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Реферат 

Пояснювальна записка до бакалаврскої кваліфікаційної роботи: 

Система автоматичного керування двигуном постійного струму   з ПІ-

нейрорегулятором швидкості 

74 с., 31 рис., 2 табл., 2 додатка, 18 джерел 

Об’єктом розробок і досліджень даної роботи є нелінійна система 

підпорядкованного регулювання швидкості тиристорного електроприводу 

постійного струму з нейрорегулятором. 

Ціль роботи  синтез нелінійної системи підпорядкованного регулювання 

швидкості з урахуванням сухого тертя, а також системи з урахуванням сухого та 

в’язкого тертя; розробка для кожної з цих систем інверсної нейромоделі і 

використання її як нейрорегулятор швидкості, компенсуючий вищеназвані 

нелінійності.  

Розробки проводились на основі теорії використання інверсних 

нейромоделей систем як нейрорегулятори в цих системах. Для дослідження 

розробленої системи був використаний метод математичного моделювання на 

персональному компьютері з використанням програмного пакету MatLab 

5.2/Simulink, орієнтованого на моделювання систем автоматичного регулювання 

електроприводів. 

В результаті роботи були синтезовані нелінійні системи підпорядкованного 

регулювання швидкості приводу, побудовані нейромоделі синтезованих систем. 

Для регулювання нелінійних об’єктів за допомогою отриманих нейромоделей 

був використаний метод “Direct inverse control”. 

Проведене цифрове моделювання розроблених систем виявило 

ефективність використання метода “Direct inverse control” в нелінійних системах 

электроприводу. Отримані нелінійні системи з нейрорегулятором, 

компенсируючим існуючі нелінійності, відслідковують завдання з статичною 

помилкою 0.02% і з відставанням при цьому на один крок дискретності.  

ТИРИСТОРНИЙ ЕЛЕКТРОПРИВОД ПОСТІЙНОГО СТРУМУ, 

СИСТЕМА ПІДПОРЯДКОВАНОГО РЕГУЛЮВАННЯ ШВИДКОСТІ, 

ІНВЕРСНА НЕЙРОМОДЕЛЬ, НЕЙРОРЕГУЛЯТОР, НЕЛІНІЙНІСТЬ, СУХЕ 

ТЕРТЯ, В’ЯЗКЕ ТЕРТЯ, ДИСКРЕТНІСТЬ, ЦИФРОВЕ МОДЕЛЮВАННЯ 



Abstract 

Explanatory note to the bachelor's qualification work: 

Automatic DC motor control system with PI speed neuroregulator 

74 pp., 31 figs., 2 tables, 2 appendices, 18 sources 

The object of development and research of this work is a nonlinear system of 

subordinate speed control of a thyristor DC electric drive with a neuroregulator. 

The purpose of the work is the synthesis of a nonlinear system of subordinate 

speed control taking into account dry friction, as well as a system taking into account 

dry and viscous friction; development for each of these systems of an inverse 

neuromodel and its use as a neuroregulator of speed, compensating for the above 

nonlinearities.  

Developments were made on the basis of the theory of using inverse neuromodels 

of systems as neuroregulators in these systems. To study the developed system, we used 

the method of mathematical modeling on a personal computer using the software 

package MatLab 5.2 / Simulink, focused on modeling systems for automatic control of 

electric drives. 

As a result, nonlinear systems of subordinate drive speed control were 

synthesized, neuromodels of synthesized systems were built. The "Direct inverse 

control" method was used to control nonlinear objects using the obtained neuromodels. 

The conducted digital modeling of the developed systems revealed the efficiency 

of using the “Direct inverse control” method in nonlinear electric drive systems. The 

obtained nonlinear systems with a neuroregulator compensating for the existing 

nonlinearities track the task with a static error of 0.02% and with a lag of one step of 

discreteness. 

THYRISTOR DC ELECTRIC DRIVE, SLAVE SPEED CONTROL 

SYSTEMS, INVERSE NEUROMODEL, NONLINEARITY, DRY FRICTION, 

VISCOUS FRICTION, DISCRETE, DIGITAL SIMULATION 
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Glossary 

Cb  —  Coefficient of sliding friction 

            The moment of sliding friction: )(ωsignbM CC   

Nb  — Rolling friction coefficient 

           Moment of rolling friction: ωbM NN   

NI  — Rated current of the motor 

k — Torque constant 

K  — Gain factor in the speed feedback 

AR  — Connection resistance 

rT  — Time constant in the counter of the TF of the PI controller 

0T  — Time constant in the denominator of the TF of the PI controller 

iT  — Equivalent time constant of the route 

MT  — Mechanical starting time constant 

u — Entrance to the system 

y — Exit of the system 

w  — Weighting of the neuron 

w — Vector of weights 

W — Matrix of weights 

nω  — Rated speed 

sollω  — Speed setpoint 



 

 

istω  — Actual speed value 

Abbreviations 

 

ANN — Artificial neural networks 

N — Network 

R — Route 

TF — Transfer function 

NN — Neural networks 

AI — Artificial intelligence



 

 
 

INTRODUCTION 

The research of neural networks has made a promising development in recent 

years, and neural networks have become a popular topic especially in the field of 

artificial intelligence research. This is particularly the case because with the help of 

neural networks, artificial intelligence systems can be developed that are based on 

the principle of human learning and are modeled on the processing of information 

by the nervous system. 

At the same time, it is a relatively complex and abstract area of research that 

is very difficult to grasp and understand for a newcomer to this field. As a result, this 

important and promising area is not yet sufficiently widespread, especially in the 

industrial sector. 

Several years of research gave insight into the architecture and the 

performance of the human brain as a control system and showed that the controller 

with neural networks has significant advantages over conventional controllers. The 

neurocontroller can effectively process a much larger amount of information. 

Another very important advantage is that good regulation can be achieved by 

learning it.  

In this thesis an internship experiment to investigate the performance of 

neurocontrollers in non-linear electric drive systems has to be developed. For this 

purpose, two drive systems with cascade speed control are considered. Dry friction 

is noted in one of these systems and dry and viscous friction is noted in the other. 

Inverse neuro-model is added for the controlled system of each system. Then the 

obtained inverse neuromodel is built into the system according to the method “Direct 

inverse control” and used as the speed controller. The transfer function of the series 

connection of the inverse model and the controlled system should strive towards one 

in the method used. In this way, the non-linearities present in the system can be 

compensated.
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1. NEURAL NETWORKS IN AUTOMATION TECHNOLOGY 

1.1 Neural systems - branch of artificial intelligence 

If one looks at the development of neural networks, one can see that this has 

been influenced by the most diverse areas and that the neural systems have 

developed into a largely independent discipline in recent years. The beginning of 

this development was made by neurobiology, which still plays a decisive role in the 

further development of the NN today. The first technically oriented contributions to 

the development of the NN come from physics, where the attempt to describe 

physical phenomena from the field of magnetism or thermodynamics with neural 

methods has led to the development of some network types.  

