
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

ФАКУЛЬТЕТ АЕРОНАВІГАЦІЇ, ЕЛЕКТРОНІКИ

ТА ТЕЛЕКОМУНІКАЦІЙ

Кафедра авіаційних комп’ютерно-інтегрованих комплексів_

_

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач кафедри

Синєглазов Віктор Михайлович

“_____”____________2021 р.

ДИПЛОМНА РОБОТА
(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ

“БАКАЛАВР”
ЗА СПЕЦІАЛЬНОСТЮ 151 «АВТОМАТИЗАЦІЯ ТА КОМП’ЮТЕРНО-ІНТЕГРОВАНІ

ТЕХНОЛОГІЇ»

ОСВІТНЬО-ПРОФЕСІЙНОЇ ПРОГРАМИ "КОМП’ЮТЕРНО-ІНТЕГРОВАНІ

ТЕХНОЛОГІЧНІ ПРОЦЕСИ І ВИРОБНИЦТВА"

ТЕМА: Система автоматичного керування двигуном постійного струму з

ПІ-нейрорегулятором швидкості

ВИКОНАВЕЦЬ: Білай Є.С.

КЕРІВНИК: к.т.н., ст. викл Пантєєв Р. Л.

НОРМКОНТРОЛЕР: к.т.н., доцент Тупіцин М.Ф.

Kиїв 2021

EDUCATION AND SCIENCE MINISTRY OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Department of Aviation Computer-Integrated Complexes

ADMITT TO DEFENCE

Head of the department

Syneglazov V.M.

“ ____ ” __________2021 y.

BACHELOR WORK
 (EXPLANATORY NOTE)

Specialty: 151 Automation and computer-integrated technologies

Eeducational professional program "Computer-integrated technological

 processes and production"

 THEME: «Automatic DC motor control system with PI speed neuroregulator»

DONE by: Bilai Y.S.

SUPERVISED by: Pantyeyev R. L.

STANDARDS CONTROLLER: Tupitsyn M.F.

Kyiv 2021

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

Освітній ступінь бакалавр

Спеціальність: 151 " Автоматизація та комп'ютерно-інтегровані

технології"

ЗАТВЕРДЖУЮ

Завідувач кафедри

Синєглазов В.М.

“ ____ ” __________2021 р.

ЗАВДАННЯ

на виконання дипломної роботи студентки

Білай Єлизавети Сергіївни

1. Тема проекту (роботи):“ Система автоматичного керування двигуном

постійного струму з ПІ-нейрорегулятором швидкості ”

2. Термін виконання проекту (роботи): з 20.01.2021 р. до 11.06.2021 р.

3. Вихідні данні до проекту (роботи): Орієнтуватися на сучасні

технології розробки систем керування із застосуванням

нейроконтролерів.

4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці): 1. Аналіз та обґрунтування вибору методів керування

швидкості в електромеханічній системі з двигуном постійного струму.

2. Огляд і аналіз існуючих розробок у галузі нейрокерування. 3.

Дослідження проблеми нейрокерування швидкістю двигуна у

двоконтурній системі підпорядкованого керування. 4. Розробка

системи керування швидкістю електродвигуна із застосуванням

нейроконтролера. 5. Дослідження режимів керування розробленої

електромеханічної системи.

5. Перелік обов’язкового графічного матеріалу: 1. Лінійна система

каскадного управління швидкістю; 2. Система регулювання швидкості

приводу постійного струму із сухим тертям; 3. Схема прямого

зворотного регулювання; 4. Система із сухим тертям та

нейрорегулятором; 5. Система регулювання швидкості приводу

постійного струму із сухим та в'язким тертям; 6. Результати роботи

нейронної мережі.

6. Календарний план-графік

№

пор.
Завдання

Термін

виконання

Відмітка

про

виконання

1 Підбір літератури 23.01 – 26.01 виконано

2 Аналіз існуючих методів керування

швидкістю в електромеханічних системах

з нелінійностями на прикладі сухого та

в’язкого тертя

27.01 – 19.03 виконано

3 Розробка системи керування швидкістю

електродвигуна на базі нейроконтролеру

20.03 – 08.04 виконано

4 Створення та тренування нейромережі для

роботи в електромеханічній системі з

нелінійностями в якості регулятора

09.04 – 18.04 виконано

5 Дослідженні режимів роботи нелінійної

електромеханічної системи з

нейроконтролером

19.04 – 11.05 виконано

6 Аналіз результатів роботи моделі системи

в середовищі MatLab/Simulink

12.05 – 21.05 виконано

7 Формування висновків щодо виконаної

роботи

22.05 – 24.05 виконано

8 Оформлення пояснювальної записки 25.05 – 30.05 виконано

9 Створення презентації 31.05 – 11.06 виконано

7. Дата видачі завдання: “21" _грудня_ 2021 р.

Керівник дипломної роботи __________________ Пантєєв Р. Л.

 (підпис керівника) (П.І.Б.)

Завдання прийняв до виконання _______________________ Білай Є.С.

 (підпис випускника) (П.І.Б.)

NATIONAL AVIATION UNIVERSITY

Faculty of aeronavigation, electronics and telecommunications

Department of Aviation Computer Integrated Complexes

Educational level bachelor

Specialty: 151 "Automation and computer-integrated technologies"

APPROVED

Head of Department

Sineglazov V. M.

"____" __________2021

TASK

For the student's thesis

Bilai Y.S.

1. Theme of the work: “Automatic DC motor control system with PI speed

neuroregulator ”

2. Term of execution of the work: from 20.01.2021 till 11.06.2021.

3. Initial data of the work: To focus on modern technologies for the

development of control systems using a neurocontroller.

