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LECTURE 11. HEAT CAPACITY 

 

§ 1.12. Heat capacity 

The amount of heat which is necessary to be taken in into a body or withdrawn 

from it in order to change its temperature in 1 °C is called heat capacity [113, pp. 32-

36] [79, p. 357]. Heat capacity is calculated by the formula [113, p. 33, (2.37)] 

dT
dQC =  [J/K]. (2.37)

Dependently on the quantitative unit of a substance, into which the heat is 

taken in, there distinguished (differentiated): mass specific heat capacity  

[J/(kg·K)]; volumetric specific heat capacity 

xc

xc′  [J/(m3·K)]; mole specific heat 

capacity  [J/(mol·K)]. μc

The specific heat capacity, or simply the specific heat (to put it briefly [79, 

p. 357]),  is equal to the ratio of the heat capacity of a uniform body to its mass of 

 

xc

m

m
Ccx =  [J/(kg·K)]. 

Thus, mass specific heat – this is the heat capacity of a unit mass of a 

substance (1 kg). 
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The ratio of the heat capacity of a body to its volume at the normal physical 

conditions  101325 Pa, ( =0p )C 00 °=t  is called the volumetric specific heat 

capacity  xc′

ρ===′ x
x

x c
V

mc
V
Cc  [J/(m3·K)]. 

Thus, volumetric specific heat – this is the heat capacity of a substance in the 

amount, that occupies at the normal physical conditions the unit volume (1 m3). 

It is convenient in some cases to apply such a quantity of a unit amount of a 

substance that equals the molecular weight of μ  of this substance. In such a case 

there used the mole or molar specific heat capacity  μc

x
x cm

mc
n
Cc μ=

μ

==μ  [J/(mol·K)]. 

where 
μ

=
mn  – the number of moles [mol]; ANmμ=μ  – the molecular mass 

[kg/mol]; where  – the mass of a molecule [kg/molecule];  – Avogadro’s 

number [molecules/mole],  molecules/mole [79, p. 381]. 

μm AN

231002.6 ⋅=AN

Heat capacity depends upon a process character. In thermodynamics the heat 

capacities at constant volume  and constant pressure , determined by the 

formulas of [113, p. 33, (2.38)] 

vc pc

dT
dqc v

v = ; (2.38)

dT
dq

c p
p = ; (2.39)

have a great significance. 

These capacities are found in the view of the ratio of the quantity of the heat, 

transferred in a process at the constant volume or pressure, to the body’s temperature 

change. 

From the first law of thermodynamics (2.25) 

pdvdudq += , (2.25)
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it follows, that at the constant volume ( )0=dv  [113, p. 34, (2.40)] 

dudqv = . (2.40)

 

*                         *                         *                         *                         * 

 

Substituting (2.40) into (2.38), we get [113, p. 34, (2.41)] 

v
v dT

duc ⎟
⎠
⎞

⎜
⎝
⎛= . (2.41)

Taking into consideration (2.41), (2.40) will get the view of 

dTcdudq vvv == . 

At  const=vc

( )1212,21 TTcuuq vv −=−=− . 

The change in internal energy of an ideal gas in a process with the 

constant volume equals the product of the specific heat capacity at the constant 

volume  and the temperature difference between the end and the begging of 

the process. 

vc

Mass specific heat capacities at constant volume and pressure are connected 

between themselves by the relation, which is called the equation by Mayer [113, 

p. 34, (2.42)] 

μ
==−

314.8Rcc vp  [kJ/(kg·K)]. (2.42)

The simplest derivation of the (2.42) may be done by [114, pp. 67, 68]. 

