
 

 

МІНІСТЕРСТВО ОСВІТИ ТА НАУКИ УКРАЇНИ 

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ 

Кафедра конструкції літальних апаратів 

 

 

ДОПУСТИТИ ДО ЗАХИСТУ 

Завідувач кафедри 

д-р техн. наук, проф.  

_____________ С. Р. Ігнатович 

«_____» ___________ 2020 р. 

 

 

ДИПЛОМНА РОБОТА  
(ПОЯСНЮВАЛЬНА ЗАПИСКА) 

ЗДОБУВАЧА ОСВІТНЬОГО СТУПЕНЯ 

"БАКАЛАВР" 

 

Тема: «Аванпроект середньомагістрального 

літака пасажиромісткістю до 44 осіб» 

 

Виконав:                              __________  П.О. Корж 

 

Керівник: канд. техн. наук, доцент       ___________  В.І Закієв  

 

Нормоконтролер: канд. техн. наук, доцент ___________ С.В. Хижняк 

 

Київ 2020 



 

 

MINISRY OF EDUCATION AND SCIENCE OF UKRAINE 

NATIONAL AVIATION UNIVERSITY 

Department of Aircraft Design  

 

 

 

 

       

AGREED 

Head of the Department 

Professor, Dr. of Sc. 

_________S.R. Ignatovych 

«___» _______ 2020 y. 

 

 

DIPLOMA WORK 
 (EXPLANATORY NOTE) 

OF ACADEMIC DEGREE 

«BACHELOR» 

 

 

Theme: «Preliminary design of middle range aircraft 

with a capacity of up to 44 passengers» 

 

 

Performed by:                 __________  P.O. Korzh 

 

 

Supervisor: PhD, associate professor       __________  V.I. Zakiev  

 

 

 

Standard controller: PhD, associate professor __________  S.V. Khizhnyak  

 

 

 

Kyiv 2020 



 

 

NATIONAL AVIATION UNIVERSITY 

Aerospace Faculty 

Department of Aircraft Design  

Academic Degree «Bachelor» 

Speciality: 134 "Aviation and Rocket-Space Engineering" 

       

APPROVED 

Head of the Department 

Professor, Dr. of Sc. 

_________S.R. Ignatovych 

«___» _______ 2020 year 

TASK 

for bachelor diploma work  

KORZH PAVLO 

1. Theme: «Preliminary design of middle range aircraft with a capacity of up to 44 

passengers» 

confirmed by Rector’s order from 05.06.2020 year № 801/ст            

2. Period of work execution: from 25.05.2020 year to 21.06.2020 year.            

3. Work initial data: cruise speed Vcr=435 km/h, flight range L=1100 km, operating 

altitude Hoр=6.5 km, max payload is 4356 kg. 

4. Explanation note argument (list of topics to be developed): choice and substantiations 

of the airplane scheme, choice of initial data; engine selection, center of gravity 

calculation, layout of passenger cabin, explanation of Active Noise Control system.                                         

5. List of the graphical materials: general view of the airplane (А1×1); layout of the 

airplane (А1×1); principal scheme of active noise control system(А1×1).  

 Graphical materials are performed in AutoCad and are illustrated as drawings.                                      



 

 

 

6. Calendar Plan 

Task Execution period Signature 

Task receiving, processing of statistical data 25.05.2020-28.05.2020  

Aircraft take-off mass determination 29.05.2020-30.05.2020  

Aircraft layout 29.05.2020-31.05.2020  

Aircraft centering determination 31.05.2020-04.06.2020  

Graphical design of the parts 02.06.2020-10.06.2020  

Completion of the explanation note 10.06.2020-10.06.2020  

Preliminary defence  11.06.2020-15.06.2020  

 

 

 

 

7. Task issuance date: 25.05.2020 year. 

 

Supervisor of diploma work        __________ V.I. Zakiev 
                                                

 

Task for execution is given for     __________ P.O. Korzh 
                                                      

 

 

 

 

 

 

 



 

 

 

ABSTRACT  

 

Explanatory note to the diploma work «Preliminary design of middle range 

aircraft with a capacity of up to 44 passengers» contains: 

 

 sheets,  figures,  tables,  references and  drawings 

 

Object of the design is development of cargo aircraft with the possibility to 

accommodate up 44 passengers. 

The aim of the diploma work is the preliminary design of the aircraft and its 

design characteristic estimation. 

The method of design is analysis of the prototypes and selections of the most 

advanced technical decisions, analysis of centre of gravity position. 

The diploma work contains drawings of the middle-range aircraft with passenger 

capacity up to 44 passengers, calculations and drawings of the aircraft layout . 

The results of the diploma work can be implemented to the academic education 

and also it can be used for the design bureaus.   
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INTRODUCTION 

Currently, we can significantly observe a decrease in passenger traffic due to 

quarantine. But in the future, a significant increase in traffic is expected. According 

to this, airlines will increase the number of routes to small towns. In this regard, there 

will be a need for airplanes that fly over short distances, can land on runways with 

different quality of coverage. To ensure the profitable operation of the fleet with high 

reliability and regularity of flights in a highly competitive global market, new civilian 

aircraft are required that meet the requirements of the international air transport 

organization.    Aviation is one of the most profitable means of transport for people, 

shortening the distance between all the people of the world 

The success of the air transportation of passengers depends on the proper 

selection of the aircraft in accordance with the characteristics of the passenger flow 

(direction, climate, infrastructure). In many countries, air transport is considered to be 

the only means of access in areas where land transport is difficult to enter.      

The purpose of this diploma project is to create an aircraft intended for the 

carriage of 44 passengers and baggage on middle distance routes. 
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1. Preliminary design of a middle range aircraft with a capacity  

of up to 44 passengers 

1.1Analysis of prototypes, short description of designing aircraft and 

choice of the projected data. 

Under the layout is understood the process of spatial alignment of parts of the 

aircraft (wings, engines, plumbing, chassis), design and power schemes in one unit, 

the placement of passenger, household equipment fuselage, cargo and equipment. 

The purpose of each of them is to achieve high cost-effectiveness of the aircraft. 

The main tasks of the layout, which must be solved in the implementation of 

the CP: placement of aggregates, target load on the aircraft, provided the necessary 

operating range of centers; development and interconnection of the design and 

power schemes of parts of the aircraft (fuselage, wings, feathers, chassis, etc.). 

Prototypes of the aircraft, taking for the designing aircraft were in class 40-50 

passengers. Such aircraft like ATR-42, De Havilland Canada Dash 8-300 and Saab 

2000 will compete with projected aircraft in this market segment. Statistic data of 

prototypes are presented in table 1.1.  

The scheme is determined by the relative position of the aircraft units, their 

numbers and shape. Aerodynamic and operational characteristics of the aircraft 

depends on the aircraft layout and aerodynamic scheme of the aircraft. Fortunately 

chosen scheme allows to increase the safety and regularity of flights, and economic 

efficiency of the aircraft. 
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Тable 1.1 – Operational-technical data of prototypes 

PARAMETER PLANES 

 A

T

R

-

 

D

H

8

D

 

Saab 2000 

The purpose of airplane Passenger Passenger Passenger 

.

 

 

 3

4 

 

Maximum take-off weight, mtow, kg  16466 22999 

, mк.max, kg  3407 5900 

 48 44 50 

   Vw. ек.,  m   6900 

  mк.max, km 2040 2650 2500 

 

 Lзл.д., m 

 1150 1223 

N

 

2xPW127Е 2xPW123C/D 2xAE 2100A 

The form of the cross-section fuselage    

Extension of the fuselage 9,4   

Extending the nose and tail unit part 3,64 3.65  

Sweepback on 1/4 chord, 0  5.3  

1.2. Brief description of the aircraft 

The plane is a cantilever high-wing monoplane with bypass turboprop engines 

placed in wings and tricycle landing gear with a front single-strut landing gear and 

two main gears. 

The fuselage is all-metal, beam-stringer, semi-monocoque type. The power set 

consists of 51 bulkheads. The fuselage is technologically divided into four parts: 

fore - compartment F1 (11 bulkheads), middle - compartment F2 (from 12 to 33 

bulkheads), hatch (from 34 to 40 bulkheads) and tail - compartment F3 (from 41 

bulkheads). Most elements of the fuselage structure are made of sheet and profiled 

duralumin. 

The nasal compartment is airtight. It has a crew cabin, between 1 and 7 

frames. Behind it is a partition with a door to the passenger cabin. The spout of the 

fuselage, up to 1 frame, is not airtight, it has a radar antenna. Under the cockpit is 

the compartment of the front chassis rack. Between the 5th and 7th frames on the 

starboard side is a radio operator's window, and on the left - the navigator's blister. 

On the starboard side there is an entrance door measuring 600 × 1400 mm. There 

are two emergency hatches in the cockpit: the upper one, to leave the cockpit 

during forced landings without the landing gear or on the water, and the lower one, 

to leave the aircraft in the air. 



 

Ch. Sheet Doc. № Sign. Date 

Sh. 