4. The contents of the explanatory note (list of issues to be developed):

1. Analysis and discussion of the choice of speed control methods in an

electromechanical system with a DC motor. 2. Review and analysis of

existing developments in the field of neurosurgery. 3. Investigation of the

problems of neuro-control of movement speed in a two-circuit system of

subordinate control. 4. Development of a control system for the speed of an

electric motor using a neurocontroller. 5. Research of control modes of the

developed electromechanical system.

5. List of compulsory graphical materials: 1. Linear system of speed

cascade control; 2. System of speed control of a direct current drive with

dry friction; 3. Scheme of direct inverse regulation; 4. System with dry

friction and the neuroregulator; 5 System of speed control of a direct current

drive with dry and viscous friction; 6. Results of the neural network.

6. Calendar Schedule

№

Task Period of execution

Performanc

e note

1 Selection of literature 23.01. – 26.01. done

2 Analysis of existing speed control

methods in electromechanical systems

with nonlinearities on the example of dry

and viscous friction

27.01. – 19.03. done

3 Development of a motor speed control

system based on a neurocontroller

20.03. – 08.04. done

4 Creation and training of a neural network

for work in electromechanical system with

nonlinearities as a regulator

09.04. – 18.04. done

5 Investigation of modes of operation of a

nonlinear electromechanical system with a

neurocontroller

19.04. – 11.05. done

6 Analysis of the results of the system

model in the MatLab / Simulink

environment

12.05. – 21.05. done

7 Forming conclusions about the work done 22.05. – 24.05. done

8 Making an explanatory note 25.05. – 30.05. done

9 Presentation creating 31.05. – 11.06. done

7. Date of issuance of task: “21" _december_ 2021.

Supervisor: __________________ sr. lecturer, Ph.D Pantyeyev R. L.

 (supervisors sign) (П.І.Б.)

Task is accepted for execution _______________________ Bilai Y.S.

 (graduates sign) (П.І.Б.)

Реферат

Пояснювальна записка до бакалаврскої кваліфікаційної роботи:

Система автоматичного керування двигуном постійного струму з ПІ-

нейрорегулятором швидкості

74 с., 31 рис., 2 табл., 2 додатка, 18 джерел

Об’єктом розробок і досліджень даної роботи є нелінійна система

підпорядкованного регулювання швидкості тиристорного електроприводу

постійного струму з нейрорегулятором.

Ціль роботи  синтез нелінійної системи підпорядкованного регулювання

швидкості з урахуванням сухого тертя, а також системи з урахуванням сухого та

в’язкого тертя; розробка для кожної з цих систем інверсної нейромоделі і

використання її як нейрорегулятор швидкості, компенсуючий вищеназвані

нелінійності.

Розробки проводились на основі теорії використання інверсних

нейромоделей систем як нейрорегулятори в цих системах. Для дослідження

розробленої системи був використаний метод математичного моделювання на

персональному компьютері з використанням програмного пакету MatLab

5.2/Simulink, орієнтованого на моделювання систем автоматичного регулювання

електроприводів.

В результаті роботи були синтезовані нелінійні системи підпорядкованного

регулювання швидкості приводу, побудовані нейромоделі синтезованих систем.

Для регулювання нелінійних об’єктів за допомогою отриманих нейромоделей

був використаний метод “Direct inverse control”.

Проведене цифрове моделювання розроблених систем виявило

ефективність використання метода “Direct inverse control” в нелінійних системах

электроприводу. Отримані нелінійні системи з нейрорегулятором,

компенсируючим існуючі нелінійності, відслідковують завдання з статичною

помилкою 0.02% і з відставанням при цьому на один крок дискретності.

ТИРИСТОРНИЙ ЕЛЕКТРОПРИВОД ПОСТІЙНОГО СТРУМУ,

СИСТЕМА ПІДПОРЯДКОВАНОГО РЕГУЛЮВАННЯ ШВИДКОСТІ,

ІНВЕРСНА НЕЙРОМОДЕЛЬ, НЕЙРОРЕГУЛЯТОР, НЕЛІНІЙНІСТЬ, СУХЕ

ТЕРТЯ, В’ЯЗКЕ ТЕРТЯ, ДИСКРЕТНІСТЬ, ЦИФРОВЕ МОДЕЛЮВАННЯ

Abstract

Explanatory note to the bachelor's qualification work:

Automatic DC motor control system with PI speed neuroregulator

74 pp., 31 figs., 2 tables, 2 appendices, 18 sources

The object of development and research of this work is a nonlinear system of

subordinate speed control of a thyristor DC electric drive with a neuroregulator.

The purpose of the work is the synthesis of a nonlinear system of subordinate

speed control taking into account dry friction, as well as a system taking into account

dry and viscous friction; development for each of these systems of an inverse

neuromodel and its use as a neuroregulator of speed, compensating for the above

nonlinearities.

Developments were made on the basis of the theory of using inverse neuromodels

of systems as neuroregulators in these systems. To study the developed system, we used

the method of mathematical modeling on a personal computer using the software

package MatLab 5.2 / Simulink, focused on modeling systems for automatic control of

electric drives.

As a result, nonlinear systems of subordinate drive speed control were

synthesized, neuromodels of synthesized systems were built. The "Direct inverse

control" method was used to control nonlinear objects using the obtained neuromodels.