It was only when the potential for using neural networks to solve problems in 

the field of artificial intelligence (AI) became clear that NN became a popular 

research branch in computer science within a very short time and it can now be 

described as the newest branch of artificial intelligence research. This is illustrated 

in fig. 1, which shows the relationship between the NN and other AI research areas.  

 

 

 

 

 

 

  



 

 
 

 

 

 

 

 

 

Fig. 1 - Neural networks as a research area in artificial intelligence. 

Neural networks can be used successfully, for example, for problem solving 

in the field of image processing and natural language systems. The only area 

unrelated is the area of logic and theorem proof. This is the case because this area 

represents an approach that competes with NN. For example, one can find expert 

systems that are either based on methods of logic or use neural approaches, but rarely 

based on principles of logic and the NN at the same time (although such systems are 

possible). Methods of theorem proof and logic are the basic algorithms for the classic 

rule-based AI approaches [1]. 

In principle, AI research can be divided into two areas: The first research area 

comprises the rule- and knowledge-based approaches just mentioned, which can 

typically be found in expert systems in the form of a deduction component or in 

language-understanding systems in the form of grammars. The second research area 

deals mainly with methods of pattern recognition and the processing of human 

sensory perceptions. In these areas, neural approaches were the quickest to gain 
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acceptance. This also applies to the field of robotics, where a large number of control 

and regulation problems favor the processing of analog values with neural networks. 

At a time when AI research was still mainly characterized by rule- and 

knowledge-based approaches, the term “machine learning” had already emerged. 

Here an attempt was made to develop AI systems that are based on logic-oriented 

approaches and that can draw rules and knowledge bases independently from 

examples. NN are, so to speak, a supplement to “machine learning” and have the 

closest relationship to this area. 

Many pilot applications in artificial intelligence research in the 1980s were 

unsuccessful and had to be viewed as more or less failed. This was often due to the 

following reasons: 

1. Lack of ability to learn. Rule-based systems generally have no 

learning ability, which in many cases meant that the rules had to 

be laboriously determined with the help of a detailed system 

analysis and then implemented in the form of a computer 

program. It had the following consequences: The creation of an 

AI application was associated with a great deal of time and 

money, because not only does it take a long time to find and 

implement all the rules, but testing and tuning the rules is also 

very time-consuming. 

2. Lack of adaptive learning behavior. Many systems in practice are 

time-variant systems in which the application conditions change 

continuously during the application phase. Therefore, many 

applications require a system that is able to learn from new 

examples created during the application phase. A rule-based 

system is usually not easy to adapt. However, many AI systems 



 

 
 

are initially designed as relatively simple systems and many 

special cases that actually require new special rules are only found 

over time through daily use of the system. The adaptive learning 

behavior of such a system is therefore an important property.  

3. Small ability to process fuzzy information. Many problems in 

practice are “fuzzy problems”. The main problem with systems 

that are not able to process fuzzy information is the problem that 

it need exact input information in order to be able to derive results 

from it. However, if the entries do not fall outside the specified 

range of values, the system fails because it practically no longer 

knows what to do now. 

4. Runtime problems. This is a very simple, common problem. 

However, this often leads to a rejection of the AI system, since a 

simplified version would not meet the requirements and a full 

version is too expensive. 

5. Lack of integrability. This is one of the most common problems 

of AI applications, because almost every implemented AI system 

has to be integrated into existing software. It has been shown that 

even when using software tools that expressly have easy-to-use 

interfaces, considerable integration problems have arisen in many 

applications. 

Neural networks are not a “magic bullet” for eliminating such problems. 

However, it has the potential to successfully run some applications that have failed 

for the reasons mentioned above. Neural systems can often deal with the problems 

mentioned above better than rule-based systems because they have the following 

properties [1]: 



 

 
 

1. Ability to learn. This quality is one of the main strengths and abilities of 

the NN. 

2. Adaptivity. It is true that not all NNs can be created adaptively in a simple 

way, but it is very easy to have an NN relearned with an expanded list of 

newly acquired examples. 

3. Processing of fuzzy information. This is the typical domain of neural 

systems. 

4. Massive parallelism and hardware implement ability of the NN have 

already been discussed. The great potential of the neuro-algorithms in 

terms of computing speed is thus available. 

5. One advantage of the NN is that it is practically always about purely 

numerical algorithms. With the help of most of the available software 

shells, these can always be converted into programs that have been 

created, for example, in the “C ++” programming language. 

1.2 General considerations of neural control for industrial processes 

Research in the field of neural networks has undergone a much-noticed 

development over the past few years, and neural networks have become a popular 

topic, particularly in the field of artificial intelligence research. This is particularly 

the case because, with the help of neural networks, artificial intelligence systems can 

be created that are based on the principle of human learning and are modeled on the 

processing of information by the nervous system in biological organisms. 

At the same time, however, neural networks are a relatively complex and 

abstract area of research that is very difficult to grasp and understand for a newcomer 



 

 
 

to this field. As a result, this important and promising area is not yet sufficiently 

widespread, especially in the industrial sector [2].  

The aim of the present work is therefore to convey the possible applications 

of neural networks in electrical drive technology. 

In the field of process automation, mostly linear controllers are currently used, 

which are designed with the help of linearized, mathematical process models. For 

strongly non-linear processes, however, this approach leads to limited results. 

Another class of problems arises when the knowledge about the process can only be 

roughly expressed mathematically. 

By using methods for black box modeling, a model of the process can be 

formed from measured values of process variables, which describes it with regard to 

its input / output behavior. Artificial neural networks (ANN) are particularly suitable 

here, as have a universal structure that is also able to adapt to non-linear behavior. 

A number of different control structures, which are based on process models, enable 

systematic control design for non-linear processes as well. A model is generated 

based on process data, which is embedded in a controller structure and used to 

regulate the process [3]. Since some of these control approaches are very 

computationally expensive, it may be necessary to have the behavior of the 

combination of controller structure and neural model learned by a neural controller 

and thus to regulate the process.  
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2. GENERAL DESCRIPTION AND FUNCTIONING OF NEURAL 

NETWORKS 

Furthermore, the question should be clarified: What is a neural network? A 

very general answer to this question could be: A system made up of interconnected 

elements that can process information, called neurons. A general distinction is made 

between biological and artificial neural networks. In the case of a biological neural 

network, the neurons are nerve cells and the network is part of the nervous system 

of a biological organism. The processed information is biological information, 

which essentially consists of nerve impulses. In an artificial neural network, the 

neurons are implemented as mathematical or physical models with several inputs 

and outputs, whose mathematical behavior corresponds in principle to the biological 

neurons. The information processed there can generally be referred to as a sample. 