 
NАU 20 07K 00 00 00  38 EN 

The wing of the aircraft is a highly located, free-carrying, rectangular in the 

area between ribs No. 7 and the trapezoidal shape in areas from ribs No. 7 to the 

tips. The wing has connectors on ribs No. 7 and No. 12 and is divided into a center 

section, two middle and two detachable parts. The detachable parts of the wing are 

installed with anhedral wing to obtain a good ratio of lateral and directional 

stability of the aircraft, as well as reduce the intensity of the roll of the aircraft 

towards the failed engine. The center wing carries two deviating single-slot flaps, 

the middle parts of the wing - one double-slot retractable flap, detachable parts of 

the wing - two sections of ailerons. Docking of the wing parts among themselves is 

carried out using the connector profiles (on the panels), fittings (on the shelves of 

the side members) and connecting squares (on the walls of the side members). 

Most elements of the wing structure are made of aluminum alloys. Docking of the 

wing with the fuselage and the individual parts of the wing with each other is 

carried out by bolts and nuts made of steel of various grades. 

The center section consists of a caisson, a bow and a back parts. The caisson 

consists of two spars, a set of ribs and trim panels, made in conjunction with 

stringers. The lower panels of the center section, the upper ones adjacent to the 

side members, are not removable, but the upper middle ones are removable. Flaps 

are hung on ribs. On the ribs, the attachment points of the engines and the main 

landing gear are located. In the area of ribs there are nests for supports of ground 

hydraulic lifts. Between ribs, ten fuel tanks are installed. On the upper panel of the 

casing there are two filling necks of the fuel tanks and four hatches for fuel gauge 

sensors, and on the bottom panel there are two drain valves. To the ribs are 

attached two middle parts of the wing. 

The middle part of the wing consists of a caisson, front and back parts. The 

caisson consists of two spars, a set of ribs and trim panels. The upper middle panel 

is removable; all other panels are non-removable. On the top panel there are 

hatches for installing the sensors of the fuel gauge, filler neck, float valve for 

pumping fuel, an opening for the drainage pipeline and a hatch for the fuel gauge 

line. On the bottom panel there are two drain cranes, three fuel pumps, as well as 
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PRF-4 landing and taxiing lights. The ribs No. 8 and No. 11 are reinforced, since 

they perceive the load from the attachment points of the monorail of the flaps. The 

wall of rib No. 8a is sealed, and in its upper part there are openings for fuel flow 

and drainage.  

Single-slot deflecting flaps are installed in the tail section of the center section 

between ribs No. 2 and No. 5. Each flap consists of a side member, a set of ribs 

and a lining. The flap is secured to the center wing by two brackets mounted on 

ribs No. 3 and No. 4. A screw elevator is installed between the brackets. A flap 7 is 

mounted pivotally to the lower tail section of the center section, kinematically 

connected to the flap using rocking wheels with rollers, rods and brackets. When 

the flap deviates by 15 °, the flap completely deviates upward and opens the gap 

between the center wing and the flap. When flaps are retracted, the flap closes in 

the reverse order. 

Double-slot retractable flaps are installed in the rear part of the ribs No. 7 and 

No. 12. By design, double-slot flaps the are similar to the center wing flaps, but a 

profiled deflector is attached to using webs. Two carriages are attached to the flap 

spar and two brackets for screw lifts. Two curved monorails are attached to the rear 

spar 1 in the area of ribs No. 8 and No. 11, and two screw lifts are mounted 

between ribs No. 7 and No. 8, No. 10 and No. 11. Release and retracting of the 

flaps is carried out by screw lifts, while the carriages move along the lower shelves 

of the monorails. 

Empennage free-bearing, single-keel. It consists of two stabilizer brackets 

with a rudder, a keel with a rudder and a dorsal fin. Stabilizer and fin of two-spar 

design. Trimmers are installed on both rudders, and a spring trimmer -servo 

compressor is installed on the rudder directly. The rudders have axial aerodynamic 

compensation and are balanced. The total area of the stabilizer is 19.83 m², the fin 

is 13.28 m², and the dorsal fin is 2.57 m². The area of the rudder height is 5.16 m², 

the angles of deviation are 25 ° (up) and 20 ° (down). The area of the steering 

wheel is 5 m², the angles of deviation are ± 25 °. 

 

https://www.translate.ru/dictionary/en-ru/dorsal%20fin
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Crew cabin 

Structurally, the dashboard consists of three flat panels that are not 

interconnected: left, middle and right. Each panel is attached to structural elements 

through standard shock absorbers. A visor is installed above the dashboard, which 

serves to protect the instrument scales mounted on the board from sun glare. 

For ease of viewing and use, the switches of devices, assemblies, systems and 

other equipment on the left and right panels are mounted on separate shields that are 

bent towards the pilots. Under the middle panel of the dashboard there is a panel 

with switches, which is mounted obliquely to the panel. 

On the visor are installed: automatic attack angles and overload indicator - 

above the middle panel of the dashboard, left and signal panel blocks - above the left 

and right panels of the dashboard. An indicator of the radar station, indicators of the 

onboard vibration-converting equipment, indicators of the position of the output 

shaft of the temperature limit system, and a magnetic compass are installed above 

the visor on the cockpit light. 

Instruments on the dashboard panels are placed as follows: on the left panel and 

the upper left part of the middle panel, the main flight and navigation instruments of 

the left pilot are located. In the upper right part of the middle panel are navigation 

instruments of the right pilot. The rest of the middle panel is occupied by instruments 

controlling the operation of engines, fuel system, landing gear retracting and 

releasing systems, flaps, air intake from engines for pressurization and sealing of 

cabs, as well as signal lamps and displays of various systems. 

The passenger furnishing of the plane provides necessary conveniences on 

board. It includes adjustable chairs of pilots, flight attendance seats and passengers’ 

seats; light filters and light-protective blinds and toilet.  

Between a cabin of crew and a passenger cabin the toilet room and galley are 

placed (toilet on the left board, galley on the right board). The area of the toilet room 

is 1 square meter. 

In a toilet are located a tank with water and technical liquid. In a toilet the toilet 

bowl of water vacuum type is established. Onboard there are three first-aid kits (one 
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in a crew cabin, one is included in structure of crash equipment and one - in tail part). 

Emergency equipment includes ropes, oxygen masks, smoke-proof masks, 

oxygen devices, the manual fire extinguisher, first-aid kits, an axe, emergency radio 

stations and a radio beacon, light marking of ways of evacuation, emergency 

lighting, a board "EXIT" near each emergency exit, life jackets on places of work of 

crew and the observer, life rafts on crew members and passengers. 

Control system. 

Control of the aircraft in flight is provided by control systems of rudders, 

ailerons, their trimmers and flaps. Control of rudders and ailerons direct (booster-

free), double, that is can be carried out from places of both pilots. To ensure 

synchronicity of control, the rudders and pedals of the left and right pilots are 

kinematically connected to each other. Steering wheels and pedals are mounted on 

the general control panel located behind a dashboard. 

Trimmers are installed on each half of the height rudder and on the left aileron, 

and a trimmer-servo compensator is installed on the rudder. In addition, servo 

compensators are installed on each aileron. 

The steering wheels and ailerons in the parking lot are locked. To prevent 

takeoff with locked rudders and ailerons, there is a lock that restricts the movement 

of the rudder. 

The rudders for steering the trimmers of the rudder, the control switches for the 

trimmers of the rudder and aileron, as well as the handle for locking the rudders and 

ailerons are located on the central console. Emergency control of rudder and aileron 

trimmers is provided. The steering, ailerons and trimmers of the rudder include an 

autopilot with four steering machines. 

The steering system is connected to the braking system and the turning of the 

wheels. 

The control system of flaps is electrohydromechanical. Release and retracting 

of flaps is carried out by the hydraulic drive by means of a transmission shaft and 

screw elevators. Control of release and retracting of flaps is made from the central 

panel. 
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 Landing gear 

The aircraft has a retractable landing gear, made according to the three-support 

scheme, consisting of: 

 two main and one front support; 

 chassis retracting and releasing systems; 

 wheel braking systems of the main landing gear; 

 steering systems for turning the wheels of the front landing gear. 

The struts of the main landing gear are installed in the engine nacelles and in 

flight are retracted forward into special compartments under the engines. Two 

wheels with low-pressure pneumatics and disc brakes are installed on each 

amortization rack on a common fixed axis. 

The front shock strut is installed in the nose of the fuselage and in flight retracts 

forward into the compartment under the cockpit. Two non-brake wheels with low-

pressure pneumatics are mounted on a common suspension rotating axis. In the 

released and retracted position, the struts are fixed with mechanical locks that open 

with the help of hydraulic cylinders. 

Chassis compartments are closed by flaps both with fully retracted and 

extended positions of the srtuts. With the released position of the struts, only the 

shutters located directly at the suspension struts do not close. The chassis flaps open 

and close with the help of mechanisms kinematically connected with the 

amortization pillars. 

The flaps of the main landing gear when the amortization pillars are retracted 

are fixed with mechanical locks kinematically connected with the locks of the 

retracted position. 

The main control for retraction and releasing the chassis is electro-hydraulic, 

emergency - mechanical, due to the manual opening of the locks of the retracted 

position. The braking control of the wheels of the main landing gear and the rotation 

of the bow support is hydromechanical. 

