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Abstract 
 
The paper deals with the problem of synthesizing the time-optimal control law by the angular coordinates of an unmanned aerial vehicle 
with stabilization in the pitch and roll directions. The full mathematical model of the unmanned aerial vehicle is reduced to a system of 
the first-order differential equations, based on which the optimal control law is constructed. Control action in each plane depends only on 

the measured coordinates and is calculated in real time. It is believed that the dynamic model, described by a system of differential equa-
tions, contains complex roots, which indicate the oscillatory response of the controlled object to the control action. Some properties of 
the switching line and switching control are also considered in the paper. Some results of simulating the dynamics of the object under 
examination with a synthesized control law are presented. 
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1. Introduction 

Nowadays the quadrotor is the most widespread unmanned aerial 
vehicle (UAV). This has been proved by numerous publications. 
Such interest in quadrocopters is caused by their maneuverability 
characteristics, which exceed the similar characteristics of manned 
aircraft. Unmanned aerial vehicles of this type are capable of hov-
ering and dramatically changing the flight direction, which has 

huge advantages when flying in conditions of stationary and mov-
ing obstacles. 
Obtaining adequate mathematical models and effective character-
istics of maneuverability are the main goals of most studies. The 
basis for obtaining a mathematical model of quadrotor is the heli-
copter model. The assessment of dynamic properties of the quad-
rotor was initially grounded on the choice of transfer function 
parameters of the servo drives for controlling the speed of quad-

rotor screws, for example, as authors did in [1]. Despite the com-
plexity of the procedure, it is possible to obtain an adequate math-
ematical model using classical methods. The mathematical model 
and control law on angular coordinates, which provide UAV stabi-
lization of the roll and pitch movement using the Lyapunov crite-
rion, was proposed in [2]. The method requires a careful choice of 
the model parameters to ensure its stability. In works [3, 4], the 
control is implemented using the technique of backstepping, 
which allows stabilizing the angular coordinates of the unmanned 

aircraft in a finite time. In [5] there have been proposed the prob-
lem solution for optimal control of angular coordinates based on 
the synthesis of a linearly quadratic regulator without noise by 
means of a quadratic criterion. The development of a robust PID-
controller for quadrature control was proposed in [6], [7]. The 
further improvement of system robustness can be achieved using 
the results given in [8]. Control for a finite time by means of ap-
plication of a multivariable super-twisting-like algorithm was 

presented in [9]. A feature of this control law is using of the dis-

continuous integral component that allowed avoiding an influence 
of disturbances on the device. 
Realization of potential possibilities for control of angular coordi-
nates lies in the use of a time-optimal control law. The following 
problem can be solved by implementing the switching control law 
as it has been presented in the book of well-known American sci-

entists Athans and Falb [10]. The algorithm and adaptive control 
law of the aircraft operating in the roll plane in the presence of 
noise in the coordinate measurement channels are given in [11]. In 
this case, the mathematical model of a dynamic object is described 
by a system of differential equations. The scheme for implement-
ing the above-mentioned law in the manual control mode in two 
perpendicular planes, such as pitch and roll ones, is presented by 
Athans and Falb. It should be noted about a difficulty in present-

ing the switching line in a closed form in [10]. 
The main purpose of this paper is to synthesize the time-optimal 
control law using the UAV dynamic model represented by a sys-
tem of differential equations with completely known parameters 
without noise in the channels of measuring the controlled coordi-
nates in the pitch and roll planes. 

2. Problem statement 

We will assume that a UAV’s spatial orientation can be represent-
ed by means of the Lagrangian function of generalized coordinates 

(x, y, z, , , )  R6. Let q = (x, y, z)  R3 denote the position of 

a centre of UAV mass in a Cartesian coordinate system and in the 

inertial reference frame.  = (, , )T  R6 are Euler angles called 

yaw, pitch, and roll, respectively. The unmanned aerial vehicle is a 

four-motor rotorcraft, ith motor creates thrust fi, ( 4,1i ), P is a 

constrained value, i.e. fi  P. The quadrotor scheme is shown in 
Figure 1. 
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Fig. 1: The Configuration of Four-Motor UAV with Fixed Body Frame 

and Inertial Frame XYZ. 