These can be signals, bit patterns or numerical values that are usually processed by 

an artificial neural network in the form of an input pattern and output in the form of 

an output pattern. Fig. 2 shows the schematic representation of an artificial neural 

network. A somewhat detailed representation is given in Fig. 3. Fig. 2 clarifies the 

basic functionality of an artificial neural network by representing the network as a 

system for pattern processing that contains an external pattern as an input, processes 

it internally and generates an output pattern from it.  

The illustration in Fig. 3 shows the networking of the individual processing 

elements (neurons) with one another. The fact that all connections between the 

neurons contain weights is very important. In Fig.  3, some facts become clear that 

are generally applicable to artificial neural networks. For example, Fig. 3 shows that 

not all processing elements are interconnected. Also, not all neurons are exclusively 

connected to other neurons. Instead, the neurons can be divided into three different  

 

 



 

 
 

classes: Some of the neurons are directly connected to the external input 

pattern, while another part of the neurons outputs the external output pattern [2]. 

A third part of the neurons is only connected to other neurons and thus has 

only internal and no external connections. The processing elements of a neural 

network are therefore usually divided into different layers, namely the input layer, 

the output layer and the hidden layer. The number of neurons in this last layer can 

be very large and it will be shown in the later course of this work that in many cases 

the neurons of this layer can be divided into further layers, which are generally 

referred to as "hidden layers". 

 

 

 

 

 

Fig. 2.1 - Schematic representation of a neural network 

 With the help of these findings, a more precise definition of an artificial neural 

network can now be made: A system for information processing with the help of 

simple networked elements with directed inputs and outputs and weighted 

connections that processes input patterns and generates the resulting output patterns. 

How does information processing work in such a network? Without going into 

detail in this introduction, one can already give some thought to this if one 

remembers the formulation given above, that one can describe the behavior of 

neurons with a mathematical model to which a certain transfer behavior between its 

inputs can be described and can assign outputs, which is characterized by various 

parameters, in particular by the weights of the neuron inputs. A transfer function 

common in control engineering can serve as a model for describing a dynamic 
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network 

Input pattern 

Output pattern 



 

 
 

system, the transfer behavior of which depends on the coefficients in the 

denominator and numerator of the transfer function. A neuron therefore generates 

an output signal from its input signals according to a mathematical rule. In this way, 

the input pattern is transformed by the neurons of the input layer and the 

corresponding outputs in turn become inputs of the neurons in the hidden layer, 

where the input pattern is further transformed. With a large number of processing 

layers, the input pattern is subjected to an extraordinarily complex transformation 

that can completely change both the shape and the dimensions of the pattern and, as 

a result, delivers the corresponding output pattern at the output of the neurons of the 

output layer. 

 

 

 

 

 

 

 

 

 

 

Fig. 2.2 - Detailed representation of a neural network 

 `There is a certain mathematical relationship between the input and output 

patterns, which is determined by the parameters of the mathematical neuron models 

and the network topology of the neurons. If stick to the example of control 

engineering, it can still imagine a transfer function between the input and output 
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patterns, which is, however, very complex and non-linear and is determined by a 

large number of parameters [5]. In a typical NN application, the problem of which 

transmission behavior is present between the input and output pattern is usually not 

investigated when the NN parameters are specified, but the opposite problem is 

initially in the foreground, namely: How are the NN parameters chosen to achieve a 

specific transfer behavior between the input and output patterns? This problem can 

be solved by presenting the network with a more or less large number of sample 

patterns at its input or output (sample pattern pairs) and using an optimization 

process to try to optimize the network parameters so that it adopts the desired 

transmission behavior.  

Here, too, the example from control engineering is again appropriate, since 

such a procedure corresponds in principle to a system identification and the 

mentioned optimization method corresponds to a parameter estimation method. In a 

neural network, this phase is called the learning phase or training phase, in which 

the network learns from examples to adapt its parameters so that it adopts the desired 

transmission behavior. The possibility of adapting the parameters of the neural 

network to the sample pattern with the help of suitable mathematical procedures 

gives the network its important property, namely the ability to learn from examples. 

Since - as mentioned above - the network parameters primarily consist of the 

weightings of the connections between the neurons, the weightings of a neural 

network are responsible for the network's ability to learn. For an NN, learning 

therefore means that it tries to set its weightings in such a way that it generates output 

patterns from the presented reference input patterns that are as similar as possible to 

the reference output patterns. 

Once the network has learned the relationship between the reference input and 

output patterns in the learning phase, it can be used in the actual application phase. 

The NN with now firmly learned parameters is used to process a pattern processing 

task in which the network is presented with input patterns that it has not yet seen in 

the learning phase and it generates the desired output patterns from them [5]. These 



 

 
 

can be tasks for recognizing patterns or for converting and storing patterns from a 

wide variety of application areas. 

In summary, it can be stated that a typical NN application always consists 

of two phases: In the first phase - the learning or training phase - the weightings of 

the NN are determined using examples for input and output patterns so that the NN 

matches the systematic Can grasp the relationship between the sample pattern pairs. 

In the second phase - the actual application phase - the network is presented with 

input patterns with its learned weightings, from which it then generates output 

patterns and thus solves a specific pattern processing task.
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3. SPECIAL PROPERTIES OF NEURAL NETWORKS 

The learning ability of neural networks already described gives the neural 

algorithms a special property that most other algorithms do not have, but which is 

very advantageous and often a necessary prerequisite for solving a variety of 

problems - especially in the field of artificial intelligence. Because of this, neural 

networks have grown in popularity very quickly and continue to evolve at a rapid 

pace. However, neural networks have some other special properties that distinguish 

them from other classical methods. 

3.1 Ability to learn 

In addition to the facts already mentioned about the learning ability of neural 

networks, some interesting consequences can be derived from this fact. Nowadays 

most tasks are solved with the computer in a procedure in which the person himself 

has to analyze the task in detail and with the help of a program, the computer has to 

teach the procedure to solve the task in complex individual steps. A computer based 

on neural principles could one day be able to cope with even complex tasks by 

automatically learning from sample solutions for this task. With such a computer, 

the programming step would be replaced by the training step [3]. 

It can also be shown that, under certain conditions, neural networks are able 

to systematically extract the essential relationships between these pairs of patterns, 

which are common to all of these pairs of patterns despite their differences, from a 

very large number of relatively different pairs of sample patterns. This is another 

very important property, as it makes it clear that the network is not only able to 

produce a pure "input-output mapping" between the input and output patterns, but 

that it can learn the essential systematics of the pattern processing task and can run  

 

 

 



 

 
 

from a multitude of examples to a generalization of the individual copies 

presented. 

The NN can exploit this ability to generalize by being able to correctly process 

input patterns in the application phase that it never saw in the training phase. Some 

of these patterns can be completely different from the examples presented in the 

learning phase and can still be processed correctly, as they correspond to the same 

systematics of the learning examples and the network has recorded this general 

systematics during learning. This ability to generalize learning examples to 

examples never seen before gives the learning ability of the neural networks 

robustness [4]. This is necessary in order to be able to successfully cope with real 

applications from practice. 

