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Abstract—A new clustering approach that is capable of 
finding clusters that are separated by some complex hypersurface 
is proposed. The approach can be useful for performing analysis 
of big amounts of unlabeled images that can be nowadays easily 
gathered, in particular by using unmanned aerial vehicle with 
mounted cameras. The approach is based on “softening” the 
initial clustering criterion and then using nonlinear optimization 
to find the optimal hypersurface that separates clusters. 

Keywords—unmanned aerial vehicle; soft clustering; nonlinear 
optimization; artificial neural networks 

I.  INTRODUCTION  
Nowadays, gathering big amounts of unlabeled image data 

is becoming much easier. However, labelling all this data is 
often infeasible, and so techniques from the unsupervised 
learning [1] paradigm should be used to analyze this data 
instead. Clustering analysis is probably the most well-known 
and studied technique from this paradigm. It is used find 
groups or clusters of examples that share some similarities 
among given set of examples. 

II. PROBLEM STATEMENT  
The clustering problem [2] that is considered in this paper 

can be described as follows: 

Having a set of examples 1( ,..., )nX x x
   where each 

example is a vector in space dR , and given number of clusters 
K N , we need to set a certain cluster number 1,...,k K  for 
each example so that the resulting vector of cluster numbers 

T
1[ ,..., ]nk k k


 minimizes a certain criterion ( , )CR k X


: 

 * arg min{ ( , )} .
k

k CR k X 

 
 

III. AN OVERVIEW OF EXISTING METHODS 
Even for the very simple case, when the minimized 

criterion is a total Euclidean distance from cluster points to its 
center, the clustering problem is known to be NP hard [3], [4] 
that is, unless P NP , it is impossible to define an algorithm 
that will precisely find the optimal vector of clusters numbers 

*k


 and will not require an exponentially increasing number of 

calculations with an increase in the number of examples. 
Because of this, various heuristic methods have been 
developed to solve this problem approximately. Let us review 
the main existing methods, used to perform clustering, 
together with their pros and cons. 

K-means clustering [5] is probably the most well-known 
and one of the simplest clustering algorithms. Informally, it can 
be described as follows: in the beginning, initial clusters 
centers are selected in certain way (the simplest way is to do 
this at random), and then iterations are performed until the 
algorithm’s stopping condition is met, where each iteration 
consists of 2 steps: the step of finding the closest current cluster 
center for each example, and the step of calculating the new 
cluster center – as the mean value of all examples for which the 
current center of this cluster was the closest. Stopping 
condition is the equality of new and current clusters’ centers. 
Formally, the algorithm consists of the following steps: 

1. The starting centers of clusters are set as randomly 
selected unique K  examples: 

(0 ) : , {1,.., }, {1, ..., }; {1,..., },

{1, .., } :
jj r j

j t

c x j K r n t K

j K t j r r

    

    
 

2. : 0.it   

3. For each example , {1,..., }ix i n  the center of the 
cluster closest to it is located and memorized: 

( )

{1,..., }
: arg min{| |}it

i i j
j K

nc x c


   

4. New cluster centers are calculated as the mean of all 
examples for which the current cluster center was the closest:  

 ( 1)

: :

1: , 1, 1,...,
i i

it
j i j

i nc j i nc jj

c x n j K
n



 

     

5. If at least for one value  1,...,j K  the new center of 
the cluster is different from the current one – ( 1) ( )it it

j jc c   – 
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then : 1it it   is assigned and a new iteration of the algorithm 
is performed starting from step 3. Otherwise, the algorithm 
stops, and the current distribution of examples between 
clusters along with the cluster centers are the algorithm 
outputs. 

The algorithm tries to minimize the criterion of total mean 
distance between points in one cluster: 

2

1 :
( , ) .

j j

K

j i
i x k i

CR k X x
 

  
  

 

The main drawbacks of the algorithm are: 

1) susceptible to getting stuck in a local optimum – 
depending on the initial cluster centers the algorithm can stop 
at various local optima, not finding globally optimal centers 
(although it is clear that no algorithm that does not 
require exponentially increasing number of calculations while 
increasing the number of examples can find the globally 
optimal centers unless P NP ); 

2) the algorithm prefers clusters with approximately same 
number of examples; 

3) it is clear that the application of the algorithm to the 
data set where clusters do not meet the algorithm 
“expectations” – i.e. is not similar to the spherical areas that 
are separated in space, usually gives poor results. 

