary and involuntary motions of muscles, as 
well as the perception of senses” via the “transmis-
sion of efferent motor as well as afferent sensory 
signals and stimuli”, meanwhile “the brain is the 
major functional unit of the central nervous system. 
While the spinal cord has certain processing ability 
such as that of spinal locomotion and can process 
reflexes, the brain is the major processing unit of the 
nervous system” [15] responsible for the behavior of 
organism in the environment. So attitude control 
could be considered as the simplest spinal cord, 
meanwhile the fuzzy controller of the cross-track 
contour (artificial intellect) could be compared with 
simplest brain (natural intellect).  
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А. А. Тунік, М. М. Комнацька. Про структури систем управління польотом БПЛА з елементами нечіткої 
логіки 
Розглянуто багатоконтурну систему управління польотом, що включає в себе контури чіткого та нечіткого 
управління. Стаття розкриває особливості розділення функцій управління між чітким та нечітким контурами 
синтезованого автопілоту. Процедура розділення структури автопілоту на чіткий та нечіткий контури здійснена 
із застосуванням теорії H -робастної стійкості нечітких систем та їх описання за допомогою методу гармоні-
чної лінеаризації. Дослідження проведено на прикладі бічного руху безпілотного літального апарату. 
Ключові слова: багатоконтурна система управління; система управління польотом; функція чутливості; нечітке 
управління; описувальна функція; робастність.  
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