3.2 Ability to process incorrect and incomplete information 

All network types have the ability to process incomplete and incorrect 

information. In many cases, it can be generating a correct output pattern from an 

input pattern that is noisy. In this way, incorrect input patterns can be processed 

correctly or transformed into error-free input patterns. It also applies to incomplete 

input patterns (this is the special case of incorrect patterns), which can be completed 

with the help of NN. Here, too, neural networks are better than most “classic 

methods”, since these methods usually fail in the case of incorrect or incomplete 

entries. Ordinary systems are designed to process correct and complete data, while 

neural networks can process so-called “fuzzy information”. However, a lot of 

information in everyday life is “fuzzy”, for example a word that is spoken quickly, 

which one did not understand exactly and which the human brain usually still 

processes successfully and correctly. The human brain is particularly capable of 

processing fuzzy information and it is therefore clear that NN can be used 

particularly successfully in the machine processing of voice and image signals.  

3.3 Adaptive behavior  



 

 
 

In addition to the ability to learn during the training phase, some networks 

also have the ability to continue learning in the application phase and consequently 

have an adaptive behavior. In this case, the weightings found in the learning phase 

are not kept constant in the application phase, but are continuously adapted to the 

current conditions, i.e. readapted, with the help of the patterns that are presented to 

the network during the application phase. But not all network types have this 

capability. However, it is very desirable in many cases, for example when NN work 

together with time-variant systems in which an adaptation to slowly changing 

conditions is necessary.  

3.4 Massive parallelism  

The massive parallelism of networks can already be seen from the 

consideration of Figure 3. This implies that the neurons can be viewed as 

autonomous systems. Their internal operations are independent of each other and 

they only communicate with each other through the weighted links. As a result, an 

NN can be viewed as a network of independent, parallel working individual systems. 

It has already been mentioned that the behavior of a neuron can be simulated with 

the help of a mathematical or physical model. A mathematical model is realized with 

the help of a computer program and the calculation of the entire network is carried 

out as a simulation of all neuron models coupled to one another on a conventional 

computer. However, due to the massive parallelism, one can also imagine realizing 

the simulation programs for the individual neurons on an extra processor each, which 

can be a very simple microprocessor. The overall network could then be 

implemented as a connection between all individual processors. This would have the 

advantage that the simulation programs of the individual neurons would then no 

longer have to run sequentially on a conventional computer, but that they could run 

in parallel on all available individual processors. An enlargement of the network 

would then result in an increase in the number of processors and would not have a 

disadvantageous effect on the computing time for the network, since each processor 

can contribute its computing power to the overall performance of the network at 



 

 
 

normal speed. This would significantly increase the overall performance of the 

network [5]. It should also be noted that because of the very simple design of such 

processors, the individual elements of such a hardware network would be very cheap 

and large networks with very high computing power can be implemented cost-

effectively. The massive parallelism of neural networks thus represents a possible 

approach for replacing conventional computers in the future with computers that 

work in parallel, which can then provide a multiple of computing power. 

3.5 Fault tolerance 

The fault tolerance of the neural systems is closely linked to the property of 

massive parallelism and hardware implement ability. In the case of a large and 

massively parallel system made up of several thousand elements working in parallel, 

there is a likelihood that in the case of a parallel computer in which a processor fails 

during operation, this can lead to a total failure of the entire system because Each 

processor in such a system assumes an important function and in particular the 

failure of communication with the other processors can lead to considerable 

problems. In such a case, the parallel computer could still be operated with a smaller 

number of processors, but a disruption of the program currently running would 

certainly be unavoidable at the time of the processor failure and all applications 

would have to be adapted to the lower number of processors, e.g. by recompiling 

and restarting. 

In the case of an NN, it can be observed that in most cases a failure of 

individual neurons does not lead to any significant change in network behavior. This 

only applies in the event that the number of failed elements is relatively small 

compared to the total number of neurons in the network. In most cases, the transition 

to a significantly poorer network behavior is fluid, i.e. with an increasing number of 

failed elements, a continuous change in network behavior is associated and a rapid 

total network failure if a certain number of elements fails. not to watch. 



 

 
 

This very advantageous, fault-tolerant behavior can be explained using some 

of the properties of neural networks that have already been listed: Due to the massive 

parallelism mentioned, the overall functionality of the network is very widely 

distributed over a large number of elements. Each individual element (neuron) has a 

very simple structure and does not have a particularly high level of performance on 

its own. The effectiveness of these systems is achieved through the strong 

connectivity of the elements with each other and the effective distribution of the task 

to be solved over the total number of neurons, as well as the effective control of the 

interaction of the neurons with the help of the weights. Therefore, the failure of a 

simple element can hardly affect the overall behavior, as long as enough other 

elements are still present. The fault tolerance is also favored by the fact that in most 

cases the network processes fuzzy information. 

The property of fault tolerance is particularly important for the applicability 

of neural systems under critical operating conditions, in which an extremely high 

availability of the system must be guaranteed. Examples of this are applications in 

space, in flight safety, in the military sector, in the monitoring of complex technical 

systems. In such cases, an NN can also be designed to be particularly fault-tolerant 

by designing it deliberately oversized, i.e. using a larger number of neurons in the 

"hidden layer" than is absolutely necessary. In this case, the overall behavior of the 

is particularly well distributed and the failure of some elements is all the easier to 

cope with. 

3.6 Hardware implementability 

One also thinks of the simulation of an NN with the help of a physical model, 

e.g. realized by an analog electrical circuit or with the help of optical processes. It is 

important to note that a hardware implementation can lead to an enormous advantage 

in computing time. If one thinks of the advances in microelectronics and 

optoelectronics, one can also easily imagine that neural networks with high 

computing speed and a large number of neurons in the smallest dimensions can be 



 

 
 

realized in this way. This has the following consequences for the practical 

applicability of NN: NN can be “tailor-made” for certain applications and they can 

be implemented as chips. Small dimensions and high processing speeds make real-

time applications possible under a wide variety of operating conditions without the 

need for expensive control computers. Applications in the immediate vicinity of the 

machine (e.g. in engines, in cars, etc.) can be implemented. These applications can 

also be implemented inexpensively through mass production. Overall, it can be 

stated that practically all the advantages that the development of microelectronics 

has brought for the use of digital processors can be transferred in a similar way to 

neural networks.  

It is also interesting to note that NN are one of the few paradigms in AI 

research that can be efficiently implemented in hardware. Such an attempt has also 

been made, for example, for rule-based paradigms from the field of logic and 

inference systems and has had an impact on the development of LISP machines, for 

example. However, due to their high prices, large dimensions and incompatibility 

with other systems, these have not been able to establish themselves. Most rule-

based systems are and will remain pure software implementations, which in most 

complex applications requires the use of a computer and can thus lead to a restriction 

of the range of applications. 
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4. FEEDFORWARD NETWORKS 

The most common basic network architecture is that of feedforward networks. 

