MIHICTEPCTBO OCBITH 1 HAYKH YKPATHHU
HAIIIOHAJIBHUM ABIALIIHMHUNA YHIBEPCUTET
®AKYJBTET AEPOHABITAIIIL, ETEKTPOHIKH

TA TEJEKOMYHIKAIIINA
Kadeapa apiamiitHux KOMIT FOTEPHO-IHTETPOBAHUX KOMILJIEKCIB

JNOITYCTUTHU A0 3AXUCTY
3aBiqyBau kadeapu
CunernazoB Biktop Muxaitnosuy

« 7 2021 p.

JUIIJIOMHA POBOTA
(IHOSICHIOBAJIBHA 3AIIMCKA)

BUITYCKHHUKA OCBITHBO-KBAJI®IKALIMHOI'O PIBHSI

“bAKAJIABP”
3A CIIEIIAJIBHOCTIO 151 «cABTOMATU3ALIA TA KOMIT'IOTEPHO-IHTEI' POBAHI

TEXHOJIOI Ii»
OCBITHBO-TTPO®ECIVMHOI ITPOT'PAMMU "KOMIT'FOTEPHO-IHTETPOBAHI
TEXHOJIOT'TYHI ITPOLIECH I BUPOBFHUIITBA"

TEMA: CucremMa aBTOMaTUYHOTO KE€pPYBaHHS ABUTYHOM TOCTIHHOTO CTpyMy 3

[1I-HeipoperynsiTopoM MBUAKOCTI

BUKOHABEIIb: binai €.C.
KEPIBHUK: K.T.H., CT. BUK] ITanTees P. JI.
HOPMKOHTPOIJIEP: k.T.H., TO1IEHT Tyninun M. O.

Kuis 2021

EDUCATION AND SCIENCE MINISTRY OF UKRAINE
NATIONAL AVIATION UNIVERSITY
Department of Aviation Computer-Integrated Complexes

ADMITT TO DEFENCE
Head of the department
Syneglazov V.M.

« ” 2021y.

BACHELOR WORK
(EXPLANATORY NOTE)

Specialty: 151 Automation and computer-integrated technologies
Eeducational professional program "Computer-integrated technological

processes and production”

THEME: «Automatic DC motor control system with Pl speed neuroregulator»

DONE by: Bilai Y.S.
SUPERVISED by: Pantyeyev R. L.
STANDARDS CONTROLLER: Tupitsyn M.F.

Kyiv 2021

HALIOHAJIBHUM ABIALIMHUN YHIBEPCUTET
dakynpTeT aepoHaBirailii, eJIEKTPOHIKM Ta TEJIEKOMYHIKaIlii
Kadenpa aBiamiiHux KOMIT FOTEPHO-THTETPOBAHUX KOMILJICKCIB
OcBiTHill cTyniHb OaxanaBp
CunenianbHhicTh: 151 " ABTOMaTH3aIlis Ta KOMI'FOTEPHO-IHTETPOBaHI
TEXHOJIOT1i"

3ATBEP/IXXYIO
3aBigyBau kadeapu
Cunernazos B.M.

“ ” 2021 p.

3ABJAAHHA
HA BUKOHAHHS IUIJIOMHOI PO0OOTH CTYyIeHTKH
Binait €auzaBern CepriiBHn

1. Tema npoekTty (po6oTn):“ Cucrema aBTOMaTUYHOT'O KEPYBAHHS IBUTYHOM
nocTiitHoro crpymy 3 I1I-HelpoperynaropoM mBHUIKOCTI ™

2. Tepmin BukoHaHHs npoekTy (podotn): 3 20.01.2021 p. no 11.06.2021 p.

3. Buxiaui 1anui 10 npoekty (po6otu): OpieHTYBaTHUCS Ha CydacH1
TEXHOJIOT1i pO3pOOKH CHCTEM KEPYBAHHS 13 3aCTOCYBAaHHAM
HEHPOKOHTPOJIEPIB.

4. 3MicT MOSICHIOBAJIBHOI 3anMUCKH (Mepeiik NUTaHb, 0 MiJIAranTb
po3po6ui): 1. AHami3 Ta 00IpYHTYBaHHSI BUOOPY METO/IIB KEpyBaHHS
IIBUJIKOCTI B €JIEKTPOMEXaHIuHIN CUCTEMI 3 IBUTYHOM MOCTIMHOTO CTPYMY.
2. Ornsp 1 aHasi3 ICHYIOUHX PO3pO0OK y raimy3i HeMpoKepyBaHHS. 3.
JocnixenHs mpo0iemMu HeHpOoKepyBaHHS IIBUJIKICTIO ABUTYHA Y
JBOKOHTYPHIM CHCTEMI MiAMOPSAKOBAHOTO KepyBaHHs. 4. Po3poOka
CUCTEMU KepyBaHHS MIBUKICTIO €JIEKTPOBUTYHA 13 3aCTOCYBaHHSIM
HelpokoHTpoiepa. 5. JlocnipKeHHs! peKUMIB KepyBaHHS PO3pOOIICHOT

CICKTPOMEXaHIYHOI CHCTEMH.

5. Ilepenik 060B’13Kk0BOr0 rpagiunoro marepiay: 1. Jliniitna cucrema

KaCKaJIHOTO YIPaBIiHHA MBUAKICTIO; 2. CHcTeMa perytoBaHHs IBUIKOCTI

MPUBOY TIOCTIHOTO CTPYMY 13 CyXUM TepTaM; 3. Cxema npsMoro

3BOPOTHOTO peryitoBaHHs; 4. Cucrema i3 CyxXuM TepTsAM Ta

HelpoperysTopoM; 5. CucteMa peryiroBaHHs IBUJIKOCTI IPUBOAY

MOCTIIHOTO CTPyMY 13 CYXUM Ta B'A3KUM TepTsaM; 6. PesynbTaTl poboTu

HEHPOHHOI MEpexKi.

6. Kanenpapuumii mian-rpagik
Ne Tepmin BinuiTka
nop. S BUKOHAHHS 1po
BUKOHAHHS

1 | ITigGip niTeparypu 23.01 - 26.01 | BuKOHaHO

2 | Anaii3 iCHyI0OYMX METO/IIB KepyBaHHS 27.01 - 19.03 | BukoHaHo
MIBUKICTIO B €JIEKTPOMEXaHIYHUX CUCTEMAaX
3 HEJIHIMHOCTSAMHU Ha MPUKJIIA1l CyXOTo Ta
B’A3KOT'O TEPTS

3 | Po3pobka cuctemu kepyBaHHS IMIBUAKICTIO 20.03 - 08.04 | BuKOHaHO
€JIEKTPOJIBUTYHA HA 0a31 HEUPOKOHTPOJIEPY

4 | CtBopenHs Ta TpenyBaHHs Heiipomepexi s | 09.04 — 18.04 | BukoHaHO
poOOTH B €IEKTPOMEXaHIYHINA CUCTEMI 3
HEJIIHIMHOCTSIMU B SIKOCTI1 PeryJsaTopa

5 | HocaimkeHH1 pexkuMiB poOOTH HETIHIAHOI 19.04 — 11.05 | BukoHano
EJIEKTPOMEXAHIYHOT CUCTEMH 3
HEUPOKOHTPOJIEPOM

6 | Anami3 pe3yabTariB podoTu Mozeni cuctemu | 12.05 —21.05 | BukoHano
B cepenonuin MatLab/Simulink

7 | ®opMyBaHHS BUCHOBKIB 11100 BUKOHAHOI 22.05—-24.05 | BUKOHaHO
poboTtu

8 | OdopmieHHS MOSCHIOBAJIBHOT 3aITUCKU 25.05 - 30.05 | BuKkoHAHO

9 | CTBOpeHHs npe3eHTarlii 31.05-11.06 | BUKOHAHO

7. JMarta Bugayi 3apaanns: “21" rpymas 2021 p.

KepiBHuk numinoMHoi poOoTH [lanTeeB P. JI.
(mignuc xepiBHHUKA) (IL.Lb.)
3aBJaHHS NPUIHSB 10 BUKOHAHHS binaii €.C.

(mignuc BUITyCKHUKA) (I.LLB.)

NATIONAL AVIATION UNIVERSITY
Faculty of aeronavigation, electronics and telecommunications
Department of Aviation Computer Integrated Complexes
Educational level bachelor
Specialty: 151 "Automation and computer-integrated technologies™
APPROVED
Head of Department
Sineglazov V. M.
)) 2021

TASK
For the student’s thesis

Bilai Y.S.
1. Theme of the work: “Automatic DC motor control system with Pl speed
neuroregulator ”
2. Term of execution of the work: from 20.01.2021 till 11.06.2021.

3. Initial data of the work: To focus on modern technologies for the

development of control systems using a neurocontroller.

4. The contents of the explanatory note (list of issues to be developed):

1. Analysis and discussion of the choice of speed control methods in an
electromechanical system with a DC motor. 2. Review and analysis of
existing developments in the field of neurosurgery. 3. Investigation of the
problems of neuro-control of movement speed in a two-circuit system of
subordinate control. 4. Development of a control system for the speed of an
electric motor using a neurocontroller. 5. Research of control modes of the
developed electromechanical system.

5. List of compulsory graphical materials: 1. Linear system of speed
cascade control; 2. System of speed control of a direct current drive with
dry friction; 3. Scheme of direct inverse regulation; 4. System with dry
friction and the neuroregulator; 5 System of speed control of a direct current

drive with dry and viscous friction; 6. Results of the neural network.

