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LECTURE 9. NOTHING DISAPPEARS 

 

§ 1.10. The fist law of thermodynamics 

The firs law of thermodynamics (first beginning) in the general view 

represents by itself the law of conservation and conversion of energy [113, pp. 24-

29], [79, pp. 405-410]. 

 

*                         *                         *                         *                         * 

 

Let us give a few formulations of the first law. 

1. All kinds (sorts, types) of energy are able mutually to convert 

(transform) in strictly equal to each other quantities (amounts), i.e. (that is) 

energy does not appear from nothing and does not disappear to nowhere, but 

transfers from one kind (sort, type) into another instead. The thermal 

equivalent of heat 

1868.4==
Q
LJ  J/cal, 

if work is measured in Joules, and heat in calories. If work and heat are 

measured in the same units, then 

1=J . 
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The value which is inverse to the thermal equivalent of heat is called the 

mechanical equivalent of heat 

L
Q

J
A ==

1 . 

2. It is impossible to create such a periodically acting machine, with the 

help of which it would be possible to get a useful (helpful) work without 

spending external energy (form the surroundings, outside), i.e. (that is), drawing 

(getting, deriving, sourcing) energy out of (from) nowhere. Such a contraption 

(device, machine, apparatus) is called a perpetual motion machine ([Сов, 

p. 216] Latin: Perpetuum Mobile I) (eternal engine) of the first kind [79, 

pp. 409, 410], creation, building, and work of which, in accordance with the law 

of conservation of energy, is impossible. 

3. The internal energy of a completely isolated system is the constant value. 

The proof of this formulation will be given bellow. 

Let us write down the equation of the first law of thermodynamics. For this 

reason let us assume, that some amount of heat Q  is flown into (taken in) the body. 

This heat will be spent upon the change of the internal energy of  and for 

performing (carrying out, doing, execution) the work of 

UΔ

L . Then, for  kg of the 

body’s mass the equation of the equivalency will be [113, p. 25, (2.16)] 

m

LUQ +Δ= , (2.16)

where ; mqQ = umU Δ=Δ ; mlL = . 

For one kg of mass  the relation of (2.16) will have the view of 1=m

luq +Δ= , (2.16a)

where ; ; q uΔ l  – specific amounts of heat, internal energy change, and work. 

For an infinitesimally small process [113, p. 25, (2.17)] 

dldudq += . (2.17)

The relation of (2.17) represents by itself the mathematical notation of the 

equation of the firs law of thermodynamics. Following this equation, the heat taken 

in by the body is spent upon the change in internal energy and for doing the work. 
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Let us apply the condition of the complete isolation to the equation of (2.17), 

i.e. (that is) 

0=dq  and 0=dl  

(the system does not exchange with the environment neither heat nor work). Then, we 

will get 

0=du  or const=u , 

since the differential of a constant equals zero. Hence, we proved that no matter what 

processes occur in an isolated system, its internal energy is of the constant value. 

If heat is taken in, then . Work is 0>q 0>l  if it is done by an expanding gas, 

and 0<l , if it is spent for compression. Change of internal energy , if a 

body’s internal energy increases, and vice versa. 

0>Δu

See fig. 2.4 

 

*                         *                         *                         *                         * 

 

Fig. 2.4 

 

pSdrdl = , 

where  – pressure at the point of 3; p S  – area of the piston’s cross section; r  – 

displacement of the piston. 

Since 

dvSdr = , 

then [113, p. 25, (2.18)] 

pdvdl = . (2.18)

 

*                         *                         *                         *                         * 

 

[113, p. 26, (2.19)] 

∫∫ ==
2

1

2

1

v

v

v

v
pdvdll . (2.19)
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lδ    qδ . 

 

*                         *                         *                         *                         * 

 

Josiah Willard Gibbs – enthalpy  

[113, p. 26, (2.20)] 

pvui += . (2.20)

 

*                         *                         *                         *                         * 

 

[113, p. 27, (2.21)] 

vdppdvdudi ++= . (2.21)

 

*                         *                         *                         *                         * 

 

du  form (2.21) 

vdppdvdidu −−= . (2.21a)

 

(2.21a) into (2.17) and taking into account (2.18) [113, p. 27, (2.22)] 

vdpdipdvvdppdvdidq −=+−−= , (2.22)

where 

0dlvdp =−  – available work. 

Integrating (2.22) 

∫−−=−

2

1

1221

p

p
vdpiiq . 

 

*                         *                         *                         *                         * 

 

For available work see fig. 2.5 
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*                         *                         *                         *                         * 

 

Fig. 2.5 

Filling up – positive work 

111 vpl = . 

 

*                         *                         *                         *                         * 

 

Work of expansion (2.19) 

∫=
2

1

v

v
pdvl . 

 

*                         *                         *                         *                         * 

 

Pushing out – negative work  

222 vpl = . 

 

*                         *                         *                         *                         * 

 

Available work  

( )12212211210

2

1

llllllvppdvvpllll
v

v
−−=−+=−+=−+= ∫ , 

( )11220 vpvpll −−= . 

From here [113, p. 28, (2.23)] 

22110 vpvpll +−= . (2.23)

Substituting (2.23) into (2.16a) 

( ) ( ) 01201112222211012 liilvpuvpuvpvpluuq +−=++−+=+−+−= . 

From here [113, p. 28, (2.24)] 
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0dldidq += . (2.24)

The obtained equation coincides with the equation of (2.22). This equation 

represents by itself the second mathematical form of notation of the equation of 

the first law of thermodynamics. 

If  (isobaric processes), then (2.22) will have the view of const=p

didq = . 

1221 iiq −=− . 

Thus, the physical sense of enthalpy is that in isobaric processes the change 

of enthalpy equals the amount of heat, absorbed or given out by a system. 

Adiabatic processes,  

0=dq . 

The equation of (2.22) will be 

didl −=0 , 

or 

210 iil −= . 

Since enthalpy is a function of the independent parameters of state (state 

variables), then for its complete differential at the independent variables of ; pv,

Tv, ; Tp,  there are correct (true) equations of: 

dv
v
idp

p
idi

pv
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

= ; (a)

dv
v
idT

T
idi

Tv
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= ; (b)

dp
p
idT

T
idi

Tp
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= . (c)

Enthalpy of an ideal gas, as well as internal energy, is a function of temperature 

only and does not depend upon volume and pressure, because there is absence (there 

is no presence) of the forces of the interaction between molecules [113, pp. 24-29]. 

( ) ( ) RTTupvTui +=+= . 
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