A Net with the feedforward architecture only has connections between the neurons 

in one direction, namely from one layer to a “higher” layer. Higher means here that 

this layer is closer to the starting layer than a layer below it. A feedforward network 

in Figure 5 would only have connections from the bottom to the top. There are no 

connections between from one layer to a layer below, and there are also no 

connections between the neurons of a layer [6]. In the normally used feedforward 

network architectures, there are always only connections between one layer and the 

next higher layer directly above it. 

The network architecture shown in Fig. 4.1 is one of the most frequently used 

architectures for feedforward networks, with two hidden layers and one input and 

one output layer. The connection between the input pattern and the input layer only 

serves to present the pattern and does not yet contain any weightings or totals. 

Typical summations of the weighted inputs only come into play with the neurons of 

the first hidden layer and are continued by the neurons of the second hidden layer 

and the output layer. Our network (fig. 5) has three active layers that contribute to 

the transformation of the input pattern into the output pattern. That is why one speaks 

of a three-layer network.  

Feedforward networks can have at least one active layer, but in many cases 

they have three active layers. Two-layer networks or networks with more than three 

layers are also used. 

 

 



 

 
 

Feedforward networks have a number of other typical properties: 

- Inputs and outputs are continuous 

- Using the sigmoid function as an activation function 

- Mostly different dimensions of input and output patterns 

- Main application in pattern classification and assignment 

- Mathematical description as a static system (the output pattern is calculated 

from the input pattern in a single "forward step") [6] 

 

 

 

 

 

 

Fig. 4.1 - Architecture of a feedforward network 
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4.1 Model of a processing element 

 The detailed structure of a single processing element can be seen in Figure 6. 

Input variables nxx 1  are initially weighted with the weighting factors nww 1 . The 

actual neuron is represented by the two functions )(xG  and )(GF . The function )(xG  

is referred to as the propagation function and in most cases is a pure summation 

function that provides the sum of the weighted input variables as the output variable. 

An important property of neural networks is their non-linear behavior, which is 

generated in that the output of the propagation function )(xG  is further processed by 

a non-linear function )(GF , the so-called activation function. 

Our neuron also contains an element at the input of the variable  , which takes 

on the function of a “bias” and is fed to the input of the NN without weighting [10]. 

It ensures that with a wide variation of the inputs, the output of the processing 

element is on average - depending on the choice of   - is positive or negative. 

 In many cases,    can be set to zero. But there are also some cases in which it 

makes sense to set this variable to a value other than zero. 

 

 

 

 

 



 

 
 

 

 

 

 

 

 

 

 

Fig. 4.2 - Structure of a single processing element 

On the basis of the explanations given above, the following equation results 

for the output variable y  of the processing element: 
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In order to efficiently represent equation (1) in vector notation, the vectors 

x and w can be introduced: 
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This means that equation (1) can also be written in the following form: 

)( wx  TFy               (4.4) 

From equation (3) it follows that the factor can formally be viewed as an 

additional weighting factor which, based on equation (2), receives a constant input 

variable from 11 nx . For the hard limiter, which is one of the most commonly used 

activation functions, one gets: 
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and for the commonly used sigmoid function: 
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This function converges to 1 for s  and tends towards zero for s . 

4.2 Network layer model 

Let's consider two network layers shown in Fig. 4.3. The output values in the 

M  neurons of the upper layer are calculated from the output values of the N  neurons 

of the lower layer. 



 

 
 

 

Fig. 4.3 - Calculation of the outputs of a network layer 

The current index of the upper layer neurons is j , where j  goes from 1 to M  

. The running index of the lower layer neurons is i , where i  goes from 1 to N . Each 

of the lower layer N  outputs is connected to all of the upper layer neurons. Therefore 

every neuron of the upper layer has N  inputs which are identical to the N  outputs 

of the lower layer. If consider only one processing element j  of the output layer, it 

can calculate the corresponding output value with the aid of equation (4) [10]: 

)( j

T

j Fy wx               (4.7) 

The vector jw  thus contains the weightings of the connections from the N  

neurons of the lower layer to the j -th neuron of the upper layer and is thus a vector 

with the dimension N . These connections are shown in Figure 8. The weightings of 

the individual connections are not shown, except for the weighting ijw , which 

represents the weighting between the i -th neuron of the lower layer and the j -th 

neuron of the upper layer. Overall, we have M  weighting vectors jw  ( Mj ,,1  ) 

each with N  components and thus a total of MN   weighting factors. Each vector 

jw  contains the weights between all neurons of the lower layer and the j -th neuron 

of the upper layer. That's why it can write: 



 

 
 

T

Njjjj www ],,,[ 21 w            (4.8) 

With the help of equation (7) one can calculate the output value for each 

neuron j  of the upper layer. If one considers equation (7) for all output values 

Mj ,,1  , one can write: 
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or with the introduction of the weighting matrix W : 
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The number of rows in the weighting matrix thus corresponds to the number 

of neurons in the lower layer and the number of columns corresponds to the 

number of neurons in the upper layer. 

  



 

 
 

4.3 Model of the entire network 

Let us describe a two-layer network, which is shown in Figure 9. The two-

layer network can be viewed as two single-layer networks. The first network thus 

generates the output vector x  from the input vector y . The weightings of the first 

layer are combined in the matrix 1W . The output vector obtained is treated by the 

second layer like a new input vector and made available to all neurons of the second 

layer with the weightings contained in the matrix 2W  as shown in Figure 9. The 

equation (12) for the output vector z  can be interpreted as a double matrix 

transformation with non-linear distortion of the input vector. 

Layer 1:   )( 1Wxy  TT F                (4.11) 

Layer 2:   )())(()( 212

TTTT GFFF xWWxWyz       (4.12) 

It can be seen that this transformation )( TG x  depends only on the assumed 

nonlinear activation function F  of the neurons and in particular on the elements in 

the matrices 1W  and 2W  . 

With these explanations, the basic principle of learning in neural networks 

is made clear once again: The parameters of the complex transformation G , which 

consist of the weightings in 1W  and 2W  are determined in such a way that when 

example vectors x  are presented, the associated example vectors z  are as good as 

possible can be simulated and the error that occurs is as small as possible. It follows 

that the learning process consists of determining the parameters in the weighting 

matrices. 

 

 



 

 
 

 

 

 

 

 

 

 

Fig. 4.4 - Two-layer neural network 

4.4 Error back propagation 

Backpropagation is the most common method of error recovery. But there are 

also some modifications of this feeling: quick propagation, elastic spreading [3]. 