6. Calendar Schedule

Ne)] Performanc
Task Period of execution
e note
1 | Selection of literature 23.01. — 26.01. done
2 | Analysis of existing speed control 27.01.—-19.03. done

methods in electromechanical systems
with nonlinearities on the example of dry

and viscous friction

3 | Development of a motor speed control 20.03. - 08.04. done

system based on a neurocontroller

4 | Creation and training of a neural network | 09.04. — 18.04. done
for work in electromechanical system with

nonlinearities as a regulator

5 | Investigation of modes of operation of a 19.04. — 11.05. done
nonlinear electromechanical system with a

neurocontroller

6 | Analysis of the results of the system 12.05. — 21.05. done
model in the MatLab / Simulink

environment

7 | Forming conclusions about the work done | 22.05. — 24.05. done
8 | Making an explanatory note 25.05. — 30.05. done
9 | Presentation creating 31.05. - 11.06. done

7. Date of issuance of task: “21" december 2021.

Supervisor: sr. lecturer, Ph.D Pantyeyev R. L.
(supervisors sign) (ILLB.)
Task is accepted for execution Bilai Y.S.

(graduates sign) (TL.LB.)

Pedepar
[TosicHrOBaJIbHA 3aMmKcKa 10 6akagaBpckoi KBamidikaliiHoi poOoTH:
Cucrema aBTOMaTHYHOTO KEPYBaHHsI IBUTYHOM TOCTiiiHOTO cTpymy 3 I1I-
HEHPOPETyIATOPOM IIBUIKOCTI
74 c., 31 puc., 2 Tabn., 2 nonatka, 18 mKepen

O0’ekTOM PO3pOOOK 1 MOCHIKEHb JaHOi poOOTH € HEeiHIiHA CcucTeMa
MIIOPAIKOBAHHOTO PETYJIOBAHHS IIBUJIKOCTI THUPUCTOPHOIO E€JIEKTPOIPUBOLY
MOCTIHOTO CTPYyMY 3 HEHPOPETYISITOPOM.

Liap poGOTH — CHHTE3 HENMIHIHHOI CUCTEMH MIANOPSAKOBAHHOTO PErYyIIOBAHHS
HIBUKOCTI 3 YpaxyBaHHSM CyXOI'o TE€PTs, & TAKOK CUCTEMU 3 YPaXyBaHHSIM CYXOro Ta
B’SI3KOTO TEpTSA; po3poOKa Il KOXKHOI 3 LHUX CHUCTEM IHBEPCHOI HeWpomojenl 1
BUKOPUCTAaHHA ii SK HEUPOPEryJsATOp WIBUIKOCTI, KOMIEHCYIOUMI BHIIEHA3BaHI
HEJTIHIAHOCTI.

Po3poOku mpoBOAMIIMCH HA OCHOBI TEOpii BUKOPUCTAHHS 1HBEPCHHUX
HEHpoMoJieae CUCTEM SIK HEHpOperyiasTopu B HMX cuctemax. [lmst mocnipkeHHs
po3pobiieHoi cuctemu OyB BUKOPHCTAHHUN METOJA MaTeMaTHYHOTO MOJIEIIOBAHHS HA
NIEPCOHATIPHOMY KOMITBIOTEpPI 3 BHKOPUCTaHHSM TporpamHoro makery MatlLab
5.2/Simulink, opieHTOBaHOTO Ha MOJICTIOBAHHS CHCTEM aBTOMATHYHOTO PETYIIIOBaHHS
CJIEKTPOIIPUBO/IIB.

B pe3ynbrati po6oTu Oyiiv CHHTE30BaH1 HEJIHIMHI CUCTEMHU ITiIMOPSIIKOBAHHOTO
peryJitoBaHHs MIBUJIKOCTI MPUBOJY, TOOYI0BaHI HEUPOMOENI CHHTE30BAHUX CUCTEM.
Jlnst peryntoBaHHSI HENIHIMHUX 00’€KTIB 3a JOMOMOIOI0 OTPHUMaHUX HEWpOMOJeneu
OyB BukopucTanui meron “Direct inverse control”.

[IpoBenene 1udppoBe MOJETIOBaHHS PO3POOJEHUX CUCTEM BUSBUIIO
e(eKTHUBHICTh BUKOPUCTaHHS MeToza “Direct inverse control” B HenmiHiHKX crcTeMax
anekTporipuBoay. OTpumaHi HENIHIAHI CUCTEMHU 3 HEUpOPETyJIATOPOM,
KOMITIEHCUPYIOUMM 1CHYIOUl HENIHIHHOCTI, BIJICIIAKOBYIOTh 3aBJaHHSA 3 CTaTHYHOIO
nommikoro 0.02% 1 3 BiicTaBaHHSIM TIPH IbOMY Ha OJIMH KPOK JUCKPETHOCTI.

TUPUCTOPHMII EJIEKTPOIIPUBOJ] ITOCTIMHOI'O CTPYMYVY,
CUCTEMA IIAIIOPAAKOBAHOI'O PEI'YJIIOBAHHA IBUJAKOCTI,
IHBEPCHA HENPOMO/IEJIb, HEMPOPEI'YJIATOP, HEJIHIMHICTh, CYXE
TEPTA, B’A3KE TEPTA, AMCKPETHICTH, HIU®POBE MOJAEJIFOBAHHSA

Abstract
Explanatory note to the bachelor's qualification work:

Automatic DC motor control system with Pl speed neuroregulator
74 pp., 31 figs., 2 tables, 2 appendices, 18 sources

The object of development and research of this work is a nonlinear system of
subordinate speed control of a thyristor DC electric drive with a neuroregulator.

The purpose of the work is the synthesis of a nonlinear system of subordinate
speed control taking into account dry friction, as well as a system taking into account
dry and viscous friction; development for each of these systems of an inverse
neuromodel and its use as a neuroregulator of speed, compensating for the above
nonlinearities.

Developments were made on the basis of the theory of using inverse neuromodels
of systems as neuroregulators in these systems. To study the developed system, we used
the method of mathematical modeling on a personal computer using the software
package MatLab 5.2 / Simulink, focused on modeling systems for automatic control of
electric drives.

As a result, nonlinear systems of subordinate drive speed control were
synthesized, neuromodels of synthesized systems were built. The "Direct inverse
control™ method was used to control nonlinear objects using the obtained neuromodels.

The conducted digital modeling of the developed systems revealed the efficiency
of using the “Direct inverse control” method in nonlinear electric drive systems. The
obtained nonlinear systems with a neuroregulator compensating for the existing
nonlinearities track the task with a static error of 0.02% and with a lag of one step of
discreteness.

THYRISTOR DC ELECTRIC DRIVE, SLAVE SPEED CONTROL
SYSTEMS, INVERSE NEUROMODEL, NONLINEARITY, DRY FRICTION,
VISCOUS FRICTION, DISCRETE, DIGITAL SIMULATION

CONTENT

List OF @DDIEVIATIONS........coiviiiiiice e
INEFOTUCTION .. ettt b e be e be e e e
1. NEURAL NETWORKS IN AUTOMATION TECHNOLOGYccocevviveeiiinenns
1.1. Neural systems - branch of artificial intelligencecccoovviiiiiiiiiiie,
1.2. General considerations of neural control for industrial processes.............c........
2. GENERAL DESCRIPTION AND FUNCTIONING OF NEURAL

NETWORKS. ...ttt bbb e et st e e s
3. SPECIAL PROPERTIES OF NEURAL NETWORKScccooviiiiiiiieieieeeen,
3.1 ADIHEY 10 IBAIN ..o
3.2. Ability to process incorrect and incomplete informationccccoeevevieiieinnnnn
3.3. AdaPLIVE DENAVION ..o
3.4. Massive ParalleliSm........ccuoiiii e
3.5, FAUIt tOIEIANCEo
3.6. Hardware implementability..........cccoovoiiiiiiiin e
4. FEEDFORWARD NETWORKS.......c o
4.1. Model of a processing €lementcccovevieiiiiie i
4.2. Network 1ayer MOUEL..........ccveiiieececeee e
4.3. Model of the entire NEIWOTKcccviiiiiiiiiieie e
4.4, Error back propagation.........cccceiieiiiieniiie e

5. OVERVIEW OF NEURAL REGULATIONS AND CONTROLS FOR
COMPENSATING NON-LINEARITIES ...

6. CLASSIFICATION OF THE TYPICAL NON-LINEARITIES IN PRACTICAL
ELECTRIC DRIVE SYSTEMS ...

7. MODELING AND SIMULATION OF DRY FRICTION.......c.cccccoiiiiniiiiiiiinnnn
8. MODELING AND SIMULATION OF DRY AND VISCOSE FRICTION
9. USE OF NEURAL NETWORKS TO COMPENSATE THE DRY FRICTION...

10. USE OF NEURAL NETWORKS TO COMPENSATE DRY AND VISCOSE
FRICTION. ..o

(000 016 [151 (0] 1 KT O

I O AU ..o ettt e e e e e e e et e e e e e e e e et et —————aeaaarrra———————

Glossary
b. — Coefficient of sliding friction
The moment of sliding friction: M =b. -sign(w)
b, — Rolling friction coefficient
Moment of rolling friction: M =b, -
I, — Rated current of the motor

k — Torque constant

K, — Gain factor in the speed feedback

R, — Connection resistance

T,, — Time constant in the counter of the TF of the PI controller

T, — Time constant in the denominator of the TF of the Pl controller

0w

T,, — Equivalent time constant of the route
T, — Mechanical starting time constant
u — Entrance to the system
y — Exit of the system
w — Weighting of the neuron
w — Vector of weights
W — Matrix of weights

o, — Rated speed

o, — Speed setpoint

o, — Actual speed value

Abbreviations

ANN — Artificial neural networks
N — Network

R — Route

TF — Transfer function

NN — Neural networks

Al — Artificial intelligence

INTRODUCTION

The research of neural networks has made a promising development in recent
years, and neural networks have become a popular topic especially in the field of
artificial intelligence research. This is particularly the case because with the help of
neural networks, artificial intelligence systems can be developed that are based on
the principle of human learning and are modeled on the processing of information

by the nervous system.