The wheel braking system of the main chassis supports provides basic, 

emergency and parking braking. In the main braking mode, anti-skid automation 



 

Ch. Sheet Doc. № Sign. Date 

Sh. 

 
NАU 20 07K 00 00 00  38 EN 

works. 

The system of turning the wheels of the front landing gear provides taxiing and 

take-off and landing operation modes, as well as a self-orientation mode when 

towing and in the event of a failure of the take-off and landing control mode. 

To prevent accidental folding of the chassis on the ground, it is possible to block 

the operation of the retraction system with compressed shock absorbers (limit switch 

on the double link of the right support). In addition, the limit switch mounted on the 

front shock absorber locks the front wheels turning system after taking them off the 

ground and turns on the MS-61 and MSRP-12, and the limit switch mounted on the 

two-link left shock rack blocks the heating circuit of the RIO-3 signaling device 

when crimped shock absorber. 

Engines 

The aircraft is equipped with two AI-24WT turboprop engines with a takeoff 

power of 2820 hp. The engines are located in nacelles on the centerplane. AI-24W 

is equipped with a ten-stage compressor and a three-stage turbine. The combustion 

chamber is ring with 8 nozzles. The engine also includes: starter-generator, 

alternator, aerodynamic sensors, icing detector, torque transmission system, oil filter 

and propeller speed regulator. T-1 and TS-1 fuel is used to power the engines. The 

engine is mounted on the center of the wing with a quick-release frame with shock 

absorbers and a power truss with a front power frame. 

Auxiliary power unit 

In the tail of the right nacelle is an additional power plant (APU): turbojet 

engine RU19A-300 with a thrust of 800 kgf. 

It provides: 

 additional thrust during takeoff and climb; 

 required thrust in case of engine failure AI-24W; 

 on-board start of AI-24WT engines; 

 power supply of the aircraft onboard network in the parking lot, when 

the AI-24WT engines are not working and when the STG-18TMO-1000 

generators fail. 
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The RU19A-300 engine is equipped with a seven-stage compressor, an annular 

combustion chamber, a single-stage turbine and an unregulated jet nozzle. 

1.2.1 Description of aircraft systems 

Fuel system 

The fuel system includes 10 soft tanks and two tank compartments. The tanks 

of each half-wing are divided into 3 groups. To power the engines, fuel is first taken 

from the first group of tanks, then from the second, and then from the third. Tank 3a 

is also used as an expansion tank for even fuel distribution between the left and right 

sides of the aircraft. Filling of tanks can be carried out from above through refueling 

mouths or centrally through the refueling union in a compartment of the chassis of 

the left nacelle. In flight, the neutral gas system fills the space above the fuel with 

carbon dioxide, and this system is also used as an additional means of extinguishing 

fires. 

Oil system 

Each engine has an autonomous oil system (OS), which provides oil supply for 

engine lubrication and cooling, propeller control and torque change system 

operation. OS is divided into internal and external. The internal OS consists of: 

injection and pumping section of the OS, air separator, oil filters, engine channels, 

oil collector and pipelines located directly on the engine. External OS consists of: 

oil tank, drainage tank, oil cooler with thermostat, pump, piping and control devices. 

The volume of the OS is 64 liters, and before the departure of the aircraft in the oil 

tank pour another 35-37 liters of oil. The engine oil system uses a mixture of 

lubricants: 75% transformer oil MK-8 and 25% oil MS-20 or MK-22. 

 Fire protection system 

The aircraft has a stationary fire protection system and hand-held portable fire 

extinguishers. The stationary system is divided into an aircraft fire protection system 

and an engine fire protection system. 

The firefighting system of the aircraft is designed to eliminate fires in the 

compartments of the left and right parts of the wing and in the left and right nacelles. 

The system consists of four fire extinguishers OS-8MF or UBC8-1, two blocks of 
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fire valves, fire alarm system SSP-2A, spray collectors and pipelines. The system is 

controlled manually from the fire protection panel and automatically from the alarm 

sensors. Also at emergency landings without the released chassis from the limit 

switches located on the bottom of a fuselage, all fire extinguishers work, and all 

valves open. 

The fire-fighting system of engines is intended for elimination of a fire in 

engines. The system consists of four fire extinguishers OS-2 or UBSH2-1, filters, 

fire alarm system SSP-7, tees and pipelines. 

Hydraulic system 

Hydraulic system (HS) is designed for retracting / releasing the chassis, turning 

the wheels of the front support of the chassis, braking the wheels of the main 

supports of the chassis, release / retracting the flaps, for wipers, emergency 

activation of spools controls of a ramp of a cargo hatch. AMG-10 mineral oil is used 

as a working fluid. The total volume of HS 65 liters. HS consists of a main, 

emergency and manual pump system. 

The main HS is used under normal conditions and serves all nodes that operate 

from the HS. The source of pressure for the main HS are two pumps located on the 

engines. Also in the system there are hydraulic accumulators which provide work of 

knots at aircraft parking. 

The emergency HS can be used to release the flaps, brake the wheels, open the 

emergency hatch cover and control the cargo hatch ramp, in case of failure of the 

main HS. The source of pressure of the emergency HS is an electric pump. If 

necessary, this pump can be connected to the main HS.The hand pump system can 

be used to control the ramp. 

All HS has a common tank with a capacity of 37 liters. However, the fluid 

intake fitting for the main system is above the bottom, and the emergency and 

manual pump system is at the bottom. This provides a supply of fluid for these 

systems in the event of fluid loss from the main HS.  

 Electrical system 

Prvides power supply with a direct current voltage of 27 V, alternating current 
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(with a frequency of 400 Hz) single-phase current with a voltage of 115 V and three-

phase current with a voltage of 36 V. Two STG-18TM starter generators are used as 

the main source of direct current generators. The source of alternating current, 

voltage 36V, is the converter PT-1000TSS. For emergency power supply of DC 

consumers there are three rechargeable batteries 12AM-2V, AC voltage 115V - 

converter PO-750A, and AC voltage 36V - transformer TS-310S04A, the primary 

winding of which is connected to the right AC generator GO16PN8. The AGD-1 air 

horizon and the GIK-1 compass have a separate backup power supply from the PT-

200 voltage converter. 

Anti-icing system 

It consists of air-thermal and electro-thermal systems. The air-thermal anti-

icing system is equipped with wings, aircraft tail cone and engine air intakes. Hot 

air enters the anti-icing system from the 10th stage of the compressor of each engine 

through a pipe laid on the starboard side of the nacelle. The air-heat system uses a 

micro injector method of air distribution with recirculation of exhaust air. This 

method provides efficient, uniform heating of the surface along its entire length, as 

well as economical consumption of hot air. 

Electro-thermal anti-icing system is equipped with propellers, cockpit 

windshield and air pressure receivers. 

Air conditioning system 

The air conditioning system is designed to maintain in a sealed cabin 

temperature and air pressure within acceptable limits at high altitudes. Air for 

heating / cooling, ventilation and inflating the cab is extracted from the compressors 

of the main engines. To cool to the desired temperature, the air passes through the 

refrigeration unit, and then enters the cabin. The air is extracted at a speed of 1440 

kg / h, which provides 20-26 times the air exchange in the cabin. The cabin pressure 

is regulated by the exhaust valve. 

 

Conclusion to the analytical part 
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After analyzing the data of the prototypes, their technical characteristics, we 

came to the conclusion that for the design of the aircraft, the most optimal will be 

the aerodynamic scheme of a high-wing monoplane with a standart tail unit.  

The high-wing monoplane scheme has many advantages such as: improving 

the view in the lower semi sphere, which makes it easier to observe land when 

approaching. The high position of the engines reduces the probability of their 

damage during take-off and landing on unequipped runways. The round cross-

sectional shape is the most beneficial, because provides the minimum perimeter for 

a constant cross-sectional area, respectively, the minimum surface area at a constant 

volume, and therefore, such a fuselage will have a low friction. It provides the best 

aerodynamic and strength characteristics.  

There was chosen tricycle landing gear, because it is simpler piloting technique 

on take-off, landing and run. It has close horizontal position of the floor of passenger 

and cargo cabs. As well, stability of motion on the run and run, which is ensured by 

the application of friction forces of the wheels of the main supports behind the center 

of mass of the aircraft, and also there is more intense braking on the run and the 

possibility of speed landing, which ensures the elimination of the danger of aircraft 

nosing. 

 



 

Ch. Sheet. Doc. № Sign. Date 

Sh. 

 NАU 20 07K 00 00 00 38 EN 
 

 1.3 Airplane design and calculations 

Layout of the airplane consists from compiling the relative location of its 

parts and structures, and all kinds of the loads (crew, systems, furnishing, and so 

on). 

The choice of the composition and parameters of the aircraft is aimed at better 

compliance with operational requirements. 

1.3.1. Wing geometry calculation 

Geometrical characteristics of the wing are determined from the take of weight 

m0 and specific wing load P0. 