 
To obtain the equations of a quadrotor’s motion, the Lagrange 
function can be represented as a sum of the kinetic and potential 
energy of a dynamical system 
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The dynamics equations can be obtained by differentiating the 
Lagrange function (1) with respect to the derivatives of coordi-
nates and in time, namely,  
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where Fi is the external force that acts on ith coordinate qi. In 
common case, 
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We will assume that these forces are able to move a quadrotor to 
the given point of the trajectory. The force applied to the input can 
be treated as a control signal of the object. Considering the main 
type of displacement in accordance with Figure 1, one can write 
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and 
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In (7) N = 4, factor ki is some constant, and i is the angular rate 

of the ith motor.  
In the Eulerian coordinate system, the UAV orientation relative to 
the inertial coordinate system XYZ can be represented by rotation 
matrix R 
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The matrix (10) uses notations С = cos(), S = sin(). Taken 

into consideration (10) and (6) we can rewrite formula (9) in the 
following form 
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Let I1, I2, I3 are moments of quadrotor inertia with respect to axes 

X, Y, and Z passing through its centre of mass, respectively.   ,,  
are angular rates regarding axes X, Y, and Z. As it is known [10, 
12], that if external forces are absent, the differential equations of 
angular rates can be represented in the form 
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The equations (14)  (16) are Euler’s dynamic equations. When 

taking into account the action of motors M1  M4, equations (14)  

(16) look like 
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In formulas (17) – (19) c is the distance between the centre of 
mass of UAV and motor Mi; u1, u2, u3 are mechanical forces pro-
duced by motors Mi. These forces can be described in the follow-

ing way 
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The rotation of the motors relative to the body-axis reference 
frame leads to the Coriolis Effect, namely, to the change in the 
centre-of-mass accelerations in the inertial reference frame. Tak-
ing into consideration this effect, we can write the following sys-
tem of equations 
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Thus, our purpose is to synthesize the control law that provides 
the movement of the quadrotor from one point to another in 3D 
space. 

3. Synthesizing the control law 

To synthesize the control law it is necessary to analyze the equa-

tions (23)  (25). Since the axis Z is the axis of symmetry and the 
motors Mi are the same and rigidly fixed to the apparatus, the 

moments of inertia I1 and I2 are equal to each other, i.e. 
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Then the motion equations (23)  (25) can be reduced to the form 
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The research of these equations allows us to conclude that if thrust 

u3 and initial states (0), (0), (0) are known at the instant of 

time t = 0, we can always find a coordinate (t) by means of dou-
ble integration 
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Which is independent on the angular coordinates (t), (t). Stabi-

lization of coordinate  is possible if the angular rates )(),( tt    

take zero values for the minimum possible time, and equality u3(t) 

= const is provided, whence (t) =  = const. We assume that the 

thrusts u1(t), u2(t) are bounded in amplitude 
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and substituting these values into equations (27)  (29), we will 

obtain 
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In the equations (11) – (13) we also use |u3(t)|  3u , and 

zxyxxx   321 ,, . Then equations (11) – (13) take the form 
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As a result of the transformations, we will obtain a system of 

equations in the state space with the state vector {v}12, 
Txxxxxxv ),,,,,,,,,,,(   321321 . The dynamic object implements a 

motion in this space from the initial state 
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to the finite state 
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With control actions '|)(|,|)(|,|)(| UtuUtuUtu  321  for any 

instant of time t. 
Control action for the dynamic system (31), (32) can be obtained 
by synthesizing the time-optimal control algorithms. In this case, 

control problem lies in minimizing states (t), (t) for the mini-

mum time and states x1, x2, x3 fully defined by angles , , , and 

control input U. Then, space angular rates are divided into four 

subspaces 
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Switching the sign of control is implemented in accordance with 
the curve 
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The appearance of the switching line is shown in Figure 2. 
 

 
Fig. 2: The Form of the Switching Curve. 

 
Proposition. Optimal control law can be designed in the form 
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Corollary 1. If (t) = 0, (t) = 0, t  0, it is the finite point of 

control, and U(T) = 0. 

Corollary 2. If (t)  0, (t)  0, t = 0, the optimal control is a 

switch type, and the number of switching is not more than N. 
Corollary 3. The number of switching control of the dynamic 
system (31), (32) with the control law (45), (46) is minimal, and it 

is defined (0), (0) according to 
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where [] means integer part of a number. 