The conducted digital modeling of the developed systems revealed the efficiency

of using the “Direct inverse control” method in nonlinear electric drive systems. The

obtained nonlinear systems with a neuroregulator compensating for the existing

nonlinearities track the task with a static error of 0.02% and with a lag of one step of

discreteness.

THYRISTOR DC ELECTRIC DRIVE, SLAVE SPEED CONTROL

SYSTEMS, INVERSE NEUROMODEL, NONLINEARITY, DRY FRICTION,

VISCOUS FRICTION, DISCRETE, DIGITAL SIMULATION

CONTENT

List of abbreviations ..

Introduction ...

1. NEURAL NETWORKS IN AUTOMATION TECHNOLOGY

1.1. Neural systems - branch of artificial intelligence ..

1.2. General considerations of neural control for industrial processes

2. GENERAL DESCRIPTION AND FUNCTIONING OF NEURAL

NETWORKS ...

3. SPECIAL PROPERTIES OF NEURAL NETWORKS ...

3.1. Ability to learn ...

3.2. Ability to process incorrect and incomplete information

3.3. Adaptive behavior ..

3.4. Massive parallelism ..

3.5. Fault tolerance ..

3.6. Hardware implementability ..

4. FEEDFORWARD NETWORKS..

4.1. Model of a processing element ..

4.2. Network layer model ..

4.3. Model of the entire network ...

4.4. Error back propagation ...

5. OVERVIEW OF NEURAL REGULATIONS AND CONTROLS FOR

COMPENSATING NON-LINEARITIES ..

6. CLASSIFICATION OF THE TYPICAL NON-LINEARITIES IN PRACTICAL

ELECTRIC DRIVE SYSTEMS ...

7. MODELING AND SIMULATION OF DRY FRICTION

8. MODELING AND SIMULATION OF DRY AND VISCOSE FRICTION

9. USE OF NEURAL NETWORKS TO COMPENSATE THE DRY FRICTION...

10. USE OF NEURAL NETWORKS TO COMPENSATE DRY AND VISCOSE

FRICTION...

Conclusions ...

Literature ...

Glossary

Cb — Coefficient of sliding friction

 The moment of sliding friction:)(ωsignbM CC 

Nb — Rolling friction coefficient

 Moment of rolling friction: ωbM NN 

NI — Rated current of the motor

k — Torque constant

K — Gain factor in the speed feedback

AR — Connection resistance

rT — Time constant in the counter of the TF of the PI controller

0T — Time constant in the denominator of the TF of the PI controller

iT — Equivalent time constant of the route

MT — Mechanical starting time constant

u — Entrance to the system

y — Exit of the system

w — Weighting of the neuron

w — Vector of weights

W — Matrix of weights

nω — Rated speed

sollω — Speed setpoint

istω — Actual speed value

Abbreviations

ANN — Artificial neural networks

N — Network

R — Route

TF — Transfer function

NN — Neural networks

AI — Artificial intelligence

INTRODUCTION

The research of neural networks has made a promising development in recent

years, and neural networks have become a popular topic especially in the field of

artificial intelligence research. This is particularly the case because with the help of

neural networks, artificial intelligence systems can be developed that are based on

the principle of human learning and are modeled on the processing of information

by the nervous system.

At the same time, it is a relatively complex and abstract area of research that

is very difficult to grasp and understand for a newcomer to this field. As a result, this

important and promising area is not yet sufficiently widespread, especially in the

industrial sector.

Several years of research gave insight into the architecture and the

performance of the human brain as a control system and showed that the controller

with neural networks has significant advantages over conventional controllers. The

neurocontroller can effectively process a much larger amount of information.

Another very important advantage is that good regulation can be achieved by

learning it.

In this thesis an internship experiment to investigate the performance of

neurocontrollers in non-linear electric drive systems has to be developed. For this

purpose, two drive systems with cascade speed control are considered. Dry friction

is noted in one of these systems and dry and viscous friction is noted in the other.

Inverse neuro-model is added for the controlled system of each system. Then the

obtained inverse neuromodel is built into the system according to the method “Direct

inverse control” and used as the speed controller. The transfer function of the series

connection of the inverse model and the controlled system should strive towards one

in the method used. In this way, the non-linearities present in the system can be

compensated.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. haed Sineglazov V. M.

1. NEURAL NETWORKS IN AUTOMATION TECHNOLOGY

1.1 Neural systems - branch of artificial intelligence

If one looks at the development of neural networks, one can see that this has

been influenced by the most diverse areas and that the neural systems have

developed into a largely independent discipline in recent years. The beginning of

this development was made by neurobiology, which still plays a decisive role in the

further development of the NN today. The first technically oriented contributions to

the development of the NN come from physics, where the attempt to describe

physical phenomena from the field of magnetism or thermodynamics with neural

methods has led to the development of some network types.

It was only when the potential for using neural networks to solve problems in

the field of artificial intelligence (AI) became clear that NN became a popular

research branch in computer science within a very short time and it can now be

described as the newest branch of artificial intelligence research. This is illustrated

in fig. 1, which shows the relationship between the NN and other AI research areas.

Fig. 1 - Neural networks as a research area in artificial intelligence.

Neural networks can be used successfully, for example, for problem solving

in the field of image processing and natural language systems. The only area

unrelated is the area of logic and theorem proof. This is the case because this area

represents an approach that competes with NN. For example, one can find expert

systems that are either based on methods of logic or use neural approaches, but rarely

based on principles of logic and the NN at the same time (although such systems are

possible). Methods of theorem proof and logic are the basic algorithms for the classic

rule-based AI approaches [1].