The equation of the first law of thermodynamics (2.25) 

pdvdudq += , (2.25)

yields 

∫∫∫ +−=+=−

2

1

2

1

2

1

1221

v

v

v

v

u

u
pdvuupdvduq , (2.25a)

considering (2.19) 
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∫∫ ==
2

1

2

1

v

v

v

v
pdvdll , (2.19)

we get [114, p. 67, (в)] 

luuq +−=− 1221 . (2.25b)

Since, for any process of an ideal gas 

( )1212 TTcuu v −=− , 

and for isobaric process 

( )12

2

1

vvpdvpl
v

v
−== ∫ , RTpv = , ( 121212 TTRRTRTpvpv −= )−=− , (2.19a)

( )12 TTRl −= , (2.19b)

the equation of (2.25b) can be represented in the following view: 

( ) ( )121221 TTRTTcq v −+−=−  

or [114, p. 68, (г)] 

( )( )1221 TTRcq v −+=− . (a)

Also, being guided by [114, p. 41, (5.5)] 

( )1221 TTcq −=− , 

derived from the definition [114, p. 39, (5.1)] 

( )12

21

TTm
Qc
−

= − ; 

for isobaric process [114, p. 65, (7.9)] 

( )1221 TTcq p −=− . (b)

Comparing equations of (a) and (b) we will get 

( ) ( )( )1212 TTRcTTc vp −+=−  

or after cancelling for the difference of 

12 TT −  

Rcc vp += . 

Having rearranged (transformed, shifted)  into the left part of the equation, 

we have [114, p. 68, (7.11)], which is equivalent to the equation of (2.42) 

vc
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Rcc vp =− . (2.42)

One of the more complicated methods (ways) of derivation of the equation 

of (2.42) is as follows. The apparatus of thermodynamics differential equations 

allows finding a series of (few) important relations for heat capacities including the 

(2.42) [110, pp. 101-103]. 

Differentiating the relation of (2.20) 
pvui +=  (2.20)

with respect to temperature at 

const=p , 

we get [110, p. 102, (4-49)] 

ppp T
vp

T
u

T
i

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ . (4-49)

In order to transform (rearrange) from the partial derivative of 

pT
u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂  

into the derivative of 

vT
u
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ , 

let us apply the equation of [110, p. 102, (4-13)]: 

ξξ
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

x
y

y
z

x
z

x
z

xy
, (4-13)

where  – a function of the two variables [110, p. 95] z

( )yxfz z ,= , 

for which [110, p. 95, (4-3)] 

dy
y
zdx

x
zdz

xy
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= ; (4-3)

and  – a certain parameter of state (state variable) which is constant. ξ

Then, in the given case: 

uz = ,  Tx = ,  vy = ,  p=ξ . 

Having substituted them into the relation of (4-13) we get [110, p. 102, (4-50)]: 
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pTvp T
v

v
u

T
u

T
u

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ . (4-50)

Using the relations of [110, p. 99, (4-25)]: 

p
T
pT

v
u

vT
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ , (4-25)

and [110, p. 102], [113, p. 34, (2.41)]: 

v
v T

uc ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= , 

we get [110, p. 102, (4-51)]: 

ppv
v

pvvp T
vp

T
v

T
pTc

T
vp

T
pT

T
u

T
u

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎥
⎦

⎤
⎢
⎣

⎡
−⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂ . (4-51)

Substituting the (4-51) into the relation of (4-49), and applying the relation of 

[110, p. 102]: 

p
p T

ic ⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

= ; 

which is got form the equation of the first law of thermodynamics in the view of 

[113, p. 27, (2.22), 34] 

vdpdidq −=  (2.22)

in a process at a constant pressure 

0=dp  

where we will get [113, p. 34, (2.43)] 

didq = , (2.43)

then substituting (2.43) into (2.39), we get 

p

p
p dT

di
dT
dq

c ⎟
⎠
⎞

⎜
⎝
⎛== ; (2.39a)

we find: 

pv
v

pppv
vp T

v
T
pTc

T
vp

T
vp

T
v

T
pTcc ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

+= . 