Hierarchical clustering algorithms [6]. Algorithms of this 
group are building a certain hierarchy of clusters; there are 2 
main approaches for building a hierarchy: agglomerative 
when the algorithm starts with each example is in its own 
cluster and the clusters are gradually merged, and divisive 
when at the beginning all examples belong to one cluster and 
the division of one cluster into several smaller clusters is 
gradually done. Hierarchical clustering algorithm usually 
requires 2 things to be specified: 

1) a metric that will be used as a measure of distance 
between pair of examples 

2) a “linkage” criterion, that is used to calculate a 
measure of dissimilarity between 2 sets of examples 
using selected distance between pair of examples 
metric 

The main disadvantages of this algorithms family are: 

A. It is not always possible to clearly define a global 
criterion that is minimized by this algorithm. 

B. A certain locally optimal clustering is often obtained 
because of the “greedy” nature of most of the algorithms of 
this family. 

The Kohonen self-organizing map [7] (SOM). Self-
organizing map is an artificial neural network [8] “suitable” 
for unsupervised learning and during learning the network 
tries to somehow approximate distribution of input examples. 
This approximation is achieved via “positioning” a certain 

number of network’s output neurons in the space of input 
examples so that all neurons tend to be positioned closer to 
given input examples – often finding centers of examples’ 
clusters in the process. Thus, after all output neurons are 
positioned, the clustering of input examples can be carried out 
by finding the closest neuron for each example, and assigning 
to one cluster all examples for which one certain common 
neuron turned out to be the closest one. The interesting 
distinguishing feature of SOM is a neighborhood function, that 
for a pair of network’s output neurons ,u v  gives a “distance” 
between these neurons – and this neighborhood function is 
used during training stage to position neurons in the input 
examples’ space. Namely, when an input example is “fed” to 
the network, the neuron whose weights vector is most similar 
to the input is called the best matching unit (BMU), and the 
weights of the BMU and neurons close to it (and “closeness” 
is determined by neighborhood function) are adjusted towards 
the input vector. 

The main shortcomings of the SOM are: 

1) For the original SOM training algorithm it is unclear 
what optimization criteria is minimized while network neurons 
are positioned in space of input examples. 

2) The result of the SOM algorithm depends on certain 
parameters the values of which need to be carefully chosen. 

3) In terms of clustering problem, there is no evidence 
that the SOM gives fundamentally better results in comparison 
with other clustering algorithms, such as k-means. 

IV. SOFT CLUSTERING ALGORITHM BASED ON SEPARATING 
HYPERSURFACES 

A new clustering algorithm with the following properties is 
proposed: 

a) it has a clearly defined criterion which is minimized 
during the execution of the algorithm; 

b) the optimization criterion is a differentiable function 
of the parameters according to which the optimization is 
performed; 

c) it theoretically allows to find clusters that are 
separated by the arbitrarily complex hypersurface. 

The algorithm can be applied when the criterion ( , )CR k X


 
has the following form: 

1
( , ) ( , , )

K

i
CR k X f X k i




 

, 

where ( , , )f X k i


 is the function which is either completely 
continuous function of X  or its only discontinuity comes 
from using the indicator function “1( , , ) 1,jk x i 

   if 1,0jk   
otherwise”. For example, if we consider the criterion of total 
mean distance between points in one cluster which is used by 
the k-means algorithm, then a corresponding ( , , )f X k i


 can be 

written as follows: 
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2

,
2

1( , , )
1( , , )

                1( , , ) 1( , , ) .

j

q w

j
x X

q w q w
X

x x

f X k i
k x i

k x i k x i x x



 
 
 



   







 


 

     . 

Let us consider the simple case where we have only 
two clusters. We perform the “softening” of the original 
problem [9] by introducing the continuous function 

( ) [0,1]k x 
 , which for each example x  will return the 

probability of this example belonging to the cluster 1; 
respectively, the value 1 ( )k x

  represents the probability of 
this example belonging to the cluster 0. In this case, the 
indicator functions are replaced by the value ( )k x  and, for 
example, the “softened” variant of the total mean distance 
between points in one cluster will be as follows:  

 
 

2

,

2

,

1( , )
[1 ( )]

            [1 ( )][1 ( )]

1                         ( ) ( ) ,
( )

j

q w

q w

j

j
x

q w q w
x x

q w q w
x xj

x

SCR k X
k x

k x k x x x

k x k x x x
k x




   

 









 

 




   

   


 

wherein the first component determines the contribution of the 
cluster with number 0 and the second – the cluster with 
number 1.  

If we have a certain model of the hypersurface that 
separates the clusters in the form of a function ( ; ) [0,1]k x w 

   
which is a differentiable function of a certain parameters 
vector w  – then softened criterion ( , )SCR k X  will also be a 
differentiable function of vector w , since the only source of 
discontinuity in original criterion ( , )CR k X


 will be replaced 

by either ( ; )k x w   or 1 ( ; )k x w
   (of course, this statement will 

only be true if the original criterion satisfies the previously 
stated condition that the only possible source of discontinuity 
should  come from using and indicator function  1( , , )jk x i

  ). 
Thus for the minimization of softened criterion it is possible to 
use the entire apparatus of nonlinear continuous differentiable 
functions minimization which has recently been developing 
very rapidly. As a result, the “softened” version of clustering 
problem for 2 clusters can be solved as a continuous nonlinear 
optimization problem (if the input criteria satisfies the 
described above condition), for example through the use of a 
certain gradient descent algorithm modification – like 
AdaGrad [10], RMSProp [11] or Adam [12]. 