At the same time, it is a relatively complex and abstract area of research that
is very difficult to grasp and understand for a newcomer to this field. As a result, this
important and promising area is not yet sufficiently widespread, especially in the

industrial sector.

Several years of research gave insight into the architecture and the
performance of the human brain as a control system and showed that the controller
with neural networks has significant advantages over conventional controllers. The
neurocontroller can effectively process a much larger amount of information.
Another very important advantage is that good regulation can be achieved by

learning it.

In this thesis an internship experiment to investigate the performance of
neurocontrollers in non-linear electric drive systems has to be developed. For this
purpose, two drive systems with cascade speed control are considered. Dry friction
is noted in one of these systems and dry and viscous friction is noted in the other.
Inverse neuro-model is added for the controlled system of each system. Then the
obtained inverse neuromodel is built into the system according to the method “Direct
inverse control” and used as the speed controller. The transfer function of the series
connection of the inverse model and the controlled system should strive towards one
in the method used. In this way, the non-linearities present in the system can be

compensated.

1. NEURAL NETWORKS IN AUTOMATION TECHNOLOGY

1.1 Neural systems - branch of artificial intelligence

If one looks at the development of neural networks, one can see that this has
been influenced by the most diverse areas and that the neural systems have
developed into a largely independent discipline in recent years. The beginning of
this development was made by neurobiology, which still plays a decisive role in the
further development of the NN today. The first technically oriented contributions to
the development of the NN come from physics, where the attempt to describe
physical phenomena from the field of magnetism or thermodynamics with neural

methods has led to the development of some network types.

It was only when the potential for using neural networks to solve problems in
the field of artificial intelligence (Al) became clear that NN became a popular
research branch in computer science within a very short time and it can now be
described as the newest branch of artificial intelligence research. This is illustrated

in fig. 1, which shows the relationship between the NN and other Al research areas.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Performed [Bilai Y.S. N Page | Pagesall

Supervisor|Pantyeyev R. L. ‘ ‘

Automatic DC motor control system

Normcontrol |7upitsyn N. F. with Pl-speed neuroregulator 431 151

Dep. haed |[Sineglazov V. M.

Expert Natural-
systems language
systems
_ Neural Theorem-
Logik Networks proof
Robotics Image
understanding

Fig. 1 - Neural networks as a research area in artificial intelligence.

Neural networks can be used successfully, for example, for problem solving
in the field of image processing and natural language systems. The only area
unrelated is the area of logic and theorem proof. This is the case because this area
represents an approach that competes with NN. For example, one can find expert
systems that are either based on methods of logic or use neural approaches, but rarely
based on principles of logic and the NN at the same time (although such systems are
possible). Methods of theorem proof and logic are the basic algorithms for the classic

rule-based Al approaches [1].

In principle, Al research can be divided into two areas: The first research area
comprises the rule- and knowledge-based approaches just mentioned, which can
typically be found in expert systems in the form of a deduction component or in
language-understanding systems in the form of grammars. The second research area
deals mainly with methods of pattern recognition and the processing of human

sensory perceptions. In these areas, neural approaches were the quickest to gain

acceptance. This also applies to the field of robotics, where a large number of control

and regulation problems favor the processing of analog values with neural networks.

At a time when Al research was still mainly characterized by rule- and
knowledge-based approaches, the term “machine learning” had already emerged.
Here an attempt was made to develop Al systems that are based on logic-oriented
approaches and that can draw rules and knowledge bases independently from
examples. NN are, so to speak, a supplement to “machine learning” and have the

closest relationship to this area.

Many pilot applications in artificial intelligence research in the 1980s were
unsuccessful and had to be viewed as more or less failed. This was often due to the

following reasons:

1. Lack of ability to learn. Rule-based systems generally have no
learning ability, which in many cases meant that the rules had to
be laboriously determined with the help of a detailed system
analysis and then implemented in the form of a computer
program. It had the following consequences: The creation of an
Al application was associated with a great deal of time and
money, because not only does it take a long time to find and
implement all the rules, but testing and tuning the rules is also

very time-consuming.

2. Lack of adaptive learning behavior. Many systems in practice are
time-variant systems in which the application conditions change
continuously during the application phase. Therefore, many
applications require a system that is able to learn from new
examples created during the application phase. A rule-based

system is usually not easy to adapt. However, many Al systems

are initially designed as relatively simple systems and many
special cases that actually require new special rules are only found
over time through daily use of the system. The adaptive learning

behavior of such a system is therefore an important property.

3. Small ability to process fuzzy information. Many problems in
practice are “fuzzy problems”. The main problem with systems
that are not able to process fuzzy information is the problem that
it need exact input information in order to be able to derive results
from it. However, if the entries do not fall outside the specified
range of values, the system fails because it practically no longer

knows what to do now.

4, Runtime problems. This is a very simple, common problem.
However, this often leads to a rejection of the Al system, since a
simplified version would not meet the requirements and a full

version is too expensive.

5. Lack of integrability. This is one of the most common problems
of Al applications, because almost every implemented Al system
has to be integrated into existing software. It has been shown that
even when using software tools that expressly have easy-to-use
interfaces, considerable integration problems have arisen in many

applications.

Neural networks are not a “magic bullet” for eliminating such problems.
However, it has the potential to successfully run some applications that have failed
for the reasons mentioned above. Neural systems can often deal with the problems
mentioned above better than rule-based systems because they have the following

properties [1]:

1.2

Ability to learn. This quality is one of the main strengths and abilities of
the NN.

Adaptivity. Itis true that not all NNs can be created adaptively inasimple
way, but it is very easy to have an NN relearned with an expanded list of

newly acquired examples.

Processing of fuzzy information. This is the typical domain of neural

systems.

Massive parallelism and hardware implement ability of the NN have
already been discussed. The great potential of the neuro-algorithms in

terms of computing speed is thus available.

One advantage of the NN is that it is practically always about purely
numerical algorithms. With the help of most of the available software
shells, these can always be converted into programs that have been

created, for example, in the “C ++” programming language.

General considerations of neural control for industrial processes

Research in the field of neural networks has undergone a much-noticed

development over the past few years, and neural networks have become a popular

topic, particularly in the field of artificial intelligence research. This is particularly

the case because, with the help of neural networks, artificial intelligence systems can

be created that are based on the principle of human learning and are modeled on the

processing of information by the nervous system in biological organisms.

At the same time, however, neural networks are a relatively complex and

abstract area of research that is very difficult to grasp and understand for a newcomer

to this field. As a result, this important and promising area is not yet sufficiently

widespread, especially in the industrial sector [2].

The aim of the present work is therefore to convey the possible applications

of neural networks in electrical drive technology.

In the field of process automation, mostly linear controllers are currently used,
which are designed with the help of linearized, mathematical process models. For
strongly non-linear processes, however, this approach leads to limited results.
Another class of problems arises when the knowledge about the process can only be

roughly expressed mathematically.

By using methods for black box modeling, a model of the process can be
formed from measured values of process variables, which describes it with regard to
its input / output behavior. Artificial neural networks (ANN) are particularly suitable
here, as have a universal structure that is also able to adapt to non-linear behavior.
A number of different control structures, which are based on process models, enable
systematic control design for non-linear processes as well. A model is generated
based on process data, which is embedded in a controller structure and used to
regulate the process [3]. Since some of these control approaches are very
computationally expensive, it may be necessary to have the behavior of the
combination of controller structure and neural model learned by a neural controller

and thus to regulate the process.

2. GENERAL DESCRIPTION AND FUNCTIONING OF NEURAL
NETWORKS

Furthermore, the question should be clarified: What is a neural network? A
very general answer to this question could be: A system made up of interconnected
elements that can process information, called neurons. A general distinction is made
between biological and artificial neural networks. In the case of a biological neural
network, the neurons are nerve cells and the network is part of the nervous system
of a biological organism. The processed information is biological information,
which essentially consists of nerve impulses. In an artificial neural network, the
neurons are implemented as mathematical or physical models with several inputs
and outputs, whose mathematical behavior corresponds in principle to the biological
neurons. The information processed there can generally be referred to as a sample.
These can be signals, bit patterns or numerical values that are usually processed by
an artificial neural network in the form of an input pattern and output in the form of
an output pattern. Fig. 2 shows the schematic representation of an artificial neural
network. A somewhat detailed representation is given in Fig. 3. Fig. 2 clarifies the
basic functionality of an artificial neural network by representing the network as a
system for pattern processing that contains an external pattern as an input, processes

it internally and generates an output pattern from it.