And finally, we have [110, p. 102, (4-52)] 
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pv
vp T

v
T
pTcc ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=− . (4-52)

This important equation, that binds the values of the heat capacities of  and 

 between themselves, with the help of the equation of [110, p. 97, (4-12a)] 

pc

vc

1−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

Tpv p
v

v
T

T
p  (4-12a)

(which also could be obtained form the equation of [113, p. 22, (2.14)]) 

1−=
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

vT

p

T
p

p
V

T
V

. (2.14)

m
T
p

p
V

m
T
V

vTp
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

,  
pvT v

T
T
p

p
v

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

=−1 ; 

can also be represented in the view of [110, p. 102, (4-53)] 
2

vTvTvpv
vp T

p
p
vT

T
p

p
v

T
pT

T
v

T
pTcc ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=−  (4-53)

or [110, p. 102, (4-54)] 
2

pTppTpv
vp T

v
v
pT

T
v

T
v

v
pT

T
v

T
pTcc ⎟

⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

=− . (4-54)

For an ideal gas [110, p. 102] 

T
p

T
p

v
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂          and         

T
v

T
v

p
=⎟

⎠
⎞

⎜
⎝
⎛
∂
∂ ; 

thus, we get the equivalent to the (2.42) expressions [110, p. 102] 
222

⎟
⎠
⎞

⎜
⎝
⎛
⎟
⎠
⎞

⎜
⎝
⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=⎟

⎠
⎞

⎜
⎝
⎛
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
∂
∂

−=−
T
p

T
v

p
TT

T
p

T
v

p
TT

T
p

p
vTcc

pvvT
vp , (4-53a)

R
T
pvcc vp ==− . 
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⎟
⎠
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⎜
⎝
⎛=⎟
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⎜
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⎥
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⎡
⎟
⎠
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⎜
⎝
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∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−−=⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

⎟
⎠
⎞

⎜
⎝
⎛
∂
∂

−=−
T
v

v
T

T
pT

T
v

v
T

T
pT

T
v

v
pTcc

pvpT
vp , (4-54a)

R
T
pvcc vp ==− . 

We would also suggest one more method of the equation by Mayer 

derivation, because of the two reasons: 

1. The first way might seem doubtful since the quantity of heat transferred in 

the process of 1-2 is 

2,1122,1 luuq +−=  (2.25b) 

but here 

12 uu −  

might be interpreted as 

122,1 uuq −=  

for isochoric process. But then, all of sudden, we consider this 

2,1122,1 luuq +−=  (2.25b) 

to be the isobaric one. Which is wrong (see fig. aaaaa). 

 

*                         *                         *                         *                         * 

 

Fig. aaaaa 

 

2. On the other hand, the previous method of the equation by Mayer 

derivation with the use of calculus might seem too complicated for the first 

familiarization with the fundamentals of thermodynamics. 

Therefore, let us consider the isobaric process of 1-2 (see fig. aaaaa) 

2,1122,1 luuq +−=  (2.25b). 

And here, indeed, 

( )122,1 TTcq p −=  (b) 

by the definition of the specific heat capacity. On the right side, the work is 
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( )122,1

2

1

vvpdvpl
v

v
−== ∫ ( )12 TTR −=  (2.19a), (2.19b). 

But the process of 1-2 is not isochoric, and therefore, there is a difficulty in the 

logical prescription of 

( )1212 TTcuu v −=− . 

Now, let us consider the isochoric process of 1*-2 (see fig. aaaaa) 

2*,1*122*,1 luuq +−= . 

Here, indeed, 

( ) 0222*,1

2

2

=−== ∫ vvpdvpl
v

v
, 

( )*12*122*,1 TTcuuq v −=−= . 

Though the states of 1 and 1* are different, their temperatures are the same, as 

they lie (are positioned) on the same isotherm of . So 1T

*11 TT = . 

And the increment of the internal energy then is also the same for the processes of 1-

2 and 1*-2 

*1212 uuuu −=− . 

It does not depend upon the path of a process at all. Therefore 

( ) 12122*,1 uuTTcq v −=−= . 

Then 

( ) ( ) ( )1212122,1 TTRTTcTTcq vp −+−=−= . 

And finally 

Rcc vp += . 