The backpropagation network selected from layers with entry, exit and hidden 

rights (Fig. 10). The signal transmission is called in the forward direction. The 

actual and setpoint values are checked at the output. If this causes an error, it is 

converted backwards so that the weights of each layer are corrected. But the 

convergence of trust is not seen to be accomplished. 
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Now let's look at learning after backpropagation: 

1. Initialize weights 

2. Enter the learning file with neuron inputs ix  )1( Ni   and the desired output 

d  for all learning patterns M  : 

MNNN dxxxdxxxdxxx ),,,(,,),,,(,),,,( 21221121             (4.13) 

 

 

 

 

 

 

 

 

Fig. 4.5 - Two-layer neural network with N inputs and N2 outputs 

 

3. Calculate input transmission in forward direction 

3.1) hidden layer (Outputs i , and iv ): 
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3.2) Output layer ( Outputs k , and ky ): 
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4. Calculate the total error for all learning patterns M  n: 
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5. Calculate weights and thresholds value change respectively: 

5.1) Output neurons: 
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v www )(   kkneuk  )(           (4.17) 

kjjk xEw    if  )1()( jjjjj xxxdE          (4.18) 

kjk xE                      (4.19) 

5.2) hidden neurons: 

ijijneuij www )(    jjneuj  )(           (4.20) 

ji
v

ij xEw        if      )1()( jjkjki
v xxwEE        (4.21) 

ki
v

k E                      (4.22) 

 This ends a learning step. 
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5. OVERVIEW OF NEURAL REGULATIONS AND CONTROLS 

FOR COMPENSATING NON-LINEARITIES 

The use of neural networks for regulation and control is connected with the 

ability to recognize the state of dynamic systems. 

The network inputs are state variables of the control loop. The network 

outputs are manipulated variables or characteristic values of the controller. The 

supervised learning methods are mainly used as the learning method. This creates 

a new feedback, namely the “learning feedback”, which works separately from 

the control loop feedback [8]. 

The concepts of control with NN are listed below: 

1. State control 

2. Predictive regulation 

3. Adaptive control 

With regard to the implementation of these concepts, the following rule 

structures can be designated: 

1. One-network approach 

2. Two-network approach 

 

 



 

 
 

3. Regulator network approach 

Neural state control is shown in Fig. 5.1. With this concept of control with 

NN, the network receives the control difference )(te  and its derivatives at its input, 

as well as the vectors of the manipulated and controlled variables )(ty  and )(tx . 

 

Fig. 5.1 - Neural state control. One-network approach 

The output of the NN is the manipulated variable )(ty , which is why the 

network is referred to as an “action network” or “A network” in this case.  

In order to optimize the control process, the trained A network should form 

an inverse transfer function compared to the transfer function of the controlled 

system [5]. Therefore, the task of the neural network is to set its own weights after 

the monitored learning so that the difference between the desired output d  and 

the current output x  is minimal. 

The next procedure is shown in Fig. 5.2. This method belongs to the 

category of predictive control and in this case is implemented with a two-network 

method. 

 



 

 
 

 

 

Fig. 5.2 - Neural predictive control. Two-network approach. 

First, the “emulator network” (“E network”) is trained with the inputs and 

outputs of the controlled system. The A network is then trained, as in the previous 

case of the neural state control, but this time by the E network. 

This procedure is referred to in the literature as “Model Predictive Control” 

[6] and is a powerful procedure despite a long learning period. 

The combination of both methods is also possible in that the A network is 

not trained by the E network, but by monitored learning directly from the 

controlled system to an inverse transfer function. Such procedures are referred to 

in the literature as "Internal Model Control" [6]. 



 

 
 

The adaptive neural control is shown in Figure 5.3 using the controller-

network method. The weights ijW  of the NN are here equivalent to the controller 

setting parameters. 

 

Fig. 5.3 - Neural adaptive control. Regulator network approach 

This process is modified when the controller is replaced by an A network. 

The NN for the control can again be implemented with one or two network 

processes. Fig. 5.4 shows a model-based control system with two networks. As 

with the new regulation, a distinction is made between the following two 

operating modes, learning and controlling. 

 



 

 
 

 

Fig. 5.4 - Neural control. Two-network approach 

 

Fig. 5.5 - Neural control. One-network approach
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6. CLASSIFICATION OF THE TYPICAL NON-LINEARITIES IN 

PRACTICAL ELECTRIC DRIVE SYSTEMS 

This chapter looks at typical non-linearities in practical electric drive 

systems and their classification. 

Definition of a non-linear system: If the system has non-linear transfer 

elements, then this system is non-linear. 

If there are input functions or real numerical values for a transfer element, 

so that either the superposition principle or the amplification principle is not 

fulfilled, then the transfer element is called non-linear [13]. 

In practice, non-linear transmission elements occur in almost all technical 

applications. In nature, nonlinear systems are the rule and linear systems are the 

exception [13]. However, linearization of most of the non-linear characteristics is 

permissible, so that often only one non-linear element has to be taken into account. 

Non-linear control loops can only be examined in the time domain or the 

state (phase) level, while in linear systems an analysis and synthesis is possible in 

the frequency domain. Powerful design tools are known in linear theory, but no 

uniform non-linear systems theory exists. However, there are certain methods 

mainly for analyzing the stability of nonlinear systems: 

 

 

 



 

 
 

a) Method of harmonic linearization, 

b) Phase level method, 

c) Lyapunov's second method, 

d) Stability criterion according to Popow. 

There are various options for classifying non-linear transmission elements. 

The classification is often based on mathematical criteria, only taking into account 

the form of the differential equation in question. The second possibility is to use 

the most important non-linear properties that occur in particular in technical 

systems for a classification. For this purpose, one considers continuous and 

discontinuous non-linear system characteristics, which are compiled in Table 1. 

A distinction is made between clear characteristics (cases 1 to 4) and ambiguous 

characteristics (cases 5 to 7). The characteristics are often symmetrical to the 

origin of the coordinate system. A subdivision into unwanted and wanted non-

linearities is often recommended. 

  



 

 
 

Table 6.1 - List of the most important non-linear terms 

1 

Limitation 
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e
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5 

Hysteresis behavior 
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6 

Three-point behavior with hysteresis 

 

Complex and difficult to visualize 

mathematical formulation 

7 

Gearless 

 

Complex and difficult to visualize 

mathematical formulation 

8 

Any non-linear characteristic 

 

)( ea xfx   

9 

Quantization 

 

ax
 can only gradually assume 

discrete values 

10 

Module formation   ax  

 

ea xx   



 

 
 

11 

Squaring 

 

2

ea xx   

12 

Multiplication 

(Division) 
2

1

21

e

e
a

eea

x

x
x

xxx





 

No physical system is exactly linear in the mathematical sense. The non-

linearity can be weak and therefore negligible, it can also be strong and have a 

negative (sometimes positive) effect on the dynamic behavior of a system. On the 

other hand, non-linear elements are sometimes deliberately used in controller 

design, not only because it is easy and cheap to implement (e.g. switching 

controllers), but also to achieve special system properties that cannot be achieved 

with linear elements. 