Proof. Analogically to [10, section 7.9] and therefore omitted. 

4. Case study and discussion 

An example of simulating the motion of a four-motor UAV is 
considered for the initial angular rate of 0.8 rad / s and 0.4 rad / s 
for roll and pitch, respectively. The control action was assumed to 

be equal to the normalized values, i.e. U = 1,  = 5 s-1, l = 1 m, 

and according to (47) the minimal number of switching the sign of 
control signal for these initial conditions is equal to 2. The results 

of testing the initial mismatch by the algorithm (45), (46) with the 

separating function (40)  (44) in different planes are shown in 

Figure 3  6. 

The change of the initial mismatch with respect to the angular 

rates (t), (t) in the phase plane O is shown in Figure 3. The 

variation of the same variables shown in the upper graph in Figure 
4 in the time plane, as well as the control actions u1(t), u2(t) 
providing angular stabilization of the quadrotor, are shown in the 
lower graph in Figure 4. The test results confirm an initial guess 
concerning the number of switching control signal. 
 

 
Fig. 3: Changes of Variables ,  in the Phase Plane. 

 

 
Fig. 4: Changes of Variables , , U1, U2 in the Time Plane. 

 
Figures 5, 6 show the changes in the coordinates x1(t), x2(t), x3(t) 
in the time plane and in the phase plane respectively. 
 

 
Fig. 5: Changes of Variables x1(t), x2(t), x3(t) in the Time Plane. 

 

 
Fig. 6: Changes of Variables x1(t), x2(t), x3(t) in the Phase Plane. 
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The control law was researched by means of the MatLab software 

package for various initial mismatches for  = 30. These results 

are presented in Table 1. 
 

Table 1: Some Study Results 

, rad , rad N , rad/s , rad/s x1(t), m x2(t), m x3(t), m 

0 0.08 1 -0.0198 0.0495 0.0076 -0.0529 -0.0014 

0.05 0.1 1 0.039 -0.0397 0.014 0.054 -0.0015 

0.1 0.12 1 0.0475 -0.0489 0.0168 0.0663 -0.0023 

0.15 0.14 1 0.0469 -0.0441 0.0187 0.0618 -0.0021 

0.2 0.16 1 0.0465 -0.0389 0.0055 0.0594 -0.0018 

0.25 0.18 1 -0.0237 0.0482 0.0141 0.0644 -0.0022 

0.35 0.2 1 0.041 0.0464 0.0602 -0.014 -0.0019 

0.4 0.3 1 -0.0354 0.0465 -0.0156 -0.0585 -0.0018 

0.45 0.4 2 -0.0428 -0.022 -0.0457 -0.0184 -0.0012 

0.5 0.6 2 0.0476 0.0493 -0.046 -0.0185 -0.0012 

0.55 0.8 2 0.0058 -0.0486 -0.0192 0.0452 -0.0012 

 

The achievable accuracy of setting the angular rate is  = 0.0466 

rad/s,  = 0.0422 rad/s. To achieve the effect of optimal control 

in time, the initial angular mismatches should exceed 0.047 rad/s. 
In all cases of the fulfillment of the last condition, the simulation 
yielded satisfactory results, i.e. the stabilization error does not 

exceed x1 = 0.03 m, x2 = 0.049 m, x3 = 0.000413 m. 

5. Conclusions 

The control algorithm for the UAV of the quadrotor type with 
stabilizing angular coordinates by the time-optimal control is pro-
posed in the paper. This algorithm assumes that the main parame-
ters of quadrotor are known and angular coordinates of quad-
rotor’s motion are measured. In contrast to other control laws, we 
propose the control law of switching type. The main possibilities 

of control law are formulated in corollaries. Here we analytically 
set time-optimal control law and the dependence of the minimal 
number of switching control signal and initial conditions of a dy-
namic system. Modelling process of UAV motion proves the cor-
rectness of the control law that is proposed in the paper.  
The proposed control law is effective at large mismatches. For 
small discrepancies, a linear control law should be applied. The 
task of the future research is to study the control law in the ab-
sence of precise values of the control object parameters. 
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