Full wing area with extensions is: 

𝑆𝑤𝑓𝑢𝑙𝑙 =
𝑚0∙𝑔

𝑃0
=

18529∙9,8

2383
= 76,19 [ 𝑚2]           (1.1)   

Relative wing extensions area is 0.1 

Wing area is: 

𝑆𝑤 = 215.43 ∙ 0.9 = 193.88    [𝑚2]                                   (1.2) 

Wing span is: 

𝑙 = √𝑆𝑤 ∙ 𝜆𝑤 = √11.37 ∙ 76.19 = 29.432  [𝑚]                          (1.3) 

Root chord is: 

𝑏0 =
2𝑆𝑤∙𝜂

(1+𝜂)𝑙
=

2∙76.19∙2.92

3.92∙29.432
= 3.85   [𝑚]                                   (1.4) 

Tip chord is: 

𝑏𝑡 =
𝑏0

𝜂
=

3.85

2.92
= 1.318  [𝑚]                                             (1.5) 

At a choice of power scheme of the wing we determine number of longerons 

and its location, and the places of wing portioning. 

On the modern aircraft we use xenon double – or triple – longeron wing; 

longeron wing is common to the light sport, sanitary and personal aircrafts. Our 

aircraft has three longerons. 

I use the geometrical method of mean aerodynamic chord determination    

(figure 1.1). Mean aerodynamic chord is equal : bmac=2.7907 
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Figure 1.1 – Determination of mean aerodynamic chord 

After finding of the geometrical characteristics of the wing we come to the 

estimation of the ailerons geometrics and high-lift devices. 

Ailerons geometrical parameters are determined in next order: 

Ailerons span: 

𝑙𝑎𝑖 = 0.375 ∙
𝑙𝑤

2
= 0.375 ∙

29.432

2
= 5.518  [𝑚]                              (1.6) 

Aileron area: 

𝑆𝑎𝑖𝑙 = 0.065 ∙
𝑆𝑤

2
= 0.065 ∙

76.19

2
= 2.476     [𝑚2]                        (1.7) 

Aerodynamic compensation of the aileron. 

Axial Saxinail ≤ (0.25…0.28) 

Sail =0,26 ∙ 5,518 = 1,43      [ 𝑚2]                                (1.8) 

Inner axial compensation Sinaxinail = (0.3..0.31) Sail; 
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Range of aileron deflection 

Upward  δ’ail ≥ 20˚; 

Downward  δ”ail ≥ 10˚. 

The purpose of finding of wing high-lift devices geometrical parameters is the 

ensuring of take of and landing coefficients of wing lift , received in the previous 

calculations with the selected rate of high-lift devices and the type of the airfoil 

shape. 

Before performing following calculations it is necessary to select the type of 

aerodynamic profile due to the airfoil catalog, indicate the value of lift coefficient 

 and determine necessary increase for this coefficient for the high-lift 

devices outlet by the formula: . 

Where  is necessary coefficient of the lift force in the landing 

configuration of the wing by the airplane landing insuring (it is determined during 

the choice is the airplane parameters). 

In the modern design the rate of the relative chords of wing high-lift devices is: 

bsf = 0.25..0.3 – for the split edge flaps; 

bf = 0.28..0.3 – one slotted and two slotted flaps; 

bf = 0.3..0.4 – for three slotted flaps and Faylers flaps; 

bs = 0.1..0.15 – slats. 

Efficiency of high-lift devices (C*
ymaxl) increases proportionally to the wing 

span increase, serviced by high-lift devices, so we need to obtain the biggest span of 

high lift devices (lhld = lw – Df – 2lail – ln) due to use of flight spoiler and maximum 

reduction of the engine and chasis nacelles. 

During the choice of structurally-power schemes, hinge-fitting schemes and 

kinematics of the high-lift devices we need to proceed from the statistics and 

experience of domestic and foreign airplane construction. It should be noted that in 

the most of existing structure elements of high-lift devices are made by longeron 

structurally-power schemes. 
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Fuselage layout 

During the choice of the shape and the size of fuselage cross section we must 

proceed from the aerodynamic requirements (streamlining and cross section). 

Applicable to the subsonic passenger and cargo aircrafts (V < 800 km/h) wave 

impedance does not affect it. Therefore we need to select from the conditions of the 

list values friction resistance Cxf and profile resistance Cxp. 

During the transonic and subsonic flights, shape of fuselage nose part affects 

the value of wave impedance Cxw. Using of circular shape of fuselage nose part 

significantly reduces its wave impedance. 

For transonic airplanes fuselage nose part has to be: 

𝑙𝑛𝑓𝑝 = 2.1 ∙ 𝐷𝑓 = 2.1 ∗ 8 = 16.8   [𝑚]  

In addition to taking into account the aerodynamic requirements when choosing 

a cross-sectional shape, we need to take into account the strength and layout 

requirements. 

To ensure of the minimum weight, the most convenient fuselage cross section 

shape is circular cross section. In this case we have the minimal fuselage skin width.  

To geometric parameters we relate: fuselage diameter Df; fuselage length ; 

fuselage aspect ratio ; fuselage nose part aspect ratio ; tail unit aspect ratio 

. Fuselage length is determined taking into account the aircraft scheme, layout 

and airplane center-of-gravity position peculiarities, and the conditions of landing 

angle of attack αland ensuring.  

Fuselage length is equal: 

𝑙𝑓 = 𝜆𝑓 ∙ 𝐷𝑓 = 2.65 ∗ 8 = 21.2   [𝑚]                               (1.9) 

Fuselage nose part aspect ratio is equal: 

𝜆𝑓𝑛𝑝 =
𝑙𝑓𝑛𝑝

𝐷𝑓
=

16.8

8
= 2.1                                     (1.10) 

Length of the fuselage rear part is equal: 

𝑙𝑓𝑟𝑝 = 𝜆𝑓𝑟𝑝 ∙ 𝐷𝑓 = 2.1 ∗ 8 = 16.8  [𝑚]                         (1.11) 

During the determination of fuselage length we strive for approaching 

fl

f np

TU
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minimum mid-section Sms from one hand and layout demands from the other hand. 

For passenger and cargo aircraft fuselage middle-section first of all taking from 

the size of passenger compartment or cargo cabin. One of the main parameter, 

determining the middle part of passenger airplane is the height of the passenger 

compartment. 

For short range airplanes we may take the height as: h1=1.75m; passage width 

bp=0.45...0.5m; the distance from the window to the flour h2=1m; luggage space 

h3=0.6...0.9m. 

For long range airplanes correspondingly: the height as: h1=1.9m; passage 

width bp=0.6m; the distance from the window to the flour h2=1m; luggage 

compartment h3=0.9...1.3m. 

From the design point of view it is convenient to have round cross section, 

because in this case it’ll be the strongest and the lightest. But for passenger and cargo 

accommodation this shape is not always the most convenient one. In the most cases, 

one of the most suitable ways is to use the combination of two circles intersection, 

or oval shape of the fuselage. We need to remember that the oval shape is not suitable 

in the production, because the upper and lower panels will bend due to additional 

pressure and will demand additional bilge beams, and other construction 

reinforcements. 

The normal bulkhead pitch in the fuselage construction is in the range of 

360...500mm, depends on the fuselage type and class of passenger compartment. 

Form the design consideration with the diameter less than 2800mm we don’t 

use such shape and we follow to the intersecting circles cross section. In this case 

the flour of the passenger compartment is done in the plane of are closing. 

The windows are arranged in one light row. The shape of the window is round, 

with the diameter of 300...400mm, or rectangular with the rounded corners. The 

window step corresponds to bulkhead step and is 500...510mm. 

 For economic salon with the scheme of allocation of seats in the one row           

(2 + 2) determine the appropriate width of the cabin 

𝐵𝑐𝑎𝑏 = 𝑛2𝑐ℎ𝑏𝑙𝑜𝑐𝑘 ∙ 𝑏2𝑐ℎ𝑏𝑙𝑜𝑐𝑘 + 𝑏𝑎𝑖𝑠𝑙𝑒 + 2𝛿 = 2.50   [𝑚]                      (1.12) 
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The length of passanger cabin is equal: 

𝐿𝑐𝑎𝑏 = 𝐿1 + (𝑛𝑟𝑎𝑤𝑠 − 1) ∙ 𝐿𝑠𝑎𝑒𝑡𝑝𝑒𝑎𝑐ℎ + 𝐿2 = 19.8  [𝑚]                     (1.13) 

Lavatories 

Number of toilet facilities is determined by the number of passengers and flight 

duration: with t> 4:00 one toilet for 40 passengers, at t = 2 ... 4 hours and 50 

passengers t <2 hours to 60 passengers. 

The number of lavatories I choose according to the original airplane and it is equal: 

nlav=1 

Area of  lavatory: 

Slav=0.5m2 

Width of lavatory:1m. Toilets design similar to the prototype. 

1.3.3 Layout and calculation of basic parameters of tail unit 

One of the most important tasks of the aerodynamic layout is the choice of tail 

unit location. For ensuring longitudinal stability during overload, its center of gravity 

should be located in front of the airplane focus and the distance between these points, 

associated with the average value of the aerodynamic belt of the wing, determines 

the index of longitudinal stability. 

 

Where mCy
x –is the moment coefficient; xT. xF- center of gravity and focus 

coordinates. If m
Cy

x=0, than the plane has the neutral longitudinal static stability, if 

mCy
x>0, than the plane is statically instable. In the normal airplane scheme (tail unit 

is behind the wing), focus of the combination wing – fuselage during the installation 

of the tail unit of moved back. 