The illustration in Fig. 3 shows the networking of the individual processing
elements (neurons) with one another. The fact that all connections between the
neurons contain weights is very important. In Fig. 3, some facts become clear that
are generally applicable to artificial neural networks. For example, Fig. 3 shows that
not all processing elements are interconnected. Also, not all neurons are exclusively

connected to other neurons. Instead, the neurons can be divided into three different

ACIC DEPARTMENT NAU 21 01 31 000 EN

Performed [Bilai Y.S. N Page | Pagesall

Supervisor|Pantyeyev R. L. ‘ ‘

Automatic DC motor control system

Normcontrol|7upitsyn N. F.

with Pl-speed neuroregulator 431 151

Dep. haed [Sineglazov V. M.

classes: Some of the neurons are directly connected to the external input

pattern, while another part of the neurons outputs the external output pattern [2].

A third part of the neurons is only connected to other neurons and thus has
only internal and no external connections. The processing elements of a neural
network are therefore usually divided into different layers, namely the input layer,
the output layer and the hidden layer. The number of neurons in this last layer can
be very large and it will be shown in the later course of this work that in many cases
the neurons of this layer can be divided into further layers, which are generally

referred to as "hidden layers".

Output pattern

A A A A A A

Neural
network
A A A A A A

Input pattern

Fig. 2.1 - Schematic representation of a neural network

With the help of these findings, a more precise definition of an artificial neural
network can now be made: A system for information processing with the help of
simple networked elements with directed inputs and outputs and weighted

connections that processes input patterns and generates the resulting output patterns.

How does information processing work in such a network? Without going into
detail in this introduction, one can already give some thought to this if one
remembers the formulation given above, that one can describe the behavior of
neurons with a mathematical model to which a certain transfer behavior between its
inputs can be described and can assign outputs, which is characterized by various
parameters, in particular by the weights of the neuron inputs. A transfer function

common in control engineering can serve as a model for describing a dynamic

system, the transfer behavior of which depends on the coefficients in the
denominator and numerator of the transfer function. A neuron therefore generates
an output signal from its input signals according to a mathematical rule. In this way,
the input pattern is transformed by the neurons of the input layer and the
corresponding outputs in turn become inputs of the neurons in the hidden layer,
where the input pattern is further transformed. With a large number of processing
layers, the input pattern is subjected to an extraordinarily complex transformation
that can completely change both the shape and the dimensions of the pattern and, as
a result, delivers the corresponding output pattern at the output of the neurons of the

output layer.

Output pattern

Output layer

Hidden
Layers

Input layer

Neuron

Input pattern

Fig. 2.2 - Detailed representation of a neural network

"There is a certain mathematical relationship between the input and output
patterns, which is determined by the parameters of the mathematical neuron models
and the network topology of the neurons. If stick to the example of control

engineering, it can still imagine a transfer function between the input and output

patterns, which is, however, very complex and non-linear and is determined by a
large number of parameters [5]. In a typical NN application, the problem of which
transmission behavior is present between the input and output pattern is usually not
investigated when the NN parameters are specified, but the opposite problem is
initially in the foreground, namely: How are the NN parameters chosen to achieve a
specific transfer behavior between the input and output patterns? This problem can
be solved by presenting the network with a more or less large number of sample
patterns at its input or output (sample pattern pairs) and using an optimization
process to try to optimize the network parameters so that it adopts the desired

transmission behavior.

Here, too, the example from control engineering is again appropriate, since
such a procedure corresponds in principle to a system identification and the
mentioned optimization method corresponds to a parameter estimation method. In a
neural network, this phase is called the learning phase or training phase, in which
the network learns from examples to adapt its parameters so that it adopts the desired
transmission behavior. The possibility of adapting the parameters of the neural
network to the sample pattern with the help of suitable mathematical procedures
gives the network its important property, namely the ability to learn from examples.
Since - as mentioned above - the network parameters primarily consist of the
weightings of the connections between the neurons, the weightings of a neural
network are responsible for the network's ability to learn. For an NN, learning
therefore means that it tries to set its weightings in such a way that it generates output
patterns from the presented reference input patterns that are as similar as possible to

the reference output patterns.

Once the network has learned the relationship between the reference input and
output patterns in the learning phase, it can be used in the actual application phase.
The NN with now firmly learned parameters is used to process a pattern processing
task in which the network is presented with input patterns that it has not yet seen in
the learning phase and it generates the desired output patterns from them [5]. These

can be tasks for recognizing patterns or for converting and storing patterns from a

wide variety of application areas.

In summary, it can be stated that a typical NN application always consists
of two phases: In the first phase - the learning or training phase - the weightings of
the NN are determined using examples for input and output patterns so that the NN
matches the systematic Can grasp the relationship between the sample pattern pairs.
In the second phase - the actual application phase - the network is presented with
input patterns with its learned weightings, from which it then generates output

patterns and thus solves a specific pattern processing task.

3. SPECIAL PROPERTIES OF NEURAL NETWORKS

The learning ability of neural networks already described gives the neural
algorithms a special property that most other algorithms do not have, but which is
very advantageous and often a necessary prerequisite for solving a variety of
problems - especially in the field of artificial intelligence. Because of this, neural
networks have grown in popularity very quickly and continue to evolve at a rapid
pace. However, neural networks have some other special properties that distinguish

them from other classical methods.
3.1 Ability to learn

In addition to the facts already mentioned about the learning ability of neural
networks, some interesting consequences can be derived from this fact. Nowadays
most tasks are solved with the computer in a procedure in which the person himself
has to analyze the task in detail and with the help of a program, the computer has to
teach the procedure to solve the task in complex individual steps. A computer based
on neural principles could one day be able to cope with even complex tasks by
automatically learning from sample solutions for this task. With such a computer,

the programming step would be replaced by the training step [3].

It can also be shown that, under certain conditions, neural networks are able
to systematically extract the essential relationships between these pairs of patterns,
which are common to all of these pairs of patterns despite their differences, from a
very large number of relatively different pairs of sample patterns. This is another
very important property, as it makes it clear that the network is not only able to
produce a pure “input-output mapping" between the input and output patterns, but

that it can learn the essential systematics of the pattern processing task and can run

ACIC DEPARTMENT NAU 21 01 31 000 EN

Performed [Bilai Y.S. N Page Pages all

Supervisor|Pantyeyev R. L. ‘ ‘

Automatic DC motor control system

Normcontrol|7upitsyn N. F.

with Pl-speed neuroregulator 431 151

Dep. head [Sineglazov V. M.

from a multitude of examples to a generalization of the individual copies

presented.

The NN can exploit this ability to generalize by being able to correctly process
input patterns in the application phase that it never saw in the training phase. Some
of these patterns can be completely different from the examples presented in the
learning phase and can still be processed correctly, as they correspond to the same
systematics of the learning examples and the network has recorded this general
systematics during learning. This ability to generalize learning examples to
examples never seen before gives the learning ability of the neural networks
robustness [4]. This is necessary in order to be able to successfully cope with real

applications from practice.
3.2 Ability to process incorrect and incomplete information

All network types have the ability to process incomplete and incorrect
information. In many cases, it can be generating a correct output pattern from an
input pattern that is noisy. In this way, incorrect input patterns can be processed
correctly or transformed into error-free input patterns. It also applies to incomplete
input patterns (this is the special case of incorrect patterns), which can be completed
with the help of NN. Here, too, neural networks are better than most “classic
methods”, since these methods usually fail in the case of incorrect or incomplete
entries. Ordinary systems are designed to process correct and complete data, while
neural networks can process so-called “fuzzy information”. However, a lot of
information in everyday life is “fuzzy”, for example a word that is spoken quickly,
which one did not understand exactly and which the human brain usually still
processes successfully and correctly. The human brain is particularly capable of
processing fuzzy information and it is therefore clear that NN can be used

particularly successfully in the machine processing of voice and image signals.

3.3 Adaptive behavior

In addition to the ability to learn during the training phase, some networks
also have the ability to continue learning in the application phase and consequently
have an adaptive behavior. In this case, the weightings found in the learning phase
are not kept constant in the application phase, but are continuously adapted to the
current conditions, i.e. readapted, with the help of the patterns that are presented to
the network during the application phase. But not all network types have this
capability. However, it is very desirable in many cases, for example when NN work
together with time-variant systems in which an adaptation to slowly changing

conditions is necessary.
3.4 Massive parallelism

The massive parallelism of networks can already be seen from the
consideration of Figure 3. This implies that the neurons can be viewed as
autonomous systems. Their internal operations are independent of each other and
they only communicate with each other through the weighted links. As a result, an
NN can be viewed as a network of independent, parallel working individual systems.
It has already been mentioned that the behavior of a neuron can be simulated with
the help of a mathematical or physical model. A mathematical model is realized with
the help of a computer program and the calculation of the entire network is carried
out as a simulation of all neuron models coupled to one another on a conventional
computer. However, due to the massive parallelism, one can also imagine realizing
the simulation programs for the individual neurons on an extra processor each, which
can be a very simple microprocessor. The overall network could then be
implemented as a connection between all individual processors. This would have the
advantage that the simulation programs of the individual neurons would then no
longer have to run sequentially on a conventional computer, but that they could run
in parallel on all available individual processors. An enlargement of the network
would then result in an increase in the number of processors and would not have a
disadvantageous effect on the computing time for the network, since each processor
can contribute its computing power to the overall performance of the network at

normal speed. This would significantly increase the overall performance of the
network [5]. It should also be noted that because of the very simple design of such
processors, the individual elements of such a hardware network would be very cheap
and large networks with very high computing power can be implemented cost-
effectively. The massive parallelism of neural networks thus represents a possible
approach for replacing conventional computers in the future with computers that

work in parallel, which can then provide a multiple of computing power.
3.5 Fault tolerance

The fault tolerance of the neural systems is closely linked to the property of
massive parallelism and hardware implement ability. In the case of a large and
massively parallel system made up of several thousand elements working in parallel,
there is a likelihood that in the case of a parallel computer in which a processor fails
during operation, this can lead to a total failure of the entire system because Each
processor in such a system assumes an important function and in particular the
failure of communication with the other processors can lead to considerable
problems. In such a case, the parallel computer could still be operated with a smaller
number of processors, but a disruption of the program currently running would
certainly be unavoidable at the time of the processor failure and all applications
would have to be adapted to the lower number of processors, e.g. by recompiling

and restarting.