In principle, AI research can be divided into two areas: The first research area

comprises the rule- and knowledge-based approaches just mentioned, which can

typically be found in expert systems in the form of a deduction component or in

language-understanding systems in the form of grammars. The second research area

deals mainly with methods of pattern recognition and the processing of human

sensory perceptions. In these areas, neural approaches were the quickest to gain

Neural

Networks

Theorem-

proof

Natural-

language

systems

Logik

Expert

systems

Image

understanding

Robotics

acceptance. This also applies to the field of robotics, where a large number of control

and regulation problems favor the processing of analog values with neural networks.

At a time when AI research was still mainly characterized by rule- and

knowledge-based approaches, the term “machine learning” had already emerged.

Here an attempt was made to develop AI systems that are based on logic-oriented

approaches and that can draw rules and knowledge bases independently from

examples. NN are, so to speak, a supplement to “machine learning” and have the

closest relationship to this area.

Many pilot applications in artificial intelligence research in the 1980s were

unsuccessful and had to be viewed as more or less failed. This was often due to the

following reasons:

1. Lack of ability to learn. Rule-based systems generally have no

learning ability, which in many cases meant that the rules had to

be laboriously determined with the help of a detailed system

analysis and then implemented in the form of a computer

program. It had the following consequences: The creation of an

AI application was associated with a great deal of time and

money, because not only does it take a long time to find and

implement all the rules, but testing and tuning the rules is also

very time-consuming.

2. Lack of adaptive learning behavior. Many systems in practice are

time-variant systems in which the application conditions change

continuously during the application phase. Therefore, many

applications require a system that is able to learn from new

examples created during the application phase. A rule-based

system is usually not easy to adapt. However, many AI systems

are initially designed as relatively simple systems and many

special cases that actually require new special rules are only found

over time through daily use of the system. The adaptive learning

behavior of such a system is therefore an important property.

3. Small ability to process fuzzy information. Many problems in

practice are “fuzzy problems”. The main problem with systems

that are not able to process fuzzy information is the problem that

it need exact input information in order to be able to derive results

from it. However, if the entries do not fall outside the specified

range of values, the system fails because it practically no longer

knows what to do now.

4. Runtime problems. This is a very simple, common problem.

However, this often leads to a rejection of the AI system, since a

simplified version would not meet the requirements and a full

version is too expensive.

5. Lack of integrability. This is one of the most common problems

of AI applications, because almost every implemented AI system

has to be integrated into existing software. It has been shown that

even when using software tools that expressly have easy-to-use

interfaces, considerable integration problems have arisen in many

applications.

Neural networks are not a “magic bullet” for eliminating such problems.

However, it has the potential to successfully run some applications that have failed

for the reasons mentioned above. Neural systems can often deal with the problems

mentioned above better than rule-based systems because they have the following

properties [1]:

1. Ability to learn. This quality is one of the main strengths and abilities of

the NN.

2. Adaptivity. It is true that not all NNs can be created adaptively in a simple

way, but it is very easy to have an NN relearned with an expanded list of

newly acquired examples.

3. Processing of fuzzy information. This is the typical domain of neural

systems.

4. Massive parallelism and hardware implement ability of the NN have

already been discussed. The great potential of the neuro-algorithms in

terms of computing speed is thus available.

5. One advantage of the NN is that it is practically always about purely

numerical algorithms. With the help of most of the available software

shells, these can always be converted into programs that have been

created, for example, in the “C ++” programming language.

1.2 General considerations of neural control for industrial processes

Research in the field of neural networks has undergone a much-noticed

development over the past few years, and neural networks have become a popular

topic, particularly in the field of artificial intelligence research. This is particularly

the case because, with the help of neural networks, artificial intelligence systems can

be created that are based on the principle of human learning and are modeled on the

processing of information by the nervous system in biological organisms.

At the same time, however, neural networks are a relatively complex and

abstract area of research that is very difficult to grasp and understand for a newcomer

to this field. As a result, this important and promising area is not yet sufficiently

widespread, especially in the industrial sector [2].

The aim of the present work is therefore to convey the possible applications

of neural networks in electrical drive technology.

In the field of process automation, mostly linear controllers are currently used,

which are designed with the help of linearized, mathematical process models. For

strongly non-linear processes, however, this approach leads to limited results.

Another class of problems arises when the knowledge about the process can only be

roughly expressed mathematically.

By using methods for black box modeling, a model of the process can be

formed from measured values of process variables, which describes it with regard to

its input / output behavior. Artificial neural networks (ANN) are particularly suitable

here, as have a universal structure that is also able to adapt to non-linear behavior.

A number of different control structures, which are based on process models, enable

systematic control design for non-linear processes as well. A model is generated

based on process data, which is embedded in a controller structure and used to

regulate the process [3]. Since some of these control approaches are very

computationally expensive, it may be necessary to have the behavior of the

combination of controller structure and neural model learned by a neural controller

and thus to regulate the process.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. haed Sineglazov V. M.

2. GENERAL DESCRIPTION AND FUNCTIONING OF NEURAL

NETWORKS

Furthermore, the question should be clarified: What is a neural network? A

very general answer to this question could be: A system made up of interconnected

elements that can process information, called neurons. A general distinction is made

between biological and artificial neural networks. In the case of a biological neural

network, the neurons are nerve cells and the network is part of the nervous system

of a biological organism. The processed information is biological information,

which essentially consists of nerve impulses. In an artificial neural network, the

neurons are implemented as mathematical or physical models with several inputs

and outputs, whose mathematical behavior corresponds in principle to the biological

neurons. The information processed there can generally be referred to as a sample.

