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Abstract— In this paper the mathematical models are 

presented to describe scattering electromagnetic waves by 

hydrometeors of various types such as: raindrops, cloud 

droplets, flat and elongated ice crystals etc. These models are 

developed based on the practical implementation of 

requirements to the algorithm for detection of zones of 

possible icing of aircrafts, using the data of the avionic 

weather radar. Various scenarios of the appearance of such 

zones are analyzed. Polarymetric radar data, which can be 

obtained by remote sensing of one or more types of 

hydrometeors are modeled and analyzed. 

Keywords—polarimetric radar, hydrometeors, Rayleigh 

scattering 

I.  INTRODUCTION 

Parameters of signals that are backscattered from 
meteorological objects depend on the physical and 
statistical characteristics of hydrometeors. Consequently, 
we can identify the type of hydrometeors in the complex 
meteorological object using some parameters of the 
backscattered radar signals. The main goal of this article is 
to develope the advanced models which confirm 
qualitatively and quantitively that the values of some 
polarymetric parameters are different after the 
backscattering from the different types of hydrometeors, 
such as supercooled droplets in the cloud, rain drops, ice 
crystals of various types. 

II. THE RADAR CROSS SECTION 

If the diameter D of the irradiated particles is much 

smaller than the radar wavelength , the particle can be 
considered as the Rayleigh scatterer, and its radar cross 

section (RCS)  can be estimated as 6245 )/( DK 

with K as the complex refractive index of particles [1]. For 
nonspherical particles as usually we use the concept of 
equivalent diameter. Since there are many of reflecting 
Rayleigh particles of different size in the complex 
meteorological target, the specific RCS per unit volume 

defined as function of radar reflectivity factor Z

III. THE PROBLEM OF ICING-IN-FLIGHT ZONE DETECTION 

To prevent an accident, the pilot of the aircraft should 
avoid a contact of the aircraft with supercooled water 
droplets. There is a theoretical possibility of detecting the 
presence of liquid droplets using data from airborne weather 
radar [3, 4]. The basic idea of this method is that the water 
droplets and ice crystals scatters of the incident 
electromagnetic waves in different ways. The polarimetric 
algorithm [3, 5] of detecting supercooled water drops is 
based on the measurement of two polarimetric variables: 
differential reflectivity (DR), which depend on the received 
power of the principal polarization components (Рhh and 
Рvv), and linear depolarization ratio (LDR), which depends 

on the ratio of cross-polarized component Рhv to a 
principally polarized component [3]. 

Liquid-drop cloud without rain consists of small 
droplets having almost spherical shape. That is why the 
polarization does not play a significant role in the scattering 
in such clouds. Reflected power signal obtained in the 
horizontal and vertical planes are almost identical. 
Therefore, the cross-polarization component is close to 
zero, and LDR tends to minus infinity. Mathematical 
modeling of the backscattered signal in case of small cloud 
droplets gives the calculated values about 0 dB for ZDR, 
and up to -75 dB LDR [3, 9]. And these values do not 
depend on the scan angle (relative to the radar antenna). 

Rain (without the turbulence) is characterized by drops 
of ordered orientation in the vertical plane. ZDR maximum 
value observed in a horizontal (or nearly horizontal), 
scanning angle. This is because the projection of the drops 
into a plane perpendicular to the scanning beam gives an 
ellipse with the largest difference between the horizontal 
and vertical axes. DR can be equal to 0.5 dB (in the case of 
a small rain) up to 3…45 dB in the case of strong rain. LDR 
in case of rain may be in the range of -35 to -25 dB [3, 9]. 
Influence of turbulence was considered in [6]. 

In the case of ice crystals, there is no clear relationship 

between size and shape of the backscatterer, as is observed 

for raindrops. An important feature of the crystals compared 

with rain clouds is more chaotic orientation of the particles 

in space.  
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IV. MODELS AND NUMERICAL SIMULATION 

Mathematical modeling and measurements give the 

values from 9 dB in the case of strong vertically oriented ice 

crystals to -9 dB in the case of a horizontal arrangement of 

space. Usually this value lies in a more limited range from 

-3 to 3 dB [7, 9]. LDR value for crystals may be in the range 

of -14 ... -16 dB (for uniform distribution of crystal axis 

orientation) or -25 ... -30 dB (when ordered orientation in a 

vertical or horizontal plane occurs) [3, 7].  

Then compare the values of the power of two 

components of the reflected signal Phh and Pvv; using 

results of this comparison, the values of the orthogonal 

components Phv, Pvh and the known value of temperature 

one make a decision on the presence or absence potentially 

dangerous zone in the volume of space, which is defined by 

the radiation direction, the delay time of reflected signals 

and duration of radar pulses. If the temperature of the object 

is below the freezing point of water and at the same time the 

conditions Phh = Pvv and Phv = Pvh = 0 are true, then one 

makes a decision on the availability icing zone, and in the 

opposite case a decision about absence of the dangerous 

zone is done. 

The algorithm described above assumes a clear 

distinction between types of hydrometeors and does not 

imply the simultaneous presence in the volume of liquid 

droplets and ice crystals.  

V. ADVANCED MODELS OF SCATTERING ON DIFFERENT 

TYPES OF HYDROMETEORS 

The developed advanced models are based on the 

approach [10, 11] which was corrected and developed in 

particular in the aspect of accurate taking into account the 

orientation of particles and statistical view onto the 

distribution of angles that characterize positions of 

particles. As an example in Fig.1 the improved factors hh

, vv  and hv , that characterize orientation of scatterer are 

shown as functions of angles of particle azimuth  and 

canting . 

 
Fig. 1. Calculated factors hh and vv for hh (left) and vv cases. 

The mixture of different types of scatterers is consider. The 

details of the models are discussed during the presentation. 

VI. CONCLUSION 

The mathematical models have been developed to 

describe scattering electromagnetic waves by 

hydrometeors of various types such as: raindrops, cloud 

droplets, flat and elongated ice crystals etc. The models are 

based on the practical implementation of requirements to 

the algorithm for detection of zones of possible icing of 

aircrafts, using the data of the avionic weather radar. 

Various scenarios of the appearance of such zones have 

been analyzed and discussed during the presentation. 
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