Static range of static moment coefficient: horizontal Ahtu, vertical Avtu given  

in the table with typical arm Htu and Vtu correlations. Using table we may find the 

first approach of geometrical parameters determination. 

Determination of the tail unit geometrical parameters 

Area of vertical tail unit is equal:  

𝑆𝑉𝑇𝑈 =
𝑙𝑤𝑆𝑊

𝐿𝑉𝑇𝑈
∙ 𝐴𝑉𝑇𝑈 =

29.432∙76.19

21
∙ 0.599 = 14.96𝑚2                           (1.14) 

0 FT

Cy

x xxm
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Values Lhtu and Lvtu depend on some factors. First of all their value are 

influenced by: the length of the nose part and tail part of the fuselage, sweptback and 

wing location, and also from the conditions of stability and control of the airplane. 

Determination of the elevator area and direction: 

Altitude elevator area: 

𝑆𝑒𝑙 = 0.2765 ∙ 𝑆𝐻𝑇𝑈 = 2.25    [𝑚2]                             (1.16) 

Rudder area: 

𝑆𝑟𝑢𝑑 = 0.02337 ∙ 𝑆𝑉𝑇𝑈 = 5.9      [𝑚2]                             (1.17) 

Choose the area of aerodynamic balance. 

0.3≤M≤0.6, Seb=(0.22..0.25)Sea, Srb=(0.2..0.22)Srd 

Elevator balance area is equal  

𝑆𝑒𝑙 = 0.2765 ∙ 𝑆𝐻𝑇𝑈 = 4.13644     [𝑚2]                              (1.18) 

          Rudder balance area is equal: 

𝑆𝑟𝑏 = 0.2337 ∙ 𝑆𝑉𝑇𝑈 = 3.496152      [𝑚2]                            (1.19) 

The area of altitude elevator trim tab: 

𝑆𝑡𝑒 = 0.08 ∙ 𝑆𝑒𝑙 = 0.33     [𝑚2]                                        (1.20) 

Area of rudder trim tab is equal: 

𝑆𝑡𝑟 = 0.06 ∙ 𝑆𝑟𝑢𝑑 = 0.354      [𝑚2]                                     (1.21) 

Root chord of horizontal stabilizer is:  

𝑏0𝐻𝑇𝑈 =
2𝑆𝐻𝑇𝑈∙𝜂𝐻𝑇𝑈

(1+𝜂𝐻𝑇𝑈)∙𝑙𝐻𝑇𝑈
=

2∙8.17∙2.4679

(1+2.4679)∙7.56
= 1.5381       [𝑚2]               (1.22) 

Tip chord of horizontal stabilizer is: 

𝑏0𝐻𝑇𝑈 =
𝑏0𝐻𝑇𝑈

𝜂𝐻𝑇𝑈
=

1.5381

1.4679
= 1.0478      [𝑚]                             (1.23) 

Root chord of vertical stabilizer is:  

𝑏0𝑉𝑇𝑈 =
2∙𝑆𝑉𝑇𝑈𝜂𝑉𝑇𝑈

(1+𝜂𝑉𝑇𝑈)∙𝑙𝑉𝑇𝑈
=

2∙14.96∙1.9572

(1+1.9572)∙3.75
= 5.28      [𝑚]                  (1.24) 
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Tip chord of vertical stabilizer is: 

𝑏0𝑉𝑇𝑈 =
𝑏0𝑉𝑇𝑈

𝜂𝑉𝑇𝑈
=

5.28

1.9572
= 2.7      [𝑚]                                    (1.25) 

1.3.4 Landing gear design 

At the initial design stage, when the airplane center-of-gravity position is 

determined and there is no drawing of airplane general view, only the part of chassis 

parameters may be determined. 

Main wheel axel offset is: 

𝑒 = 0.2673 ∙ 𝑏𝑚𝑎𝑐 = 0.7459     [𝑚]                               (1.26) 

With the large wheel axial displacement the lift  of the front gear during take-

off is complicated, and with small, the drop of the airplane on the tail is possible, 

when the loading of the back of the airplane comes first. Chassis wheel base comes 

from the expression: 

𝐵 = 0.4526 ∙ 𝐿𝑓 = 21.2 ∙ 0.4526 = 9.59512     [𝑚]             (1.27) 

The last equation means that the nose support carries 6...10% of aircraft weight. 

Front wheel axial offset will be equal 

𝑑𝑛𝑔 = 𝐵 − 𝑒 = 8.84922  [𝑚]                                     (1.28) 

Wheel track is: 

𝑇 = 0.6072 ∙ 𝐵 = 5.82616    [𝑚]                                  (1.29) 

On a condition of the prevention of the side nose-over the value K should be > 2H, 

where H – is the distance from runway to the center of gravity. 

Wheels for the chassis is chosen by the size and run loading on it from the take-

off weight; for the front support we consider dynamic loading also. 

Type of the pneumatics (balloon, half balloon, arched) and the pressure in it is 

determined by the runway surface, which should be used.  

We install breaks on the main wheel, and sometimes for the front wheel also. 

The load on the wheel is determined: 

Kg = 1.5...2.0 – dynamics coefficient. 
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Nose wheel load is equal:  

𝑃𝑁𝐿𝐺 =
(9.81∙𝑒∙𝑘𝑔∙𝑚0)

(𝐵∙𝑧)
= 12364.1615     [𝑁]                          (1.30) 

Main wheel load is equal: 0 

𝑃𝑀𝐿𝐺 =
(9.81∙(𝐵−𝑒)𝑚)

(𝐵∙𝑛∙𝑧)
= 20954.8996    [𝑁]                            (1.31) 

Table 1.2 – Aviation tires for designing aircraft 

Main gear Nose gear 

Tire size Ply rating Tire size Ply rating 

1050x 400 18 

 

700x250 mm 

 

12 

1.4 Center of gravity calculation 

1.4.1 Trim-sheet of the equipped wing 

Mass of the equipped wing consists of the mass of its structure, mass of the 

equipment located in the wing and mass of the fuel. Regardless of the installation 

location (to the wing or to the fuselage), the main chassis and the front gear are 

included in the mass register of the equipped wing. The mass register includes names 

of the objects, mass themselves and their center of gravity coordinates. The origin 

of the given coordinates of the mass centers is selected by the projection of the nose 

point of the mean aerodynamic chord (MAC) for the surface XOY. The positive 

meanings of the coordinates of the mass centers are accepted for the end part of the 

aircraft. 

The example list of the mass objects for the aircraft, where the engines are 

located under the wing, included the names given in the table 3.1.The example list 

of the mass objects for the aircraft, where the engines are located in the wing, 

included the names given in the table 3.1. The mass of AC is 91295 kg. Coordinates 

of the center of power for the equipped wing are defined by the formulas: 
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n object name Mass units Total mass Coordinate Mass moment 

1 wing (structure) 0,15617 2893,67393 1,3356 3864,790901 

2 fuel system 0,00124 22,97596 1,3356 30,68669218 

3 airplane control, 30% 0,00351 65,03679 1,908 124,0901953 

4 electrical equipment, 30% 0,009 166,761 0,318 53,029998 

5 anti-ice system , 70% 0,01379 255,51491 0,318 81,25374138 

6 hydraulic systems , 70% 0,0196 363,1684 1,908 692,9253072 

7 power plant 0,10032 1858,82928 -1,2 -2230,59514 

8 equipped wing without landing 

gear and fuel 

0,30363 5625,96027 0,4650196 2616,181699 

9 Nose landing gear 0,0039552 73,2859008 -6,81 -499,076984 

10 Main landing gear 0,0454848 842,7878592 1,749 1474,035966 

11 fuel 0,102 1889,958 1,3674 2584,328569 

 total 0,45507 8431,99203 0,7323856 6175,469249 

1.4.2 Trim-sheet of the equipped fuselage 

Origin of the coordinates is selected in the projection of the nose of the fuselage 

on the horizontal axis. For the axis X the construction part of the fuselage is given. 