These can be signals, bit patterns or numerical values that are usually processed by

an artificial neural network in the form of an input pattern and output in the form of

an output pattern. Fig. 2 shows the schematic representation of an artificial neural

network. A somewhat detailed representation is given in Fig. 3. Fig. 2 clarifies the

basic functionality of an artificial neural network by representing the network as a

system for pattern processing that contains an external pattern as an input, processes

it internally and generates an output pattern from it.

The illustration in Fig. 3 shows the networking of the individual processing

elements (neurons) with one another. The fact that all connections between the

neurons contain weights is very important. In Fig. 3, some facts become clear that

are generally applicable to artificial neural networks. For example, Fig. 3 shows that

not all processing elements are interconnected. Also, not all neurons are exclusively

connected to other neurons. Instead, the neurons can be divided into three different

classes: Some of the neurons are directly connected to the external input

pattern, while another part of the neurons outputs the external output pattern [2].

A third part of the neurons is only connected to other neurons and thus has

only internal and no external connections. The processing elements of a neural

network are therefore usually divided into different layers, namely the input layer,

the output layer and the hidden layer. The number of neurons in this last layer can

be very large and it will be shown in the later course of this work that in many cases

the neurons of this layer can be divided into further layers, which are generally

referred to as "hidden layers".

Fig. 2.1 - Schematic representation of a neural network

 With the help of these findings, a more precise definition of an artificial neural

network can now be made: A system for information processing with the help of

simple networked elements with directed inputs and outputs and weighted

connections that processes input patterns and generates the resulting output patterns.

How does information processing work in such a network? Without going into

detail in this introduction, one can already give some thought to this if one

remembers the formulation given above, that one can describe the behavior of

neurons with a mathematical model to which a certain transfer behavior between its

inputs can be described and can assign outputs, which is characterized by various

parameters, in particular by the weights of the neuron inputs. A transfer function

common in control engineering can serve as a model for describing a dynamic

Neural

network

Input pattern

Output pattern

system, the transfer behavior of which depends on the coefficients in the

denominator and numerator of the transfer function. A neuron therefore generates

an output signal from its input signals according to a mathematical rule. In this way,

the input pattern is transformed by the neurons of the input layer and the

corresponding outputs in turn become inputs of the neurons in the hidden layer,

where the input pattern is further transformed. With a large number of processing

layers, the input pattern is subjected to an extraordinarily complex transformation

that can completely change both the shape and the dimensions of the pattern and, as

a result, delivers the corresponding output pattern at the output of the neurons of the

output layer.

Fig. 2.2 - Detailed representation of a neural network

 `There is a certain mathematical relationship between the input and output

patterns, which is determined by the parameters of the mathematical neuron models

and the network topology of the neurons. If stick to the example of control

engineering, it can still imagine a transfer function between the input and output

Input layer

Hidden

 Layers

Output layer

Output pattern

Input pattern

Neuron

patterns, which is, however, very complex and non-linear and is determined by a

large number of parameters [5]. In a typical NN application, the problem of which

transmission behavior is present between the input and output pattern is usually not

investigated when the NN parameters are specified, but the opposite problem is

initially in the foreground, namely: How are the NN parameters chosen to achieve a

specific transfer behavior between the input and output patterns? This problem can

be solved by presenting the network with a more or less large number of sample

patterns at its input or output (sample pattern pairs) and using an optimization

process to try to optimize the network parameters so that it adopts the desired

transmission behavior.

Here, too, the example from control engineering is again appropriate, since

such a procedure corresponds in principle to a system identification and the

mentioned optimization method corresponds to a parameter estimation method. In a

neural network, this phase is called the learning phase or training phase, in which

the network learns from examples to adapt its parameters so that it adopts the desired

transmission behavior. The possibility of adapting the parameters of the neural

network to the sample pattern with the help of suitable mathematical procedures

gives the network its important property, namely the ability to learn from examples.

Since - as mentioned above - the network parameters primarily consist of the

weightings of the connections between the neurons, the weightings of a neural

network are responsible for the network's ability to learn. For an NN, learning

therefore means that it tries to set its weightings in such a way that it generates output

patterns from the presented reference input patterns that are as similar as possible to

the reference output patterns.

Once the network has learned the relationship between the reference input and

output patterns in the learning phase, it can be used in the actual application phase.

The NN with now firmly learned parameters is used to process a pattern processing

task in which the network is presented with input patterns that it has not yet seen in

the learning phase and it generates the desired output patterns from them [5]. These

can be tasks for recognizing patterns or for converting and storing patterns from a

wide variety of application areas.

In summary, it can be stated that a typical NN application always consists

of two phases: In the first phase - the learning or training phase - the weightings of

the NN are determined using examples for input and output patterns so that the NN

matches the systematic Can grasp the relationship between the sample pattern pairs.

In the second phase - the actual application phase - the network is presented with

input patterns with its learned weightings, from which it then generates output

patterns and thus solves a specific pattern processing task.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

3. SPECIAL PROPERTIES OF NEURAL NETWORKS

The learning ability of neural networks already described gives the neural

algorithms a special property that most other algorithms do not have, but which is

very advantageous and often a necessary prerequisite for solving a variety of

problems - especially in the field of artificial intelligence. Because of this, neural

networks have grown in popularity very quickly and continue to evolve at a rapid

pace. However, neural networks have some other special properties that distinguish

them from other classical methods.