To solve the softened version of clustering problem into K 
clusters we can use the “one versus all” approach – first we 
divide all the examples into 2 clusters, after which we select a 

cluster with a larger “partial criterion” value ( , , )f X k i


, and 
divide it into 2 clusters and so on until we get the required 
number of clusters. 

Perhaps the most straightforward function that can be used 
as a model of a hypersurface separating the clusters is a logistic 

sigmoid function: T

1( ; )
1 w x

k x w
e




 
  . In essence, such a model 

will be a certain approximation of the separating hyperplane 
which is determined by the parameters vector w  – for 
examples T: , 0x w x b b 

    the value of the model will be 
approximately equal to 1; for examples T:x w x b 

    – 
approximately equal to 0, and for examples that are “close” to 
the hyperplane – i.e. those for which Tb w x b  

   the value of 
the model will smoothly grow from 0 to 1 with the “transition” 
from one side to the other (and for all examples T: 0x w x     
which are located on the hyperplane, the model value is equal 
to 0.5). That is, using such a model when minimizing the 
criterion, we will try to separate all the examples by the 
“almost linear” hypersurface into 2 clusters so that the total 
mean distance of these clusters will be minimal. 

Obviously, such a model is very simple and will not work 
well if the clusters in the available set of examples are not 
linearly separate. In this case, we need more complicated 
models of the separating hypersurface, and we know what 
suits very well as such models – the neural networks. The only 
limitation is that the network's output should be in range [0,1]  
but to achieve this it is enough to pass the network’s output 
through the aforementioned logistic sigmoid function. For 
example, one may use a simple multilayered perceptron [13] 
with one hidden layer consisting of neurons with ReLU [14] 
activation function and one neuron with a logistic sigmoid 
activation function in the output layer as separating 
hypersurface model, appropriately choosing number of 
neurons in the hidden layer. 

Thus, we obtain the following soft clustering 
general algorithm based on a certain separating hypersurface 
model ( ; ) [0,1]k x w 

  . 

Algorithm inputs: 

 examples set 1( , ..., ),nX x x  ,d
ix R  1,...,i n ; 

 number of clusters K, into which we need to split all 
the examples; 

 some neural network that defines the model of 
hypersurface separating the clusters ( ; ) [0,1]k x w 

 
; 

 criterion ( , )CR k X


, which needs to be minimized and 
which satisfies the previously mentioned condition. 

Steps of the algorithm: 
1. Obtaining the softened criterion 
( , ) ( , )CR k X SCR k X


. 
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2. The whole set of examples is split into 2 clusters. In 
order to do this: 

– the initial vector of model’s parameters 0w  is randomly 
generated; 

– a certain modification of the gradient descent is 
performed to minimize the value of the criterion ( , )SCR w X ; 

– as a result, we get the tuned parameters vector fw ; 

– all examples are divided into 2 clusters – those examples 
for which the model values ( ; ) 0.5fk x w 

 
 are selected into 

cluster 0, all other examples (i.e. those for which 
( ; ) 0.5fk x w 
 

) – in cluster 1. 

3. If the current number of clusters <K then for both 
clusters the “partial” criterion value ( , , )f X k i


 is calculated 

and the cluster having bigger value ( , , )f X k i


 is chosen as a 
new set of examples for further separation into clusters, and 
the algorithm’s execution continues from step 1. Otherwise, 
obtained K clusters are returned as the result of algorithm's 
execution. 

V. CONCLUSION 
A new clustering algorithm is introduced and it has the 

following properties: 

 it allows to solve the original clustering problem by 
optimizing some differentiable criteria, thus making it 
possible to use all the recent developments in nonlinear 
optimization – like stochastic gradient descent 
methods, different regularization methods etc.; 

 the algorithm is able to detect clusters of input 
examples that are separated by some complex 
hypersurface if you choose an appropriate model of 
this separating hypersurface; 

 can be potentially applied to find clustering that is 
optimal under different criteria, i.e. not only total mean 
Euclidian distance between points in cluster. 

A few important problems are not considered in this 
“version” of the algorithm, namely: 

 in many practical problems, the number of clusters K is 
not known in advance, and an automatic detection of 
best (in some sense) number of clusters for the given 
set of examples is a very nice feature to have; 

 using “one versus all” approach to perform clustering 
when K > 2 is basically a greedy way to find optimal 
clustering which is also known to produce locally 
optimal results; some approach to simultaneously 
separate more than 2 clusters by adjusting certain 
model’s parameters could potentially greatly improve 
performance of suggested algorithm. 
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