The example list of the objects for the AC, which engines are mounted under the 
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The CG coordinates of the FEF are determined by formulas: 

  

After we determined the C.G. of fully equipped wing and fuselage, we construct 

the moment equilibrium equation relatively to the fuselage nose: 

 

From here we determined the wing MAC leading edge position relative to 

fuselage, means  ХMAC   value by formula: 

 

where m0 – aircraft takeoff mass, kg; mf – mass of fully equipped fuselage,  

kg; mw – mass of fully equipped wing, kg;  С – distance from  MAC leading edge to 

the C.G. point, determined by the designer. 
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С = (0,22...0,25) BMAC –low wing ; 

С = (0,25...0,27) BMAC – center wing; 

 

 

 

N objects names Mass C.G 

coordinates 

Хі, м 

mass moment 

units total mass 

1 fuselage 0,15973 2959,63717 11,89 35190,08595 

2 horizontal tail 0,01627 301,46683 1,10925 334,4020812 

3 vertical tail 0,01618 299,79922 1,4875 445,9513398 

4 radar 0,0034 62,9986 1 62,9986 

5 radio equipment 0,0045 83,3805 1 83,3805 

6 instrument panel 0,0079 146,3791 2,5 365,94775 

7 aero navigation equipment 0,0068 125,9972 2 251,9944 

8 aircraft control system 70% 0,0078 144,5262 11,89 1718,416518 

9 hydro-pneumatic sys 30% 0,00822 192,99738 16,646 3212,634387 

10 electrical equipment 70% 0,021 493,059 11,59 5862,47151 

11 not typical equipment 0,0021 49,3059 11,59 586,247151 

12 furnishing and thermal 

equipment 

0,0107 251,2253 11,35 2987,068817 

13 anti ice and airconditioning 

system 

0,0197 462,5363 15,457 7149,423589 

14 Galley and lavatory 0,00223 52,35817 11,5 602,118955 

15 baggage 0,02497 586,27063 3,5 2051,947205 

16 additional equipment 0,00213 50,01027 12,34 594,6221103 

17 equipped fuselage without 

payload 

0,31363 6261,94777 9,8211791 61499,71087 

18 passengers 0,2223 4118,9967 11,5 47368,46205 

19 crew 0,009 160 2,5 400 

 TOTAL 0,54493 10540,94447 10,36607 109268,1729 

 TOTAL fraction 1    

 

1.4.3 Calculation of center of gravity positioning variants 

The list of mass objects for centre of gravity variant calculation given in Table 

3.3 and Center of gravity calculation options given in table 3.4, completes on the 

base of both previous tables. 
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Table 1.5 – Calculation of C.G. positioning variants 

Name mass in Kg coordinate mass 

moment  

object mi  Xi,, м Kg.m 

equipped wing (without fuel and landing 

gear) 5625,96027 10,51574399 59161,158 

Nose landing gear (extended) 479,47614 13,55072441 6497,249 

main landing gear (extended) 1917,90456 22,11072441 42406,259 

fuel reserve 461,92797     

fuel 19842,29973 22 436530,59 

equipped fuselage (without payload) 11977,96261 11,89 142417,98 

passengers of business class 900 0 8280 

passengers of economy class 8100 9,2 74520 

baggage 2400 11 26400 

cargo 1677,53 0 0 

crew 520 2,5 1300 

nose landing gear (retracted) 479,47614 12,55072441 6017,7729 

main landing gear (retracted) 1917,90456 21,11072441 40488,355 

reserve fuel  2570,98413 22 56561,651 

 

 

Table 1.6 – Airplanes C.G. position variants 

№
п

/п
 

Назва об'єкта Маса, mi кГ 

m
as

s 

m
o
m

en
t 

m
iX

i 

ce
n
te

r 
o

f 

m
as

s 
Х

ц
м
 

ce
n
te

r 
 Х

С
 %

 

1 take off mass (L.G. extended) 63591 797513,2356 12,541291 19,6019 

2 take off mass (L.G. retracted) 63591 795115,8549 12,503591 30,5413 

3 landing weight (LG extended) 36169,81771 417544,2924 11,543998 22,7552 

4 ferry version 40363,60331 685915,8549 16,993425 12,9266 

5 parking version 20001,30358 250482,6416 12,523316 14,4839 
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Conclusion to the main part  

In this part, we calculated the basic geometric parameters of the layout of the 

aircraft, such as: wing, fuselage, tail unit, landing gear. Our goal was to compare 

the technical and tactical characteristics of the prototypes and create an airplane 

based on them, which we did. According to the data received, we chose the wheels 

that will be available to our aircraft. They will provide more intensive braking. We 

also chose the AI-24 turboprop engine to ensure good flight performance and low 

fuel consumption. 
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2. Active Noise Control in Propeller Aircraft 

2.1 Introduction 

Noise issues in our houses have received considerable attention. In industry, 

for instance, fans, transformers, engines and compressors emit noise. In boats, trains 

automobiles and aircraft, for instance, noise reduces comfortableness. Lighter 

materials and more powerful motors are used in high-speed vehicles, which leads to 

in a general increase in cabin noise levels. 

 The main trouble of noise in the low periodicity range is not only the dormant 

hazard of the hearing damage. Low frequency noise is annoying and during periods 

of long exposure it causes inconvenience, tiredness and loss of concentration. 

Decreased concentration may also be the cause of an increased risk for accidents. 

The masking effect which low frequency noise has on speech also reduces words 

intelligibility. Low words intelligibility is perceived as disturbing and annoying. 

Reconstruction could decide noise issues. This is usually very expensive, 

however, on the another side, noise issues can be determined using traditional 

passive treatment or treatments based on the principle of active noise control. The 

choice of technology is based on the performances of the noise as well as of the 

application of selected technology. Nevertheless, this part of diploma project will 

not solve the problems of attenuating noise using passive methods of noise control. 

Instead it directs only on the method of active noise control. Traditional passive 

method composed on reflectors, absorbers and barriers. The absorbers commute the 

acoustic energy to thermal energy, while the barriers and reflectors forbid the noise 

from ingoing a space from second space by rebounding the incident wave field. From 

the point of view of practical size passive treatment are appropriate when decreasing 
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noise in the frequency range over approximately 500 Hz. The depth of the acoustical 

absorbers, or the range between the absorber and the wall, must be larger, nearly on 

one quarter of a length of wave, to obtain reasonable low frequency reduction, e.g. 

a frequency of 100 Hz results in a wavelength of 3.4 meters. Moreover, in order to 

decrease the sound transmission from one space to another, a heavyweight barrier 

between these spaces is required. Hence, the usage of passive treatments to damp 

low frequency noise is often impractical since considerable extra bulk and weight 

are required. In all kinds of vehicles high weight is associated with high fuel 

consumption. 

In order to overcome the troubles of inefficient passive inhibition of low 

frequency noise, the technology of Active Noise Control (ANC) plant oneself of 

greatly interest. The key tenet of active noise control is based on the superposition 

of sound waves. Secondary sources create an “anti-noise” of peer amplitude and 

contrary phase to the initial or objectionable noise. The superposition of the initial 

and generated noise leads to the destruction of interference and noise reduction. The 

accuracy of the amplitude and phase of the generated anti-noise determines the 

attenuation of noise. Active noise canceling systems significantly increase 

volumetric capacity to attenuate low-frequency noise below almost 1 kHz, which 

leads to potential advantages in volume and weight. The high frequency for which 

active control is suitable is determined by the application. However, in cases with 

dimensions of several meters, for example in aircraft compartments, the upper 

frequency is limited to a few hundred Hz. A higher frequency limit is greater for 

smaller cases, such as headphones. For noise above 1 kg, the Hertz passive 

procedures show a higher potential, since neither large volume nor weight is required 

to achieve a significant reduction. The active and passive approaches, therefore, 

complement each other, and thanks to the combination of these two methods, high 

noise reduction in a wide frequency range becomes possible, indeed in the entire 

range of audible frequencies (20–20 kHz). Active noise management is applicable 

to a wide range of low-frequency noise problems in transport, consumer products 

and industrial applications. 
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2.2 Active noise reduction in an airplane 

 One of the main sources of noise inside an airplane is the propulsion system. 

In particular, for aircraft with a turboprop in the cockpit, harmonic low-frequency 

noise generated by propellers predominates. The most disturbing noise is 

characteristic of the first three or four harmonics of the blade pass frequency (BPF). 

The noise is transmitted through the cab in several ways, see Figure 1. 

 

Figure 2.1-The main noise in the cab is of two different types: noise of the 

boundary layer and noise emanating from the power plant system. 

Vibrations from the engines are transmitted through the engine mounts to the 

wing structure, which, in turn, excites the entire aircraft body; Turbulence from 

propellers raises the rear wing, which in turn causes vibrations at the rear of the 

aircraft. The second significant part passes through the fuselage in the plane of the 

propellers; propeller blades cause very large pressure fluctuations outside the 

fuselage, which are transmitted to the passenger compartment. The importance of 

different transmission paths depends on the frequency. In BPF, the sound field is 

usually excited throughout the cabin, while harmonics are usually excited mainly in 

the plane of the propellers. Due to the low frequency range, usually 80-450 Hz, the 

actual use of passive noise reduction methods is very limited. The aircraft fuselage 

is designed as a lightweight rigid wall with negligible loss in low frequency 

transmission. By using tuned buffers, transmission loss can be significantly 
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increased. A tuned buffer is a mechanical resonance system consisting of a mass and 

a spring with a rather high coefficient of mechanical losses. 

The buffer is tuned to one frequency, usually BPF at normal cruising speed or 

one of the harmonics of BPF. Using multiple buffers, noise can be reduced at a wider 

frequency level. One of the main disadvantages of tuned shock absorbers is the 

additional weight, which can be equal to one tariff or more. This is significant for an 

aircraft rated at 35-50 fares. Another disadvantage is that performance is typically 

directed to one flight condition, which means that the vibration absorption effect is 

reduced under other flight conditions. An active noise control system offers much 

greater potential for a noise control engineer in the future. First of all, the general 

attenuation is usually greater than that which can be obtained with passive tuning. 