In the case of an NN, it can be observed that in most cases a failure of
individual neurons does not lead to any significant change in network behavior. This
only applies in the event that the number of failed elements is relatively small
compared to the total number of neurons in the network. In most cases, the transition
to a significantly poorer network behavior is fluid, i.e. with an increasing number of
failed elements, a continuous change in network behavior is associated and a rapid

total network failure if a certain number of elements fails. not to watch.

This very advantageous, fault-tolerant behavior can be explained using some
of the properties of neural networks that have already been listed: Due to the massive
parallelism mentioned, the overall functionality of the network is very widely
distributed over a large number of elements. Each individual element (neuron) has a
very simple structure and does not have a particularly high level of performance on
its own. The effectiveness of these systems is achieved through the strong
connectivity of the elements with each other and the effective distribution of the task
to be solved over the total number of neurons, as well as the effective control of the
interaction of the neurons with the help of the weights. Therefore, the failure of a
simple element can hardly affect the overall behavior, as long as enough other
elements are still present. The fault tolerance is also favored by the fact that in most

cases the network processes fuzzy information.

The property of fault tolerance is particularly important for the applicability
of neural systems under critical operating conditions, in which an extremely high
availability of the system must be guaranteed. Examples of this are applications in
space, in flight safety, in the military sector, in the monitoring of complex technical
systems. In such cases, an NN can also be designed to be particularly fault-tolerant
by designing it deliberately oversized, i.e. using a larger number of neurons in the
"hidden layer" than is absolutely necessary. In this case, the overall behavior of the
is particularly well distributed and the failure of some elements is all the easier to

cope with.
3.6 Hardware implementability

One also thinks of the simulation of an NN with the help of a physical model,
e.g. realized by an analog electrical circuit or with the help of optical processes. It is
important to note that a hardware implementation can lead to an enormous advantage
in computing time. If one thinks of the advances in microelectronics and
optoelectronics, one can also easily imagine that neural networks with high

computing speed and a large number of neurons in the smallest dimensions can be

realized in this way. This has the following consequences for the practical
applicability of NN: NN can be “tailor-made” for certain applications and they can
be implemented as chips. Small dimensions and high processing speeds make real-
time applications possible under a wide variety of operating conditions without the
need for expensive control computers. Applications in the immediate vicinity of the
machine (e.g. in engines, in cars, etc.) can be implemented. These applications can
also be implemented inexpensively through mass production. Overall, it can be
stated that practically all the advantages that the development of microelectronics
has brought for the use of digital processors can be transferred in a similar way to

neural networks.

It is also interesting to note that NN are one of the few paradigms in Al
research that can be efficiently implemented in hardware. Such an attempt has also
been made, for example, for rule-based paradigms from the field of logic and
inference systems and has had an impact on the development of LISP machines, for
example. However, due to their high prices, large dimensions and incompatibility
with other systems, these have not been able to establish themselves. Most rule-
based systems are and will remain pure software implementations, which in most
complex applications requires the use of a computer and can thus lead to a restriction

of the range of applications.

4. FEEDFORWARD NETWORKS

The most common basic network architecture is that of feedforward networks.
A Net with the feedforward architecture only has connections between the neurons
in one direction, namely from one layer to a “higher” layer. Higher means here that
this layer is closer to the starting layer than a layer below it. A feedforward network
in Figure 5 would only have connections from the bottom to the top. There are no
connections between from one layer to a layer below, and there are also no
connections between the neurons of a layer [6]. In the normally used feedforward
network architectures, there are always only connections between one layer and the

next higher layer directly above it.

The network architecture shown in Fig. 4.1 is one of the most frequently used
architectures for feedforward networks, with two hidden layers and one input and
one output layer. The connection between the input pattern and the input layer only
serves to present the pattern and does not yet contain any weightings or totals.
Typical summations of the weighted inputs only come into play with the neurons of
the first hidden layer and are continued by the neurons of the second hidden layer
and the output layer. Our network (fig. 5) has three active layers that contribute to
the transformation of the input pattern into the output pattern. That is why one speaks

of a three-layer network.

Feedforward networks can have at least one active layer, but in many cases
they have three active layers. Two-layer networks or networks with more than three

layers are also used.

ACIC DEPARTMENT NAU 21 01 31 000 EN
Performed [Bilai Y.S. Page Pages all
Supervisor|Pantyeyev R. L. _
Automatic DC motor control system
Normcontrol|Tupitsyn N. F. with Pl-speed neuroregulator 431 151
Dep. head [Sineglazov V. M.

Feedforward networks have a number of other typical properties:

Inputs and outputs are continuous

Using the sigmoid function as an activation function

Mostly different dimensions of input and output patterns

Main application in pattern classification and assignment

Mathematical description as a static system (the output pattern is calculated

from the input pattern in a single "forward step”) [6]

Output pattern

Output layer

Hidden layers

Input layer

Input pattern

Fig. 4.1 - Architecture of a feedforward network

4.1 Model of a processing element

The detailed structure of a single processing element can be seen in Figure 6.

Input variables x,...x, are initially weighted with the weighting factors w,...w,. The

actual neuron is represented by the two functions G(x) and F(G). The function G(x)
is referred to as the propagation function and in most cases is a pure summation
function that provides the sum of the weighted input variables as the output variable.
An important property of neural networks is their non-linear behavior, which is

generated in that the output of the propagation function G(x) is further processed by

a non-linear function F(G), the so-called activation function.

Our neuron also contains an element at the input of the variable g, which takes
on the function of a “bias” and is fed to the input of the NN without weighting [10].
It ensures that with a wide variation of the inputs, the output of the processing

element is on average - depending on the choice of ¢ - is positive or negative.

In many cases, @ can be set to zero. But there are also some cases in which it

makes sense to set this variable to a value other than zero.

X, W, k_
— —_— |y

7 G(x) F(G)
Propagation Activation Output
ﬂ ﬂ function function
Inputs and Weightings
Bias

Fig. 4.2 - Structure of a single processing element

On the basis of the explanations given above, the following equation results

for the output variable y of the processing element:

y=F(Zn:Wi-xi+<9) (4.1)

i=1

In order to efficiently represent equation (1) in vector notation, the vectors

X and w can be introduced:

X=X, X5 ... X, 1" (4.2)

n?'

w=[w, W, ... w, 0] (4.3)

This means that equation (1) can also be written in the following form:

y=F(x"-w) (4.4)

From equation (3) it follows that the factor can formally be viewed as an
additional weighting factor which, based on equation (2), receives a constant input

variable from x,, =1. For the hard limiter, which is one of the most commonly used

activation functions, one gets:

1 for x"-w>0
y = (4.5)

0 for x"-w=<o0

and for the commonly used sigmoid function:

y=— (4.6)

- 1_|_e—(xT W+a)

This function converges to 1 for s —« and tends towards zero for s — —o.

4.2 Network layer model

Let's consider two network layers shown in Fig. 4.3. The output values in the
M neurons of the upper layer are calculated from the output values of the N neurons

of the lower layer.

Fig. 4.3 - Calculation of the outputs of a network layer

The current index of the upper layer neurons is j, where j goes from 1 to M

. The running index of the lower layer neurons is i, where i goes from 1 to N . Each
of the lower layer N outputs is connected to all of the upper layer neurons. Therefore
every neuron of the upper layer has N inputs which are identical to the N outputs
of the lower layer. If consider only one processing element j of the output layer, it

can calculate the corresponding output value with the aid of equation (4) [10]:

y; =F(" -w,) (4.7)

The vector w; thus contains the weightings of the connections from the N

neurons of the lower layer to the j-th neuron of the upper layer and is thus a vector

with the dimension N . These connections are shown in Figure 8. The weightings of
the individual connections are not shown, except for the weighting w,;, which
represents the weighting between the i-th neuron of the lower layer and the j-th
neuron of the upper layer. Overall, we have M weighting vectors w; (j=1, ..., M)
each with N components and thus a total of N-M weighting factors. Each vector

w; contains the weights between all neurons of the lower layer and the j-th neuron

of the upper layer. That's why it can write:

Wi =[w, Wy, .o Wy T (4.8)

With the help of equation (7) one can calculate the output value for each

neuron j of the upper layer. If one considers equation (7) for all output values

j=1 ..., M, one can write:

[V Yoo oo Y l1=F X -[wy, Wy, ..., Wy, 1) (4.9)

or with the introduction of the weighting matrix w :

W=[w, Wy, ..., w,]1=| (4.10)

The number of rows in the weighting matrix thus corresponds to the number
of neurons in the lower layer and the number of columns corresponds to the

number of neurons in the upper layer.

4.3 Model of the entire network

Let us describe a two-layer network, which is shown in Figure 9. The two-
layer network can be viewed as two single-layer networks. The first network thus
generates the output vector x from the input vector y. The weightings of the first
layer are combined in the matrix W,. The output vector obtained is treated by the
second layer like a new input vector and made available to all neurons of the second
layer with the weightings contained in the matrix W, as shown in Figure 9. The
equation (12) for the output vector z can be interpreted as a double matrix

transformation with non-linear distortion of the input vector.