3.1 Ability to learn

In addition to the facts already mentioned about the learning ability of neural

networks, some interesting consequences can be derived from this fact. Nowadays

most tasks are solved with the computer in a procedure in which the person himself

has to analyze the task in detail and with the help of a program, the computer has to

teach the procedure to solve the task in complex individual steps. A computer based

on neural principles could one day be able to cope with even complex tasks by

automatically learning from sample solutions for this task. With such a computer,

the programming step would be replaced by the training step [3].

It can also be shown that, under certain conditions, neural networks are able

to systematically extract the essential relationships between these pairs of patterns,

which are common to all of these pairs of patterns despite their differences, from a

very large number of relatively different pairs of sample patterns. This is another

very important property, as it makes it clear that the network is not only able to

produce a pure "input-output mapping" between the input and output patterns, but

that it can learn the essential systematics of the pattern processing task and can run

from a multitude of examples to a generalization of the individual copies

presented.

The NN can exploit this ability to generalize by being able to correctly process

input patterns in the application phase that it never saw in the training phase. Some

of these patterns can be completely different from the examples presented in the

learning phase and can still be processed correctly, as they correspond to the same

systematics of the learning examples and the network has recorded this general

systematics during learning. This ability to generalize learning examples to

examples never seen before gives the learning ability of the neural networks

robustness [4]. This is necessary in order to be able to successfully cope with real

applications from practice.

3.2 Ability to process incorrect and incomplete information

All network types have the ability to process incomplete and incorrect

information. In many cases, it can be generating a correct output pattern from an

input pattern that is noisy. In this way, incorrect input patterns can be processed

correctly or transformed into error-free input patterns. It also applies to incomplete

input patterns (this is the special case of incorrect patterns), which can be completed

with the help of NN. Here, too, neural networks are better than most “classic

methods”, since these methods usually fail in the case of incorrect or incomplete

entries. Ordinary systems are designed to process correct and complete data, while

neural networks can process so-called “fuzzy information”. However, a lot of

information in everyday life is “fuzzy”, for example a word that is spoken quickly,

which one did not understand exactly and which the human brain usually still

processes successfully and correctly. The human brain is particularly capable of

processing fuzzy information and it is therefore clear that NN can be used

particularly successfully in the machine processing of voice and image signals.

3.3 Adaptive behavior

In addition to the ability to learn during the training phase, some networks

also have the ability to continue learning in the application phase and consequently

have an adaptive behavior. In this case, the weightings found in the learning phase

are not kept constant in the application phase, but are continuously adapted to the

current conditions, i.e. readapted, with the help of the patterns that are presented to

the network during the application phase. But not all network types have this

capability. However, it is very desirable in many cases, for example when NN work

together with time-variant systems in which an adaptation to slowly changing

conditions is necessary.

3.4 Massive parallelism

The massive parallelism of networks can already be seen from the

consideration of Figure 3. This implies that the neurons can be viewed as

autonomous systems. Their internal operations are independent of each other and

they only communicate with each other through the weighted links. As a result, an

NN can be viewed as a network of independent, parallel working individual systems.

It has already been mentioned that the behavior of a neuron can be simulated with

the help of a mathematical or physical model. A mathematical model is realized with

the help of a computer program and the calculation of the entire network is carried

out as a simulation of all neuron models coupled to one another on a conventional

computer. However, due to the massive parallelism, one can also imagine realizing

the simulation programs for the individual neurons on an extra processor each, which

can be a very simple microprocessor. The overall network could then be

implemented as a connection between all individual processors. This would have the

advantage that the simulation programs of the individual neurons would then no

longer have to run sequentially on a conventional computer, but that they could run

in parallel on all available individual processors. An enlargement of the network

would then result in an increase in the number of processors and would not have a

disadvantageous effect on the computing time for the network, since each processor

can contribute its computing power to the overall performance of the network at

normal speed. This would significantly increase the overall performance of the

network [5]. It should also be noted that because of the very simple design of such

processors, the individual elements of such a hardware network would be very cheap

and large networks with very high computing power can be implemented cost-

effectively. The massive parallelism of neural networks thus represents a possible

approach for replacing conventional computers in the future with computers that

work in parallel, which can then provide a multiple of computing power.

3.5 Fault tolerance

The fault tolerance of the neural systems is closely linked to the property of

massive parallelism and hardware implement ability. In the case of a large and

massively parallel system made up of several thousand elements working in parallel,

there is a likelihood that in the case of a parallel computer in which a processor fails

during operation, this can lead to a total failure of the entire system because Each

processor in such a system assumes an important function and in particular the

failure of communication with the other processors can lead to considerable

problems. In such a case, the parallel computer could still be operated with a smaller

number of processors, but a disruption of the program currently running would

certainly be unavoidable at the time of the processor failure and all applications

would have to be adapted to the lower number of processors, e.g. by recompiling

and restarting.

In the case of an NN, it can be observed that in most cases a failure of

individual neurons does not lead to any significant change in network behavior. This

only applies in the event that the number of failed elements is relatively small

compared to the total number of neurons in the network. In most cases, the transition

to a significantly poorer network behavior is fluid, i.e. with an increasing number of

failed elements, a continuous change in network behavior is associated and a rapid

total network failure if a certain number of elements fails. not to watch.

This very advantageous, fault-tolerant behavior can be explained using some

of the properties of neural networks that have already been listed: Due to the massive

parallelism mentioned, the overall functionality of the network is very widely

distributed over a large number of elements. Each individual element (neuron) has a

very simple structure and does not have a particularly high level of performance on

its own. The effectiveness of these systems is achieved through the strong

connectivity of the elements with each other and the effective distribution of the task

to be solved over the total number of neurons, as well as the effective control of the

interaction of the neurons with the help of the weights. Therefore, the failure of a

simple element can hardly affect the overall behavior, as long as enough other

elements are still present. The fault tolerance is also favored by the fact that in most

cases the network processes fuzzy information.