Since the controller is connected to the engines, attenuation is maintained throughout 

the flight cycle, including descent, cruise, and climb. If the controller is connected 

to both motors, the runout that occurs when the motors become unsynchronized is 

also controlled. Even with many (over 30) speakers, including cabinets, the active 

noise reduction system is lighter than a regular set of tuned buffers. The first 

commercial turbo-prop aerodynamic panel in the world to use this treatment is 

SAAB 340 and its successor SAAB 2000. The first SAAB 340 was manufactured in 

the spring of 1994, and the first SAAB 2000 was made later. Currently, most of the 

aircraft produced are interested in the ANC, as comfort is a key issue. Figure 2 shows 

the ANC system in an airplane to actively control the noise generated by the 

propeller. 
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Figure 2.2-Active aircraft noise control. 

The most commonly used sources for creating a secondary interacting sound 

field “anti-noise” are loudspeakers. However, since vibrations in the bounding walls 

usually excite the sound field, another approach is to use vibration exciters attached 

to the wall surface. Processing using control inputs applied directly to the structure 

to reduce vibration distribution in order to reduce sound emission is called Active 

Acoustic Structure Management (ASAC). Microphones are used as monitoring 

sensors to monitor the reduction in internal noise. In recent years, interest has also 

been shown in the use of ASAC treatment. This method can also be used in the 

practice of jet aircraft to reduce the frequency elements arising from an imbalance 

in the power of jet engines. The use of silent seats has also generated considerable 

interest along with the use of active headsets. The silent seat system provides local 

attenuation of noise around the passenger’s head using the built-in headrest speakers. 

Moreover, active headsets are much cheaper than installing an ANC system in the 

cabin. Vibrations at low frequencies also cause discomfort to passengers. These 

fluctuations arise due to the imbalance of the engine and the driveshaft and are 

transmitted through the wings to the fuselage 

Since the vibrations are low frequency and the vibration sources and the transmission 

paths are known, active methods also have the potential of being able to reduce such 

vibrations. 
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2.3 The Control System 

Active noise control system described in this paper is based on a multiple-

reference narrowband feedforward control treatment and is allotted to attenuate the 

tones produced from the airscrews. The controller is based on the actuator-individual 

normalized filtered-x Least Mean Squares (LMS). This algorithm is synchronized to 

both airscrews. The need for a synchronization signal from each airscrew rise from 

the fact that the synchrophaser mechanism are incapable to completely synchronize 

the two airscrews during a complete flight cycle. By using the synchronization 

signals, internal single-frequency reference signals are produced and instantaneously 

settled by adaptive weights before driving the control sources, e.g. loudspeakers. 

Control sensors supervise the residual noise and the output signals from these are 

used to regulate the adaptive weights so that the overall noise level is minimized. 

The cabin noise inside turboprop airplane is basically dominated by strong tonal 

members at the harmonics of the blade passage frequency of the propellers. 

Propellers or periodic noise sources running with a slight rotational speed difference 

stimulate an acoustic beating. The capacity for the ANC system to handle beating 

sound fields is dependent on the structure of the controller. A structure response on 

a single filter and a single reference signal composing of the sum of all reference 

signals does not make the best use of the information assured by the reference 

signals. Since the frequencies of the reference sinusoids are close together a long 

FIR (finite impulse response) filter is required, resulting in slow convergence of the 

adaptive algorithm. With the parallel filter structure each reference signal is 

individually processed, which in narrowband ANC involves individual harmonic 

control. The shorter filter can be used with better convergence. If possible, the 

parallel structure is used rather than a single filter structure in order to achieve 

efficient and robust control of beating sound fields. The parallel structure has proven 

advantageous in the attenuation of propeller-generated noise and noise produced by 

rotating machines with almost the same rotational speeds. The base of the control 

system is a multi-channel, narrowband feedforward controller using complex signals  
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and complex filter-weights. The complex reference signals are individually 

processed by a single complex weight that adjusts the amplitude and phase for each 

actuator. The structure of a twin-reference, multi-channel feedforward active noise 

control system is shown in Fig. 3. 

 

 

Fig. 2.3-The control system for active control of periodic noise. 

One main advantage with narrowband active control of periodic noise members 

is that the reference signals can be synthesized internally in the controller. In this 

investigation, the synchronization signals obtained from the noise creation system 

were used to produce the complex reference signals. With reference signals 

generated in this manner, the adaptive control becomes extremely chosen and it is 

maximum to determine which harmonics are to be controlled and which are not. 

2.4 Control algorithm 

The control algorithm, consist of the complex algorithm called actuator-

individual normalized filtered-x LMS algorithm is represented for a common 

monitoring setup with M control sensors, R reference signals, L loudspeakers, where 

each reference has H harmonics.  Expect that the real valued control-sensor signal,  
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em(n), at microphone m is given by 

em(n) = dm(n) + ym(n)                

where dm(n) and ym(n) described the uncontrolled sound and the “anti-noise” (the 

second noise field produced by the L loudspeakers) relatively at microphone m. The 

cost function, which should be minimized, is given by the sum of the squares of the 

output signals from the control microphones: 

J(n) =  ∑ em
2 (n)

𝑀

𝑚=1

 

The update scheme used to configure complex weights in an adaptive control 

system to minimize this cost function is defined by the following algorithm 

𝜔𝑟ℎ𝑙(𝑛 + 1) = 𝜔𝑟ℎ𝑙(𝑛) + 2𝜇𝑟ℎ𝑙𝑥𝑟ℎ
∗ (𝑛) ∑ 𝐹𝑟ℎ𝑚𝑙

∗ 𝑒𝑚(𝑛)

𝑀

𝑚=1

 

where * denotes complex conjugate and Frhml is an estimate of the frequency 

response function of the control path between loudspeaker l and microphone m 

associated with a given reference signal xrh(n). Here the step-size parameter for 

reference r, harmonic h and loudspeaker l is given by 

𝜇𝑟ℎ𝑙 =
𝜇0

𝜌𝑟ℎ ∑ |𝐹𝑟ℎ𝑚𝑙|2𝑀
𝑚=1

 

where the step-size µo lies in the interval 0<µ0<1/(LRH) . This update algorithm is 

motivated by the assumption that the single-frequency reference signals, xrh(n), are 

mutually uncorrelated, thereby enabling individual control of each frequency. Since 

only one adaptive complex coefficient is required for each reference signal and 

loudspeaker, it is extremely efficient in the sense that it employs a minimum of 

adaptive coefficients. The implementation can usually be made very compact, which 

leads to fast execution of the code. 
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2.5 Experimental results 

 The enclosed buttonhole characteristic of the mechanism was affirm by 

exposing the portside of the airplane to artificial airscrew noise using the speaker-

ring system. The first occasion investigated was control at 61 Hz (910 rpm, BPF) 

applying sensor feedback to control the three actuators. Four sensors were located 

above the area of high open cycle vibration at each of the three axial positions where 

piezoelectric actuators were bonded. Mean of every set of four measurements were 

applied as the sensed quantities for both feedback and feedforward control 

approaches. The feedback control mechanism was constructed with peak loop gains 

of between 25 and 30 dB, gain margins of between 8 and 15 dB, and phase margins 

of between 14º and 50º, for the diagonal elements of the transfer function matrix. 

The feedforward approach applied filtered-x LMS adaptive control. An IIR (infinite 

impulse response) filter with 15 forward and 14 recursive filter factors was applied 

to model the second path applying a band limited casual signal among 55 and 75 Hz 

for off-line LMS mechanism identification of the plant. The control filter was 

selected to be a FIR filter with 15 indexes. The shortening in the vibration degree 

for the twelve sensors positions as well as for the three mean sensor meanings are 

given in Table 1. 

 

Table 2.1-Vibration attenuation at 61 Hz, vibration sensing 
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It could be seen from the vibration attenuation information that the feedback and 

feedforward cases yielded similar effects, either in separate sensor and mean 

evidence. There were certain differences between the individual results, although the 

trends were similar. Peak vibration reduction in both cases occurred at the same 

accelerometer position. For a direct-coupled control case, the spectra for the control 

and shutdown data for sensor 3 are shown in Fig. 4. 

 

Fig.2. 4.-Acceleration spectrum for sensors, vibration sensing, feedforward control 

In order to monitor the noise reduction performance, microphones were positioned 

at the seated head height for the two port side seats and at standing height for the 

aisle center for seat rows 1, 2 and 3. The noise attenuation data using the ANC 

system realized with both feedback and feedforward control algorithms determined 

above for vibration error sensing, are presented in Table 2.  
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Table 2.2- Interior sound attenuation at 61 Hertz, acoustic sensing 

 

The control-on and control-off noise level spectra at the aisle seat in row 1 for the 

vibration error sensing feedforward case are presented in Fig. 5.  