Layer 1: y' =F(xX"-W,) (4.11)

Layer 2: 2" =F(y"-W,)=F(F(X"-W,)-W,) =G(x") (4.12)

It can be seen that this transformation G(x') depends only on the assumed
nonlinear activation function F of the neurons and in particular on the elements in

the matrices W, and W, .

With these explanations, the basic principle of learning in neural networks
is made clear once again: The parameters of the complex transformation G, which
consist of the weightings in W, and W, are determined in such a way that when
example vectors x are presented, the associated example vectors z are as good as
possible can be simulated and the error that occurs is as small as possible. It follows
that the learning process consists of determining the parameters in the weighting

matrices.

<::: Vector z
<::: Layer 2

<::“ Vector y
<::“ Layer 1

T T T T <::“ Vector x

Fig. 4.4 - Two-layer neural network

4.4 Error back propagation

Backpropagation is the most common method of error recovery. But there are
also some modifications of this feeling: quick propagation, elastic spreading [3].
The backpropagation network selected from layers with entry, exit and hidden
rights (Fig. 10). The signal transmission is called in the forward direction. The
actual and setpoint values are checked at the output. If this causes an error, it is
converted backwards so that the weights of each layer are corrected. But the

convergence of trust is not seen to be accomplished.

Now let's look at learning after backpropagation:

1. Initialize weights

2. Enter the learning file with neuron inputs x, (i=1...N) and the desired output

d for all learning patterns M :

(Xl'XZ’XN’d)17(Xl’X2’XN’d)Z """ (Xl’XZ’XN’d)M (413)

X
Xy by
V2
Va2
Input layer with
Xy N2 neurons
TT Input layer with
N1 neurons
Input layer with
N neurons

Fig. 4.5 - Two-layer neural network with N inputs and N2 outputs

3. Calculate input transmission in forward direction

3.1) hidden layer (Outputs «;, and v,):

ij™N

N
a; =) WX +0, vi=f(a;) j=@..N) (4.14)
i=1

3.2) Output layer (Outputs «,, and vy,):

N;
a =YW, 46, yo=fla) k=(..N,) (4.15)
1

j:
Calculate the total error for all learning patterns M n:

E=YE%=>(d,-y,)’ (4.16)
p=1 p=1

Calculate weights and thresholds value change respectively:

5.1) Output neurons:

W ke = W jk + AW jk O ey = O + A, (4.17)
Aw, =n-E; X, if E,=(d;-x)-x;-(1-x)) (4.18)
AO =n-E;-X, (4.19)

5.2) hidden neurons:

Wijneuy = Wij + AW, Oinewy =0 + A0, (4.20)
Aw; =7-Ei-x; if EN=0Q E W) X, -(0-X;) (4.21)
A6, =n-E" -6, (4.22)

This ends a learning step.

5. OVERVIEW OF NEURAL REGULATIONS AND CONTROLS

FOR COMPENSATING NON-LINEARITIES

The use of neural networks for regulation and control is connected with the

ability to recognize the state of dynamic systems.

The network inputs are state variables of the control loop. The network

outputs are manipulated variables or characteristic values of the controller. The

supervised learning methods are mainly used as the learning method. This creates

a new feedback, namely the “learning feedback”, which works separately from

the control loop feedback [8].

The concepts of control with NN are listed below:

1. State control

2. Predictive regulation

3. Adaptive control

With regard to the implementation of these concepts, the following rule

structures can be designated:

1. One-network approach

2. Two-network approach

ACIC DEPARTMENT NAU 21 01 31 000 EN
Performed [Bilai Y.S. N Page | Pages all
Supervisor{Pantyeyev R. L. _ |
Automatic DC motor control system
Normcontrol[7upitsyn N. F. with Pl-speed neuroregulator 431 151
Dep. head [Sineglazov V. M.

3. Regulator network approach

Neural state control is shown in Fig. 5.1. With this concept of control with

NN, the network receives the control difference e(t) and its derivatives at its input,

as well as the vectors of the manipulated and controlled variables y(t) and x(t).

v Controlled | —"4—5()e—
A-Net

system

&

Wy Control loop A

Supervised learning

Fig. 5.1 - Neural state control. One-network approach

The output of the NN is the manipulated variable y(t), which is why the

network is referred to as an “action network” or “A network” in this case.

In order to optimize the control process, the trained A network should form
an inverse transfer function compared to the transfer function of the controlled
system [5]. Therefore, the task of the neural network is to set its own weights after
the monitored learning so that the difference between the desired output d and

the current output x is minimal.

The next procedure is shown in Fig. 5.2. This method belongs to the
category of predictive control and in this case is implemented with a two-network

method.

ry

%

s o » Controlled | — oo »
& - e ‘A-Net. system
*w,
i
@?ﬁ’eﬁ
A

Control loop +

Unsupervised learning

Fig. 5.2 - Neural predictive control. Two-network approach.

29

First, the “emulator network™ (“E network™) is trained with the inputs and
outputs of the controlled system. The A network is then trained, as in the previous

case of the neural state control, but this time by the E network.

This procedure is referred to in the literature as “Model Predictive Control”

[6] and is a powerful procedure despite a long learning period.

The combination of both methods is also possible in that the A network is
not trained by the E network, but by monitored learning directly from the
controlled system to an inverse transfer function. Such procedures are referred to
in the literature as "Internal Model Control" [6].

The adaptive neural control is shown in Figure 5.3 using the controller-
network method. The weights w;, of the NN are here equivalent to the controller

setting parameters.

o+ . v x
—O—b Regulator | ¢ ——»| Controlled | —9—9o—»
& - e Sysiem
& -
Kpp. T,
@2\’& A
Control Ioop T

Unsupervised learning

Fig. 5.3 - Neural adaptive control. Regulator network approach
This process is modified when the controller is replaced by an A network.

The NN for the control can again be implemented with one or two network
processes. Fig. 5.4 shows a model-based control system with two networks. As

with the new regulation, a distinction is made between the following two
operating modes, learning and controlling.

Taxes L

Controlled
Systemt
Learn /

¥

¥

Supervised learning

Fig. 5.4 - Neural control. Two-network approach

Inverse

L J

Transfer -
transfer function n G Junction G
X, Taxes Taxes
soli "
+
_— @0 —— Controlled
- © system
Learn 4 Learn
I_.l.
Supervised learning
Learn

Fig. 5.5 - Neural control. One-network approach

¥

6. CLASSIFICATION OF THE TYPICAL NON-LINEARITIES IN
PRACTICAL ELECTRIC DRIVE SYSTEMS

This chapter looks at typical non-linearities in practical electric drive

systems and their classification.

Definition of a non-linear system: If the system has non-linear transfer

elements, then this system is non-linear.

If there are input functions or real numerical values for a transfer element,
so that either the superposition principle or the amplification principle is not

fulfilled, then the transfer element is called non-linear [13].

In practice, non-linear transmission elements occur in almost all technical
applications. In nature, nonlinear systems are the rule and linear systems are the
exception [13]. However, linearization of most of the non-linear characteristics is

permissible, so that often only one non-linear element has to be taken into account.

Non-linear control loops can only be examined in the time domain or the
state (phase) level, while in linear systems an analysis and synthesis is possible in
the frequency domain. Powerful design tools are known in linear theory, but no
uniform non-linear systems theory exists. However, there are certain methods

mainly for analyzing the stability of nonlinear systems:

ACIC DEPARTMENT NAU 21 01 31 000 EN
Performed [Bilai Y.S. N Page | Pages all
Supervisor{Pantyeyev R. L. _ |
Automatic DC motor control system
Normcontrol[7upitsyn N. F. with Pl-speed neuroregulator 431 151
Dep. head [Sineglazov V. M.

a) Method of harmonic linearization,

b) Phase level method,

c) Lyapunov's second method,

d) Stability criterion according to Popow.

There are various options for classifying non-linear transmission elements.
The classification is often based on mathematical criteria, only taking into account
the form of the differential equation in question. The second possibility is to use
the most important non-linear properties that occur in particular in technical
systems for a classification. For this purpose, one considers continuous and
discontinuous non-linear system characteristics, which are compiled in Table 1.
A distinction is made between clear characteristics (cases 1 to 4) and ambiguous
characteristics (cases 5 to 7). The characteristics are often symmetrical to the
origin of the coordinate system. A subdivision into unwanted and wanted non-

linearities is often recommended.

Table 6.1 - List of the most important non-linear terms

Limitation

b—

a A}

-b

Two point behavior

ll".’-
b
) b -b for x,<0
X, =bsgnx, =
. ¢ anx b for x,>~0
-1 -b
Three-point behevior
4'a
b
| — -b for x,<-a
3 -a - X, = 0 for —a<x,<a
a X, b for x, >a
—_— -b
Dead zone

-a A
/ a X,

L

(x, +a)tana for x,<-a

A= 0 for —a<x,<a

(x,—a)tana for x, >a

AV

!

-b for x,=<-a
b sgn(x, —asgnx,)
for —a<x,<a
b for x ,>a

Three-point behavior with hysteresis

A
b4

X,

Complex and difficult to visualize

6 -a d))
> mathematical formulation
a a X,
b
Gearless
A ‘_—;
Complex and difficult to visualize
7 / i . mathematical formulation
Any non-linear characteristic
A "‘.1
8 _ X, = f(x,)
r.\r
Quantization
Xa can only gradually assume
9

discrete values

10

Module formation

X

a

v

X, =X

Squaring

1 \ / Ka =X,
Multiplication X, = Xy X X,
12 (Division) x, = a
X

No physical system is exactly linear in the mathematical sense. The non-
linearity can be weak and therefore negligible, it can also be strong and have a
negative (sometimes positive) effect on the dynamic behavior of a system. On the
other hand, non-linear elements are sometimes deliberately used in controller
design, not only because it is easy and cheap to implement (e.g. switching
controllers), but also to achieve special system properties that cannot be achieved

with linear elements.