As already mentioned, when analyzing and synthesizing nonlinear systems 

one will often start directly from the representation in the time domain, i.e. one 

must try to solve the differential equations. Simulation methods are an important 

aid here. Digital and hybrid computing systems are particularly suitable for 

simulating non-linear systems; The analog computer can also be used for minor 

problems. 
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7. MODELING AND SIMULATION OF DRY FRICTION 

Depending on the frequency response of linear control loop elements, a 

description function is defined for non-linear control loop elements. This function 

takes linearization into account and is particularly suitable for considering the 

stability of control loops using the two-position curve method. 

One has to say that the linearization of a non-linear characteristic is 

successful if the change in the input signal is only slight. Then it is sufficient to 

replace the characteristic with the tangent at the respective operating point. 

However, this method fails in the case of characteristics with discontinuities. 

If it considers the control loop in the frequency domain, a linearization can 

be carried out under the following conditions: 

1) The control is in the steady state 

2) Restriction to only one non-linear element in the control 

3) The calculation refers to the ideal non-linear characteristic 

With a sinusoidal input signal, the input and output variables are continuous 

oscillations. The output signal ax  of the non-linear element is then periodic, but 

not harmonic. It contains harmonics of different frequencies ),3,2(  , which 

can be specified with the Fourier analysis [12]. 

Each control loop has damping PT1 elements so that the harmonics can be 

neglected. Therefore one can restrict oneself to the consideration of the 

fundamental oscillation 1ax  and has carried out a practically applicable 

linearization. 

 

 



 

 
 

The description function mentioned above, also known as harmonic 

balance, is only dependent on the amplitude of the input variable. Reduced to the 

fundamental oscillation of the output variable is defined: 

)(

)(
)ˆ( 1

tx

tx
xN

e

a

e



            (7.1) 

In complex notation is input and output size: 

tjtj

a ebeatx   

1

)2(

11 )(  ,   (7.2) 

tj

ee extx   ˆ)(    (7.3) 

This results in a form of the description function that is used for further 

calculation: 

e

e
x

ajb
xN

ˆ
)ˆ( 11 
    (7.4) 

The dry friction corresponds approximately to switching between two 

specified signal states (Fig. 7.1). 

 

Fig. 7.1 - Characteristic curve of dry friction (two-point behavior) 

 

 



 

 
 

Such behavior is called two-point behavior. Corresponding behavior can also 

be found with bimetal switches, solenoid valves, Schmitt triggers in analog and 

digital technology, with relay circuits and also as two-point controllers. 

 

ax    
0

0





es

es

xforx

xforx


         (7.5) 

 

Here, the Fourier coefficient becomes 01 a , because the static characteristic 

is an odd function. For 1b  then follows: 

 






0

1 sin)(
2

dxb a          (7.6) 

Inserting equation (20) into the integral gives: 


sx

b



4

1
              (7.7) 

Thus the descriptive function of dry friction (two-point behavior) is: 

e

s
e

x

x
xN

ˆ

4
)ˆ(







             (7.8) 

 

The corresponding locus (Fig. 7.2) of the description function runs on the 

positive real axis of 0  for  0ˆ
es xx . 

 

 



 

 
 

 

Fig. 7.2 - Locus curve for the descriptive function of dry friction (two-point 

behavior) 

A signal flow diagram shown in Fig. 7.3 is also considered. This is the signal 

flow diagram for the cascade control of the speed of a DC drive. Here the current 

control loop is set according to the optimum amount and simulated by a PT-1 

element. The speed control loop is set according to the symmetrical optimum. With 

the help of this structure, the influence of dry friction on the drive speed can be 

investigated. All parameters for this system and for the further considered signal 

flow plans are given in table 7.1. 

Fig. 7.3 - System of speed control of a direct current drive with dry friction 

  

 

    

- 
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Table 7.1 - Parameters of the electric drive system 

Name of the parameter Parameter Size 

Time constant in the counter of the TF of the PI 

controller 
rT  0.008  s 

Time constant in the denominator of the TF of the 

PI controller 
0T  0.0037  s 

Equivalent time constant of the route iT  0.001  s 

Torque constant k 0.28  sV   

Connection resistance AR  0.65    

Mechanical starting time constant MT  0.02  s 

Rated current of the motor NI  14  A 

 Rated speed nω  251.2 s  

 Gain factor in the speed feedback K  1 

Coefficient of sliding friction 

The moment of sliding friction: )(ωsignbM CC   
Cb  0.5  mN   

Rolling friction coefficient 

Moment of rolling friction: ωbM NN   
Nb  0.002  





s

mN
 

 

  



 

 
 

After simulating the system with and without dry friction, the following 

transition processes are obtained for the speed: 

Fig. 7.4 - Step responses of the control loop. Curve 1 system without dry 

friction. Curve 2- system with dry friction (friction is greatly increased) 

From Fig. 7.4 it can be seen that the overshoot in the system with dry friction 

is smaller than the overshoot in the system without dry friction. 
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8. MODELING AND SIMULATION OF DRY AND VISCOSE 

FRICTION 

The static characteristic of dry and viscous friction is shown in Fig. 8.1. 

Internal viscous friction, which is proportional to the deformation speed of the 

shafts, cables, couplings, etc., has a major influence on the dynamic processes in the 

mechanical system. 

 

Fig. 8.1 - Characteristic curve of dry and viscous friction 

The output variable can be seen in Fig. 16: 

ax       
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0sinˆ
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0


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Here the Fourier coefficient becomes 01 a . For 1b  results: 
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If you put the equation in the integrals, you get after calculation: 

e

e

x
x

x
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ˆ
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Thus, the descriptive function is dry and viscous friction: 

1
ˆ

4
)ˆ( 0 





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e
x

x
xN


              (8.4) 

The corresponding locus of the description function is shown in Fig. 8.2: 

 

Fig. 8.2 - Locus curve for the descriptive function of dry and viscous frictio 

The locus of the description function runs on the positive real axis from 1 

to   or plotted over the quotient n exx ˆ
0  from 0 to  . 

The signal flow diagram shown in Figure 8.3 is used to investigate the 

influence of dry and viscous friction on the transition processes of the speed. All 

parameters for this system are given in table 7.1. 



 

 
 

 

 

 

 

Fig. 8.3 - System of speed control of a direct current drive with dry and viscous 

friction 

After simulating the system with and without dry and viscous friction, the 

following transition processes are obtained for the speed: 

Fig. 8.4 - Step responses of the system. Curve 1 system without friction. Curve 

2- system with dry and viscous friction (proportion of viscous friction is increased)
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9. USE OF NEURAL NETWORKS TO COMPENSATE THE DRY 

FRICTION 

In order to compensate for the influence of dry friction in the system, which 

is shown in Fig. 9.1, “Direct inverse control” is used in this work. But first an inverse 

model of the system should be built. 