Thus 

Rcc vp =− . (2.42) 

In thermodynamics the ratio of the heat capacities has a great importance 

(significance) [113, p. 34, (2.44)] 

 69



v

p

c
c

k = , (2.44)

where k  – the index of adiabatic curve power; 67.1≈k  – for monatomic (monatomic 

[79, p. 390]),  – for diatomic (diatomic [79, p. 381]),  – for three-

atomic gases. 

4.1≈k 29.1≈k

The value of  depends upon the temperature. From (2.44) with taking into 

consideration the equation by Mayer (2.42), we will get [113, p. 34, (2.45)] 

k

vv

v

v

p

c
R

c
Rc

c
c

k +=
+

== 1 , (2.45)

or for one mole 

vc
k

μ
+=

314.81 . 

Since  increases as the temperature of a gas raises, then the value of  

decreases, tending to one, but being always more than that. 

vc k

Knowing the value of k , form (2.45) it is possible to determine the value of the 

specific heat capacity at a constant volume 

vc
Rk +=1 ,  1−= k

c
R

v
,  

1−
=

k
Rcv  [kJ/(kg·K)]. 

Since 

vp kcc = , 

then 

R
k

kcp 1−
= . 

As far as heat capacity of an ideal gas depends upon the temperature, and for a 

real gas upon the pressure as well, then in engineering thermodynamics there divided 

(distinguished, differentiated) the real (true, actual, factual) and mean heat capacity. 

The heat capacity, defined as the ratio of the elementary heat quantity, 

supplied to (absorbed by) (supplied, absorbed [79, p. 360]) a thermodynamic 

system, to the infinitesimal temperature difference, is called the real heat 

capacity 
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dT
dQC = . 

Factual heat capacities of real gases can be expressed in the view of the sum of 

the two components [113, p. 35, (2.46)] 

CCC Δ+= 0 , (2.46)

where  – the heat capacity of the given gas in the state of rarefaction (at 0C 0→p  or 

) which depends only upon the temperature; ∞→v CΔ  – determines the dependence 

of the heat capacity upon the pressure or specific volume. 

The temperature dependence of the heat capacity can approximately be 

represented in the view of a polynomial expression of the third power with respect to 

temperature 
3

3
2

2100 tatataaC +++= , 

where , , ,  – coefficients of the approximation. 0a 1a 2a 3a

In practical calculations at the determination of the heat quantity there usually 

applied the so called mean heat capacities. 

The ratio of the heat amount of , transferred in the process, to the finite 

temperature difference of  is called the mean specific heat capacity 

21−q

12 tt − c  of the 

given process in the temperature interval from  up to  [113, p. 35, (2.47)] 1t 2t

12

21

tt
qc
−

= − . (2.47)

The amount of the heat transferred in the process is being found by the formula 

[113, p. 35, (2.48)] 

∫=−

2

1

21

t

t
cdTq , (2.48)

where  – the actual specific heat capacity. c

The formula of (2.47) with taking into account (2.48) acquires the view of 

12

2

1

tt

cdT
c

t

t

−
=
∫

. 
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When heat installations are calculated, one has to deal with some gas mixtures, 

though in tables there are heat capacities for special ideal gases only. Therefore, one 

should be able to determine heat capacities of gas mixtures. If a mixture of gases is 

given by the mass portions, then the specific heat capacity of the mixture is being 

determined by the formulas (formulae) 

∑
=

=
n

i
viv imix

cgc
1

; 

∑
=

=
n

i
pip imix

cgc
1

, 
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)where ,  – mass portions of the each gas, composing the gas 

mixture. 

ig ( ni ,...,2,1=

If a mixture of gases is given by the volumetric portions of , ( ), 
then the specific volumetric heat capacity of the mixture will be determined by the 

formulas (formulae) 

ir ni ,...,2,1=

∑
=

′=′
n

i
viv imix

crc
1

; 

∑
=

′=′
n

i
pip imix

crc
1

, 

where ,  – volumetric heat capacities of the each gas [113, pp. 32-36]. 
ivc′

ipc′

 

 

 