The property of fault tolerance is particularly important for the applicability

of neural systems under critical operating conditions, in which an extremely high

availability of the system must be guaranteed. Examples of this are applications in

space, in flight safety, in the military sector, in the monitoring of complex technical

systems. In such cases, an NN can also be designed to be particularly fault-tolerant

by designing it deliberately oversized, i.e. using a larger number of neurons in the

"hidden layer" than is absolutely necessary. In this case, the overall behavior of the

is particularly well distributed and the failure of some elements is all the easier to

cope with.

3.6 Hardware implementability

One also thinks of the simulation of an NN with the help of a physical model,

e.g. realized by an analog electrical circuit or with the help of optical processes. It is

important to note that a hardware implementation can lead to an enormous advantage

in computing time. If one thinks of the advances in microelectronics and

optoelectronics, one can also easily imagine that neural networks with high

computing speed and a large number of neurons in the smallest dimensions can be

realized in this way. This has the following consequences for the practical

applicability of NN: NN can be “tailor-made” for certain applications and they can

be implemented as chips. Small dimensions and high processing speeds make real-

time applications possible under a wide variety of operating conditions without the

need for expensive control computers. Applications in the immediate vicinity of the

machine (e.g. in engines, in cars, etc.) can be implemented. These applications can

also be implemented inexpensively through mass production. Overall, it can be

stated that practically all the advantages that the development of microelectronics

has brought for the use of digital processors can be transferred in a similar way to

neural networks.

It is also interesting to note that NN are one of the few paradigms in AI

research that can be efficiently implemented in hardware. Such an attempt has also

been made, for example, for rule-based paradigms from the field of logic and

inference systems and has had an impact on the development of LISP machines, for

example. However, due to their high prices, large dimensions and incompatibility

with other systems, these have not been able to establish themselves. Most rule-

based systems are and will remain pure software implementations, which in most

complex applications requires the use of a computer and can thus lead to a restriction

of the range of applications.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

4. FEEDFORWARD NETWORKS

The most common basic network architecture is that of feedforward networks.

A Net with the feedforward architecture only has connections between the neurons

in one direction, namely from one layer to a “higher” layer. Higher means here that

this layer is closer to the starting layer than a layer below it. A feedforward network

in Figure 5 would only have connections from the bottom to the top. There are no

connections between from one layer to a layer below, and there are also no

connections between the neurons of a layer [6]. In the normally used feedforward

network architectures, there are always only connections between one layer and the

next higher layer directly above it.

The network architecture shown in Fig. 4.1 is one of the most frequently used

architectures for feedforward networks, with two hidden layers and one input and

one output layer. The connection between the input pattern and the input layer only

serves to present the pattern and does not yet contain any weightings or totals.

Typical summations of the weighted inputs only come into play with the neurons of

the first hidden layer and are continued by the neurons of the second hidden layer

and the output layer. Our network (fig. 5) has three active layers that contribute to

the transformation of the input pattern into the output pattern. That is why one speaks

of a three-layer network.

Feedforward networks can have at least one active layer, but in many cases

they have three active layers. Two-layer networks or networks with more than three

layers are also used.

Feedforward networks have a number of other typical properties:

- Inputs and outputs are continuous

- Using the sigmoid function as an activation function

- Mostly different dimensions of input and output patterns

- Main application in pattern classification and assignment

- Mathematical description as a static system (the output pattern is calculated

from the input pattern in a single "forward step") [6]

Fig. 4.1 - Architecture of a feedforward network

Input layer

Hidden layers

Output layer

Input pattern

Output pattern

4.1 Model of a processing element

 The detailed structure of a single processing element can be seen in Figure 6.

Input variables nxx 1 are initially weighted with the weighting factors nww 1 . The

actual neuron is represented by the two functions)(xG and)(GF . The function)(xG

is referred to as the propagation function and in most cases is a pure summation

function that provides the sum of the weighted input variables as the output variable.

An important property of neural networks is their non-linear behavior, which is

generated in that the output of the propagation function)(xG is further processed by

a non-linear function)(GF , the so-called activation function.

Our neuron also contains an element at the input of the variable  , which takes

on the function of a “bias” and is fed to the input of the NN without weighting [10].

It ensures that with a wide variation of the inputs, the output of the processing

element is on average - depending on the choice of  - is positive or negative.

 In many cases,  can be set to zero. But there are also some cases in which it

makes sense to set this variable to a value other than zero.

Fig. 4.2 - Structure of a single processing element

On the basis of the explanations given above, the following equation results

for the output variable y of the processing element:





n

i

ii xwFy
1

)( (4.1)

In order to efficiently represent equation (1) in vector notation, the vectors

x and w can be introduced:

T

nxxx]1,,,[21 x (4.2)

T

nwww],,,[21 w (4.3)

G(x)

Propagation

function

F(G)

Activation

function

Inputs and

Bias

Weightings

Output

This means that equation (1) can also be written in the following form:

)(wx  TFy (4.4)

From equation (3) it follows that the factor can formally be viewed as an

additional weighting factor which, based on equation (2), receives a constant input

variable from 11 nx . For the hard limiter, which is one of the most commonly used

activation functions, one gets:

 1 for wx
T

y (4.5)

 0 for  wx
T

and for the commonly used sigmoid function:

)(aT

e
y






wx
 (4.6)

This function converges to 1 for s and tends towards zero for s .