 

Fig. 2.5- Sound level spectra for row 1 aisle seat, feedforward control, vibration 

sensing, 61 Hz 

 The final attenuation in the inside sound levels was also the same. The highest 

reduction, which was 28 dB, take place at the aisle seat in third row. The shortenings 

in row two, which was near to the airscrew of the aircraft, were 11 dB for both the  
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aisle and row seats. Only one place, suitable to the window seat at the first row, 

exposed a very little increase in sound level. This place had exposed the weakest 

open loop sound pressure, and therefore the slight rise was of small meaning. The 

exposes in both the sound and vibration degree were materially overall with great 

shortening in the noisiest cabin compartment regions. The sound control 

characteristic for the feedback and feedforward cases of active control with vibration 

sensing were not identical in outcomes, since the highest shortening in each occasion 

take place at different occurrence. These odds can be referable to amount of factors, 

the most essential of which was apparently the thing that although the actuator and 

sensor positions were the same in two cases, the control design approaches were 

totally diverse. For the feedback approach there were great diverse in peak gains for 

the 3 loop transfer functions considered. In matching, for feedforward control, the 

only utilizer conditioned parameters for the mechanism authentication and control 

operations were the convergence factors, which were selected to be equal for all 

channels. The outcomes also highlighted the highly sensitive dependence of sound 

shortening performance on vibration reduction; the differences in residual vibration 

in both cases were small compared to the differences in residual noise levels. This 

is sequential with thing that the vibrational regimes that were responsible for much 

of the noise transmission may not be those that dominated the vibration field. 

Therefore, two similar vibrational fields may practically have product essentially 

different noise fields inside passenger compartments. When sound shortening was 

selected as the performance metric or criterion, the results determining applying 

microphone error sensing were major superior to those for vibration sensing. The 

control at 61 Hz was investigated with the same actuator design, but using the 3 

microphones in the second seat row as the error sensors. The noise reduction 

obtained applying microphone error sensing were superior to those for vibration 

sensing. The outcomes, which are given in the last column of Table 3, demonstrated 

the superiority in this noise reduction performance when compared to vibration 

sensing results.  
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Table 2.3- Interior sound attenuation at 61 Hz, acoustic sensing 

Noise reduction for other flight conditions was also achieved successfully 

applying the actuator design approach described earlier and using vibration sensing. 

The operating deflection shape (ODS) for deformation of the fuselage at twice the 

BPF at 910 rpm (121 Hz) which had a greater number of nodes than the previous 

case of the 61 Hz ODS, is shown in Table 6.  

 

Table 2.4-Performance of the ANC system due to simulated propeller noise, 

2×BPF, 910 rpm (121 Hz) 
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Applying the feedforward control algorithm described previously, the achieved 

vibration and noise reduction was again large. The vibration and, in particular, the 

sound decrease efficiency was little lowered compared to the efficiency for vibration 

sensing and there were a few microphone locations that exposed little rises in sound 

levels. However, there were large reductions in the key placing of high noise as well 

as a general global noise reduction in the cabin. 
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Conclusions to the Part 2 

The use of Active Structural Acoustic Control (ASAC) has been successfully 

applied to reduce internal noise and vibration in a full-blown aircraft fuselage to 

improve the living environment. The results of this application show that, due to the 

well-thought-out drive and sensor design, ASAC systems using coupled 

piezoelectric drives and vibration or acoustic error sensors can simultaneously 

provide significant reduction in propeller noise and vibration reduction in the 

passenger cabin of a turboprop aircraft. The noise reduction in the passenger 

compartment was significant with a peak measured attenuation of more than 28 dB. 

The observed attenuation was essentially global throughout the cockpit. In addition, 

it has been shown that an optimized system provides a significant reduction in other 

modes that may be present. Most importantly, such an active system can be 

adaptively modified locally to account for changes arising from operating 

conditions, to provide a time-varying, optimized vibration and noise control system 

to improve habitability of the aircraft cabin. 
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                            Project   Aircraft with TPFE 

                       NAU,   Aircraft design department 

               Project    Diploma               Calculation is done    23.09.19 

                 Performed by Korzh P.O.  

 

2INITIAL DATA FOR CALCULATION WORK 

Passenger Number          44 

Flight Crew Number 2 

Flight Attendant or Load Master Number 1 

Mass of Operational Items 412.57 kg 

Payload Mass 4356.00 kg 

Cruising Speed 435 km/h 

Cruising Mach Number 0.3836 

Design Altitude 6.5 km 

Flight Range with Maximum Payload    1100 km 

Runway Length for the Base Aerodrome 1.68 km 

Engine Number 2 

Thrust-to-weight Ratio in N/kg 0.2700 

Pressure Ratio 7.50 

Assumed Bypass Ratio 0.22 

Optimal Bypass Ratio 5 

Fuel-to-weight Ratio 0.22 

Aspect Ratio 11.37 
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Taper Ratio    2.92 

Mean Thickness Ratio 0.12 

Wing Sweepback at Quarter Chord        5 

High-lift Device Coefficient                  0.58 

Relative Area of Wing Extensions         0.00 

Wing Airfoil Type supercritical Winglets  installed 

Spoilers installed 

Fuselage Diameter      2.65 m 

Fineness Ratio 8 

Horizontal Tail Sweep Angle 15 deg 

Vertical Tail Sweep Angle 21 deg 

 

                                           CALCULATION RESULTS 

Optimal Lift Coefficient in the Design Cruising Flight Point 0.50003 

Induce Drag Coefficient 0.00995 

ESTIMATION OF THE COEFFICIENT Dm = Mcritical - Mcruise 

Cruising Mach Number 0.38364 

Wave Drag Mach Number 0.67939 

Calculated Parameter Dm 0.29576 

Wing Loading in kPa (for Gross Wing Area): At Takeoff   2.273 

At Middle of Cruising Flight 2.279 

At the Beginning of Cruising Flight 2.332 

Drag Coefficient of the Fuselage and Nacelles 0.00818 

Drag Coefficient of the Wing and Tail Unit 0.00995 

Drag Coefficient of the Airplane: 

At the Beginning of Cruising Flight 0.035176 

At Middle of Cruising Flight 0.03153 
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Mean Lift Coefficient for the Ceiling Flight 0.50003 

Mean Lift-to-drag Ratio 15.85867 

Landing Lift Coefficient 1.549 

Landing Lift Coefficient (at Stall Speed) 2.324 

Takeoff Lift Coefficient (at Stall Speed) 2.065 

Lift-off Lift Coefficient 1.487 

Thrust-to-weight Ratio at the Beginning of Cruising Flight 0.090 

Start Thrust-to-weight Ratio for Cruising Flight 0.134 

Start Thrust-to-weight Ratio for Safe Takeoff 0.140 

Design Thrust-to-weight Ratio 0.145 

Ratio Dr = Rcruise / Rtakeoff 0.956 

SPECIFIC FUEL CONSUMPTIONS (in kg/kN*h): 

Takeoff 0.3100 

Cruising Flight 0.2624 

Mean cruising for Given Range 0.2635 

FUEL WEIGHT FRACTIONS: 

Fuel Reserve 0.02493 

Block Fuel 0.08868 

WEIGHT FRACTIONS FOR PRINCIPAL ITEMS: 

Wing           0.05617 

Horizontal Tail 0.01936 

Vertical Tail         0.01926 

Landing Gear 0.04915 

Power Plant 0.12064 

Fuselage 0.10811 

Equipment and Flight Control 0.1582 

Additional Equipment 0.0027 

Operational Items 0.0165 
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Fuel 0.11361 

Payload 0.23508 

Airplane Takeoff Weight 18529 kg 

Takeoff Thrust Required of the Engine 1340 kN 

Air Conditioning and Anti-icing Equipment Weight Fraction 0.0219 

Passenger Equipment Weight Fraction (or Cargo Cabin Equipment) 0.0249 

Interior Panels and Thermal/Acoustic Blanketing Weight Fr. 0.0199 

Furnishing Equipment Weight Fraction 0.0122 

Flight Control Weight Fraction 0.0025 

Hydraulic System Weight Fraction 0.0117 

Electrical Equipment Weight Fraction 0.028 

Radar Weight Fraction 0.003 

Navigation Equipment Weight Fraction 0.0046 

Radio Communication Equipment Weight Fraction 0.0069 

Instrument Equipment Weight Fraction 0.0035 

Fuel System Weight Fraction 0.0081 

Additional Equipment: Equipment for Container Loading  0.0032 

No typical Equipment Weight Fraction 0.0027 

(Build-in Test Equipment for Fault Diagnosis, Additional Equipment of Passenger 

Cabin) 

TAKEOFF DISTANCE PARAMETERS 

Airplane Lift-off Speed 180.97 km/h 

Acceleration during Takeoff Run 1.67 m/s2 Airplane Takeoff Run Distance 

756 m 

Airborne Takeoff Distance 578 m 

Takeoff Distance 1334 m 

CONTINUED TAKEOFF DISTANCE PARAMETERS 

Decision Speed 171.92 km/h 
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Mean Acceleration for Continued Takeoff on Wet Runway 0.17 m/s2 Takeoff Run 

Distance for Continued Takeoff on Wet Runway 1410.88 m Continued Takeoff 

Distance 1949.47 m 

Runway Length Required for Rejected Takeoff 2019.95 m 

LANDING DISTANCE PARAMETERS 

Airplane Maximum Landing Weight 17714 kg Time for Descent from Flight Level 

till 

Aerodrome Traffic Circuit Flight 12.8 min 

Descent Distance 15.44 km 

Approach Speed 187.68 km/h 

Mean Vertical Speed 1.61 m/s 

Airborne Landing Distance 495 m 

Landing Speed 172.38 km/h 

Landing run distance 456 m 

Landing Distance 950 m 

Runway Length Required for Regular Aerodrome 1587 m 

Runway Length Required for Alternate Aerodrome 1350 m 
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