To get the inverse model, the following scheme is used: 

 

 

 

 

 

Figure 9.1 - Principle of the formation of an inverse model 

The following relationship is used in the formation of the inverse NARX model: 

)1(,),1(),1(,),1(()(ˆ  uy nkukunkykyNku  ) (9.1) 

The signal flow diagram, which illustrates the method of direct inverse 

control in, for example, 2un  and 2yn  is shown in Fig. 9.2: 

 

Route 
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Fig. 9.2 - Direct inverse control 

 When using this method, the following equation is used in the control phase: 

)1(ˆ,),1(ˆ),1(,),(),1(()(ˆ  uysoll nkukunkykykyNku  ) (9.2) 

In the application, the setpoint )1( ky  is entered instead of the value )1( kysoll . The 

transfer and function of the series connection of the inverse model and the line 

theoretically tends to be one. In this way, non-linearities present in the system can 

be compensated [15]. 

In our case, the controlled system is part of the system shown in Fig. 7.3, from 

NI  to istω  . It's also  
istωi nn . The program for training the network is given in 

Appendix B and all commands used in this program are clarified in Appendix A 

(experiment instructions for laboratory work). 

The system with the neurocontroller is shown in Figure 9.3. 

 

 

 

 



 

 
 

 

Fig. 9.3 - System with dry friction and the neurocontroller 

After the simulation of this system, the transition processes for the speed are 

obtained, which are given in Figure 9.4. This picture shows the work of the system 

with the neurocontroller from a setpoint generator. It can be seen that the setpoint 

and the actual value of the speed almost overlap and the non-linearity is 

compensated. From Fig. 9.5 it becomes clear that the actual speed value is delayed 

by one discretization step (discretization step = 0.001 s). The error of the actual speed 

value compared to the speed setpoint is approximately 0.02%. It corresponds to the 

direct inverse control. 
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Fig. 9.4 - Work of the system with the neurocontroller from a setpoint 

generator 

 

 

 

 

 

 

 

 

 

Fig. 9.5 - Enlarged part of the transition processes when the system works with the 

neurocontroller from a setpoint generator (discretization step = 0.001 s) 
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The associated motor current and actual speed value curves are shown in Fig. 

9.6. 

 

 

 

 

 

 

 

 

 

Fig. 9.6 - Motor current and actual speed value curve 
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10. USE OF NEURAL NETWORKS TO COMPENSATE DRY AND 

VISCOSE FRICTION 

In order to compensate for the influence of dry and viscous friction in the 

system, which is shown in Fig. 10.1, direct inverse control is also used in this case. 

First, an inverse model of the controlled system is also built. A part of the system 

from NI  to istω  is taken as the controlled system. It's also 
istωi nn . The program 

for training the network is given in Appendix B and all commands used in this 

program are clarified in Appendix A (experiment instructions for laboratory work). 

 The system with the neurocontroller is shown in Fig. 10.1. 

Fig. 10.1 - System with dry and viscous friction and the neurocontroller 
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After the simulation of this system, the transition processes for the speed are 

obtained, which are given in Fig. 10.2. This picture shows the work of the system 

with the neurocontroller from a setpoint generator. It can be seen that in this case the 

setpoint and the actual value of the speed almost overlap and the non-linearity is also 

compensated. From Figure 10.3 it becomes clear that the actual speed value is 

delayed by one discretization step (discretization step = 0.001 s). The error of the 

actual speed value compared to the speed setpoint is approximately 0.02%. It 

corresponds to the direct inverse control. 

Fig. 10.2 - Work of the system with the neurocontroller from a setpoint 

generator 
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Fig. 10.3 - Enlarged part of the transition processes when the system works 

with the neurocontroller from a setpoint generator (discretization step = 0.001 s) 

The associated motor current and actual speed value curves are shown in 

Figure 10.4. 

Fig. 10.4 - Motor current and actual speed value curve 
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Conclusions 

In this thesis, two drive systems with the cascade control of the speed are considered. 

Dry friction is noted in one of these systems and dry and viscous friction is noted in 

the other. An inverse neuro-model was built on for the controlled system of each 

system. Then the obtained inverse neuro-model is built into the system according to 

the method “Direct inverse control” and used as the speed controller. The transfer 

and function of the series connection of the inverse model and the segment tends to 

be one. This compensates for non-linearities that exist in the system. 

The method of mathematical modeling with a computer and the programming 

package MatLab 5.2 / Simulink, which is oriented towards the modeling of 

automated electric drive systems, was used to investigate the drive systems. 

The modeling of the speed control systems carried out with the 

neurocontroller has shown the effectiveness of direct inverse control in non-linear 

electric drive systems. 

The obtained non-linear electric drive systems with the neurocontroller, which 

compensates for the non-linearities in the systems, follow the setpoint with the static 

error 0.02% and are delayed by one discretization step. These results correspond to 

the method of direct inverse control. 

On the basis of this work, an internship experiment has been developed to 

examine the performance of neurocontrollers in non-linear electric drive systems, 

which can be used in the learning process at the technical faculty. 
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APPENDIX A. 

 

Network training program (dry friction system) 

i1= [0; i(1:length(i)-1)]; 

i2= [0; i1(1:length(i1)-1)]; 

w1= [w(2:length(w));w(length(w))]; 

w2= [0; w(1:length(w)-1)]; 

w3= [0; w2(1:length(w2)-1)]; 

P=[i1';i2';w1';w';w2';w3']; 

size(P) 

T=i'; 

size(T) 

net=newff([-2.1327e+003 2.1763e+003; 

   -2.1327e+003 2.1763e+003; 

   -953.4054 661.0935; 

   -953.4054 661.0935; 

   -953.4054 661.0935; 

   -953.4054 661.0935],[1],{'purelin'}); 

net.trainParam.goal=0.01; 

net.trainParam.epochs=1000; 

[net,tr]=train(net,P,T); 

P=[i1';i2';w1';w';w2';w3']; 

y2=sim(net,P); 

plot(t,y2,t,i); 

grid on; 

zoom on; 

  



 

 

  

 

 

 

APPENDIX B. 

 

Network training program (dry and viscous friction system) 

i1= [0; i(1:length(i)-1)]; 

i2= [0; i1(1:length(i1)-1)]; 

w1= [w(2:length(w));w(length(w))]; 

w2= [0; w(1:length(w)-1)]; 

w3= [0; w2(1:length(w2)-1)]; 

P=[i1';i2';w1';w';w2';w3']; 

size(P) 

T=i'; 

size(T) 

net=newff([-2.1296e+003 2.1692e+003; 

   -2.1296e+003 2.1692e+003; 

   -301.2456 552.1529; 

   -301.2456 552.1529; 

   -301.2456 552.1529; 

   -301.2456 552.1529],[1],{'purelin'}); 

net.trainParam.goal=0.0001; 

net.trainParam.epochs=1000; 

[net,tr]=train(net,P,T); 

P=[i1';i2';w1';w';w2';w3']; 

y2=sim(net,P); 

plot(t,y2,t,i); 

grid on; 

zoom on; 

 