As already mentioned, when analyzing and synthesizing nonlinear systems
one will often start directly from the representation in the time domain, i.e. one
must try to solve the differential equations. Simulation methods are an important
aid here. Digital and hybrid computing systems are particularly suitable for
simulating non-linear systems; The analog computer can also be used for minor

problems.

7. MODELING AND SIMULATION OF DRY FRICTION

Depending on the frequency response of linear control loop elements, a
description function is defined for non-linear control loop elements. This function
takes linearization into account and is particularly suitable for considering the

stability of control loops using the two-position curve method.

One has to say that the linearization of a non-linear characteristic is
successful if the change in the input signal is only slight. Then it is sufficient to
replace the characteristic with the tangent at the respective operating point.

However, this method fails in the case of characteristics with discontinuities.

If it considers the control loop in the frequency domain, a linearization can

be carried out under the following conditions:
1) The control is in the steady state
2) Restriction to only one non-linear element in the control
3) The calculation refers to the ideal non-linear characteristic

With a sinusoidal input signal, the input and output variables are continuous
oscillations. The output signal x, of the non-linear element is then periodic, but
not harmonic. It contains harmonics of different frequencies (2w, 3w,..), which

can be specified with the Fourier analysis [12].

Each control loop has damping PT1 elements so that the harmonics can be
neglected. Therefore one can restrict oneself to the consideration of the

fundamental oscillation x,, and has carried out a practically applicable

linearization.
ACIC DEPARTMENT NAU 21 01 31 000 EN
Performed [Bilai Y.S. N Page Pages all

Supervisor|Pantyeyev R. L. \ ‘

Automatic DC motor control system

Normeontral| Tupitsyn N, F. with Pl-speed neuroregulator 431 151

Dep. head [Sineglazov V. M.

The description function mentioned above, also known as harmonic
balance, is only dependent on the amplitude of the input variable. Reduced to the

fundamental oscillation of the output variable is defined:

oy Xa(ot)
N (Xe) - Xe ((Ot) (71)

In complex notation is input and output size:
Xal=(a)t)=a1'ej((ut+7r/2)+bl'eja)t ’ (72)
X (0f) =%, e (7.3)

This results in a form of the description function that is used for further
calculation:

NG =2 (7.4)

e

The dry friction corresponds approximately to switching between two

specified signal states (Fig. 7.1).

Y

Fig. 7.1 - Characteristic curve of dry friction (two-point behavior)

Such behavior is called two-point behavior. Corresponding behavior can also
be found with bimetal switches, solenoid valves, Schmitt triggers in analog and

digital technology, with relay circuits and also as two-point controllers.

Xa_{is for x, >0 (7.5)

for x, <0

Here, the Fourier coefficient becomes a, =0, because the static characteristic

is an odd function. For b, then follows:

b ==+ X, (¢)-sin pde (7.6)

SN

O ey

Inserting equation (20) into the integral gives:

b, = s (7.7)

Thus the descriptive function of dry friction (two-point behavior) is:

N(R,)=—— (7.8)

The corresponding locus (Fig. 7.2) of the description function runs on the

positive real axis of 0... for x,/%, =0....

=

.-'.=|-'"

-

Fig. 7.2 - Locus curve for the descriptive function of dry friction (two-point

behavior)

A signal flow diagram shown in Fig. 7.3 is also considered. This is the signal

flow diagram for the cascade control of the speed of a DC drive. Here the current

control loop is set according to the optimum amount and simulated by a PT-1

element. The speed control loop is set according to the symmetrical optimum. With

the help of this structure, the influence of dry friction on the drive speed can be

investigated. All parameters for this system and for the further considered signal

flow plans are given in table 7.1.

i

(1).‘ ol

- TO(;)JU]' + 2TZ;p

K

1+ Tf”ﬂl‘p v ~
i (7 — k£ —bO—» PRz . ”"—>
M

@

Fig. 7.3 - System of speed control of a direct current drive with dry friction

ist

Table 7.1 - Parameters of the electric drive system

Name of the parameter Parameter Size
Time constant in the counter of the TF of the PI
To 0.008 s
controller
Time constant in the denominator of the TF of the
To, 0.0037 s
PI controller
Equivalent time constant of the route Tsi 0.001 s
Torque constant Kk 0.28 Vs
Connection resistance R, 0.65 O
Mechanical starting time constant Ty 0.02 s
Rated current of the motor Iy 14 A
Rated speed w, 251.2 s
Gain factor in the speed feedback K. 1
Coefficient of sliding friction
The moment of sliding friction: M. =b -sign(w)
Rolling friction coefficient \
b, 0.002 =11

Moment of rolling friction: M, =b, - @

After simulating the system with and without dry friction, the following

transition processes are obtained for the speed:

350

300

250

200

150

100

50

0

1

/BN

/

\\

0

0.01

0.02

0.03

0.04

0.05

0.065S

Fig. 7.4 - Step responses of the control loop. Curve 1 system without dry

friction. Curve 2- system with dry friction (friction is greatly increased)

From Fig. 7.4 it can be seen that the overshoot in the system with dry friction

is smaller than the overshoot in the system without dry friction.

8. MODELING AND SIMULATION OF DRY AND VISCOSE
FRICTION

The static characteristic of dry and viscous friction is shown in Fig. 8.1.
Internal viscous friction, which is proportional to the deformation speed of the

shafts, cables, couplings, etc., has a major influence on the dynamic processes in the
mechanical system.

Fig. 8.1 - Characteristic curve of dry and viscous friction

The output variable can be seen in Fig. 16:

{ X, + X, -Sing for X, =0
X =

a . (8.1)
Xy + X, -Sin @ for X, <0
Here the Fourier coefficient becomes a, =0. For b, results:
1% , 1% :
b == x,(p) sin pdg+=- [x,(p)-sin p do» (8.2)
7 0 4 V3

ACIC DEPARTMENT NAU 21 01 31 000 EN

Performed |Bilai Y.S. N

Supervisor|Pantyeyev R. L. \ ‘

Page Pages all

Automatic DC motor control system

Normeontrol|Tupitsyn N. . with Pl-speed neuroregulator

431 151

Dep. head

Sineglazov V. M.

If you put the equation in the integrals, you get after calculation:

b= 4% g (8:3)

Thus, the descriptive function is dry and viscous friction:

NGR) =20 g (8.4)

7K,

The corresponding locus of the description function is shown in Fig. 8.2:

Im

L
¥

Fig. 8.2 - Locus curve for the descriptive function of dry and viscous frictio

The locus of the description function runs on the positive real axis from 1

to oo or plotted over the quotient n x,/%, from 0t0 .

The signal flow diagram shown in Figure 8.3 is used to investigate the

influence of dry and viscous friction on the transition processes of the speed. All

parameters for this system are given in table 7.1.

1+7,p

T(}mp 1+2T2fp

v

Fig. 8.3 - System of speed control of a direct current drive with dry and viscous

friction

After simulating the system with and without dry and viscous friction, the

following transition processes are obtained for the speed:

1
350
2 \

300 // \
250 // AN —
200 /
150
100 /

50

0

t,s
0 0.01 0.02 0.03 0.04 0.05 0.06

Fig. 8.4 - Step responses of the system. Curve 1 system without friction. Curve

2- system with dry and viscous friction (proportion of viscous friction is increased)

9. USE OF NEURAL NETWORKS TO COMPENSATE THE DRY
FRICTION

In order to compensate for the influence of dry friction in the system, which
iIsshown in Fig. 9.1, “Direct inverse control” is used in this work. But first an inverse

model of the system should be built.

To get the inverse model, the following scheme is used:

(S)

v

Figure 9.1 - Principle of the formation of an inverse model
The following relationship is used in the formation of the inverse NARX model:
U(k)=N(y(k+1), ...,y(k=ny +1), u(k-1), ...,u(k—n,+1)) (9.1)

The signal flow diagram, which illustrates the method of direct inverse

control in, for example, n, =2 and n, =2 is shown in Fig. 9.2:

ACIC DEPARTMENT NAU 21 01 31 000 EN

Performed [Bilai Y.S. N Page | Pages all

SupervisorfPantyeyev R. L. ‘ ‘

Automatic DC motor control system

Normeontrol|Tupitsyn N. F. with Pl-speed neuroregulator

431 151

Dep. head [Sineglazov V. M.

;LI'!/'E'I-_ Air_)l

. il -1 .
vk} i .
> u(k) k)
NN > ROUTE >
.-I'I'&"('ﬁ‘_-l_ 1)
- * HL
] wkl | Mot

Fig. 9.2 - Direct inverse control
When using this method, the following equation is used in the control phase:
G(K) = N(Ygon (k +2), y(K), ..., y(k=n, +1), G(k-1), ...,0(k-n, +1)) (9.2)

In the application, the setpoint y(k +1) is entered instead of the value vy, (k +1). The

transfer and function of the series connection of the inverse model and the line
theoretically tends to be one. In this way, non-linearities present in the system can

be compensated [15].

In our case, the controlled system is part of the system shown in Fig. 7.3, from
Iy t0 o . It'salso n =n, =3. The program for training the network is given in
Appendix B and all commands used in this program are clarified in Appendix A

(experiment instructions for laboratory work).

The system with the neurocontroller is shown in Figure 9.3.

N
L
A 4

st

v

2
3
Y
=~

A 4

Neural 1+ QTZ,P
network

r.
|
v VY

S
r.
N\
v

K

@

Fig. 9.3 - System with dry friction and the neurocontroller

After the simulation of this system, the transition processes for the speed are
obtained, which are given in Figure 9.4. This picture shows the work of the system
with the neurocontroller from a setpoint generator. It can be seen that the setpoint
and the actual value of the speed almost overlap and the non-linearity is
compensated. From Fig. 9.5 it becomes clear that the actual speed value is delayed
by one discretization step (discretization step = 0.001 s). The error of the actual speed
value compared to the speed setpoint is approximately 0.02%. It corresponds to the

direct inverse control.

500 n
A
=T

100

-100

|
-200 \ [_’
-300 \ J

-400

t,s

0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 9.4 - Work of the system with the neurocontroller from a setpoint

generator

350

/

250 S—

Setpoint /

S/
1/
I

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

actual value

Fig. 9.5 - Enlarged part of the transition processes when the system works with the

neurocontroller from a setpoint generator (discretization step = 0.001 s)

The associated motor current and actual speed value curves are shown in Fig.

w, S
I,A 450

,S
400

350
Motor turrent /
300

Rotation gpeed

il
100 W\ A

ol ALY i
/LI TV YVe |

-50

t,S
0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Fig. 9.6 - Motor current and actual speed value curve

10. USE OF NEURAL NETWORKS TO COMPENSATE DRY AND
VISCOSE FRICTION

In order to compensate for the influence of dry and viscous friction in the
system, which is shown in Fig. 10.1, direct inverse control is also used in this case.
First, an inverse model of the controlled system is also built. A part of the system

from 1, to o, is taken as the controlled system. It's also n,=n, =3. The program

for training the network is given in Appendix B and all commands used in this

program are clarified in Appendix A (experiment instructions for laboratory work).

The system with the neurocontroller is shown in Fig. 10.1.

L Z—l r >
> Z_I —> _[7\ 1 wm‘l
wmh‘ > >
» Neural 1+27,,p
| network
N
L Z_I B
Kﬂ)
Fig. 10.1 - System with dry and viscous friction and the neurocontroller
ACIC DEPARTMENT NAU 21 01 31 000 EN
Performed [Bilai Y.S. N Page | Pages all
Supervisor{Pantyeyev R. L. _ |
Automatic DC motor control system
Normcontrol[7upitsyn N. F. with Pl-speed neuroregulator 431 151
Dep. head [Sineglazov V. M.

After the simulation of this system, the transition processes for the speed are
obtained, which are given in Fig. 10.2. This picture shows the work of the system
with the neurocontroller from a setpoint generator. It can be seen that in this case the
setpoint and the actual value of the speed almost overlap and the non-linearity is also
compensated. From Figure 10.3 it becomes clear that the actual speed value is
delayed by one discretization step (discretization step = 0.001 s). The error of the
actual speed value compared to the speed setpoint is approximately 0.02%. It

corresponds to the direct inverse control.

A
500

f
400 {1 &

Nin
SR AR A

100

-100

-200 [_{
-300 \ J

-400

t,s

Fig. 10.2 - Work of the system with the neurocontroller from a setpoint

generator

/.

250 —

Setpoint_L——"_ |

200

Actual value
150

wl
/

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

50

Fig. 10.3 - Enlarged part of the transition processes when the system works

with the neurocontroller from a setpoint generator (discretization step = 0.001 s)

The associated motor current and actual speed value curves are shown in
Figure 10.4.

w, 57!
450
I, A

400

350
Motor gurrent /
300

Rotation $peed

250 l

200 ’\
”\Mﬂ
AT 1l
0 'VVV\/ \/\/\/\/\/\/\/\/\/\/ | t,s

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07

Fig. 10.4 - Motor current and actual speed value curve

Conclusions

In this thesis, two drive systems with the cascade control of the speed are considered.
Dry friction is noted in one of these systems and dry and viscous friction is noted in
the other. An inverse neuro-model was built on for the controlled system of each
system. Then the obtained inverse neuro-model is built into the system according to
the method “Direct inverse control” and used as the speed controller. The transfer
and function of the series connection of the inverse model and the segment tends to

be one. This compensates for non-linearities that exist in the system.

The method of mathematical modeling with a computer and the programming
package MatLab 5.2 / Simulink, which is oriented towards the modeling of

automated electric drive systems, was used to investigate the drive systems.

The modeling of the speed control systems carried out with the
neurocontroller has shown the effectiveness of direct inverse control in non-linear

electric drive systems.

The obtained non-linear electric drive systems with the neurocontroller, which
compensates for the non-linearities in the systems, follow the setpoint with the static
error 0.02% and are delayed by one discretization step. These results correspond to

the method of direct inverse control.

On the basis of this work, an internship experiment has been developed to
examine the performance of neurocontrollers in non-linear electric drive systems,

which can be used in the learning process at the technical faculty.

References

. Zakharian, S .; Ladewig-Riebler, P .: Controller setting with artificial neural
networks, symposium ‘“Modern methods of regulation and control design”,
Otto von Guericke University Magdeburg, 2007.

. Wassermaan P. Neural Computing — Theoty and Practice. Van Nostrand
Reinhold, 1998

. Scherer, A .: Neural Networks. Basics and Applications, Vieweg Verlag,
2017.

. Palis, F .; Schmied, Th .; Buch, A .: Fuzzy and Neurocontrol of Mechanically
Coupled Drive Systems. 2nd Magdeburg Mechanical Engineering Days,
September 14th and 15th, 2005. Article No. 6 (4 pages).

. 3aeHueB WM. HeilpoHHbIli ceTH: OCHOBHBIE MOJEIU. YueOHOE mocolue.
Boponexckuii rocyJapcTBEHHbIA YHUBEPCUTET, 1999.

. Bishop C.M. Neural Networks for Pattern Recognition. Oxford University
Press Inc., 2003.

. Zakharian, S .. Neural networks for engineers: work and exercise book for
control engineering applications, Vieweg Verlag, 2008.

. Kanamankos B.U .; Ilamuc @ .; Jenucenko U.B .. Teopus Helipocereu:
yuebHoe nmocobue, Jlonerk, Marneoypr, Joul TY, 1997.

. Kanamanko B.M .; [Tanuc @ .: BBeneHue B MHTEIUIEKTYyaJbHBIE CUCTEMBI

nporpaMmmupoBanus: yueoHoe nocoodue, Kues, MCMO, 1997.

10. Pinkus A. Approximation theory of the MLP model in neural networks. Acta

Numerica, 1999.

11.Jung, D .: Controller setting with neural networks, diploma thesis, FB MND,

FH Wiesbaden, 2017.

12.Bavarian, B .: Introduction to Neural Networks for Intelligent Control, IEEE

Control Systems Magazine, 4 (2008).

13.Haykin S. Neural Networks: A Comprehensive Foundation. NY: Macmillan,

1994.

14.Crapoctua C.C .: Meroauueckue ykazaHUs TO O(GOPMIICHUIO TEKCTOBOM
nokymentamuu, Joneuk, Jonl ' TY, 1997.

15.Zurada J.M. Introduction To Artificial Neural Systems. Bostom: PWS
Publishing Company,1992

16.Vogel, J .. Electric Drive Technology, 6th, completely revised. Ed.,
Heidelberg: Hiithig, 2018.

17. T'anymxkun A.W. Hetipokommnbiorepsl. Ku. 3. M.: UITPX, 2000.

18. DARPA Neural Network Study, AFCEA International Press, 1998.

APPENDIX A.

Network training program (dry friction system)
11=[0; i(1:length(i)-1)];
i2=[0; i1(1:length(il)-1)];
wl= [w(2:length(w));w(length(w))];
w2= [0; w(1:length(w)-1)];
w3= [0; w2(1:length(w2)-1)];
P=[il";i2",wl;w"w2";w3";
size(P)
T=i';
size(T)
net=newff([-2.1327e+003 2.1763e+003;

-2.1327e+003 2.1763e+003;

-953.4054 661.0935;

-953.4054 661.0935;

-953.4054 661.0935;

-953.4054 661.0935],[1],{'purelin'});
net.trainParam.goal=0.01;
net.trainParam.epochs=1000;
[net,tr]=train(net,P,T);
P=[il"i2" ;w1 ;w";w2";w3";
y2=sim(net,P);
plot(t,y2,t,i);
grid on;

Z00m on,

APPENDIX B.

Network training program (dry and viscous friction system)
11=[0; i(1:length(i)-1)];
i2=[0; i1(1:length(il)-1)];
wl= [w(2:length(w));w(length(w))];
w2= [0; w(1:length(w)-1)];
w3= [0; w2(1:length(w2)-1)];
P=[i1l"i2" ;w1 ;w";w2",w3";
size(P)
T=I"
size(T)
net=newff([-2.1296e+003 2.1692e+003;

-2.1296e+003 2.1692e+003;

-301.2456 552.1529;

-301.2456 552.1529;

-301.2456 552.1529;

-301.2456 552.1529],[1],{'purelin});
net.trainParam.goal=0.0001;
net.trainParam.epochs=1000;
[net,tr]=train(net,P,T);
P=[il"i2" w1l ;w";w2",w31;
y2=sim(net,P);
plot(t,y2,t,i);
grid on;

Z00m on,