4.2 Network layer model

Let's consider two network layers shown in Fig. 4.3. The output values in the

M neurons of the upper layer are calculated from the output values of the N neurons

of the lower layer.

Fig. 4.3 - Calculation of the outputs of a network layer

The current index of the upper layer neurons is j , where j goes from 1 to M

. The running index of the lower layer neurons is i , where i goes from 1 to N . Each

of the lower layer N outputs is connected to all of the upper layer neurons. Therefore

every neuron of the upper layer has N inputs which are identical to the N outputs

of the lower layer. If consider only one processing element j of the output layer, it

can calculate the corresponding output value with the aid of equation (4) [10]:

)(j

T

j Fy wx  (4.7)

The vector jw thus contains the weightings of the connections from the N

neurons of the lower layer to the j -th neuron of the upper layer and is thus a vector

with the dimension N . These connections are shown in Figure 8. The weightings of

the individual connections are not shown, except for the weighting ijw , which

represents the weighting between the i -th neuron of the lower layer and the j -th

neuron of the upper layer. Overall, we have M weighting vectors jw (Mj ,,1 )

each with N components and thus a total of MN  weighting factors. Each vector

jw contains the weights between all neurons of the lower layer and the j -th neuron

of the upper layer. That's why it can write:

T

Njjjj www],,,[21 w (4.8)

With the help of equation (7) one can calculate the output value for each

neuron j of the upper layer. If one considers equation (7) for all output values

Mj ,,1  , one can write:

]),,,[(],,,[2121 M

T

M Fyyy wwwx   (4.9)

or with the introduction of the weighting matrix W :

NMN

M

M

ww

ww











1

111

21],,,[ wwwW (4.10)

The number of rows in the weighting matrix thus corresponds to the number

of neurons in the lower layer and the number of columns corresponds to the

number of neurons in the upper layer.

4.3 Model of the entire network

Let us describe a two-layer network, which is shown in Figure 9. The two-

layer network can be viewed as two single-layer networks. The first network thus

generates the output vector x from the input vector y . The weightings of the first

layer are combined in the matrix 1W . The output vector obtained is treated by the

second layer like a new input vector and made available to all neurons of the second

layer with the weightings contained in the matrix 2W as shown in Figure 9. The

equation (12) for the output vector z can be interpreted as a double matrix

transformation with non-linear distortion of the input vector.

Layer 1:)(1Wxy  TT F (4.11)

Layer 2:)())(()(212

TTTT GFFF xWWxWyz  (4.12)

It can be seen that this transformation)(TG x depends only on the assumed

nonlinear activation function F of the neurons and in particular on the elements in

the matrices 1W and 2W .

With these explanations, the basic principle of learning in neural networks

is made clear once again: The parameters of the complex transformation G , which

consist of the weightings in 1W and 2W are determined in such a way that when

example vectors x are presented, the associated example vectors z are as good as

possible can be simulated and the error that occurs is as small as possible. It follows

that the learning process consists of determining the parameters in the weighting

matrices.

Fig. 4.4 - Two-layer neural network

4.4 Error back propagation

Backpropagation is the most common method of error recovery. But there are

also some modifications of this feeling: quick propagation, elastic spreading [3].

The backpropagation network selected from layers with entry, exit and hidden

rights (Fig. 10). The signal transmission is called in the forward direction. The

actual and setpoint values are checked at the output. If this causes an error, it is

converted backwards so that the weights of each layer are corrected. But the

convergence of trust is not seen to be accomplished.

Vector

Layer 2

Vector

Layer 1

Vector

Now let's look at learning after backpropagation:

1. Initialize weights

2. Enter the learning file with neuron inputs ix)1(Ni  and the desired output

d for all learning patterns M :

MNNN dxxxdxxxdxxx),,,(,,),,,(,),,,(21221121  (4.13)

Fig. 4.5 - Two-layer neural network with N inputs and N2 outputs

3. Calculate input transmission in forward direction

3.1) hidden layer (Outputs i , and iv):

ji

N

i

ijj xw  
1

)(jj fv )1(1Nj  (4.14)

Input layer with

 N neurons

Input layer with

N1 neurons

Input layer with

N2 neurons

3.2) Output layer (Outputs k , and ky):

kj

N

j

jk
v

k vw  


1

1

)(kk fy )1(2Nk  (4.15)

4. Calculate the total error for all learning patterns M n:





M

p

pp

M

p

p ydEE
1

2

1

2)((4.16)

5. Calculate weights and thresholds value change respectively:

5.1) Output neurons:

jk
v

jk
v

neujk
v www )(kkneuk  )((4.17)

kjjk xEw   if)1()(jjjjj xxxdE  (4.18)

kjk xE   (4.19)

5.2) hidden neurons:

ijijneuij www )(jjneuj  )((4.20)

ji
v

ij xEw   if)1()(jjkjki
v xxwEE   (4.21)

ki
v

k E   (4.22)

 This ends a learning step.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

5. OVERVIEW OF NEURAL REGULATIONS AND CONTROLS

FOR COMPENSATING NON-LINEARITIES

The use of neural networks for regulation and control is connected with the

ability to recognize the state of dynamic systems.

The network inputs are state variables of the control loop. The network

outputs are manipulated variables or characteristic values of the controller. The

supervised learning methods are mainly used as the learning method. This creates

a new feedback, namely the “learning feedback”, which works separately from

the control loop feedback [8].

The concepts of control with NN are listed below:

1. State control

2. Predictive regulation

3. Adaptive control

With regard to the implementation of these concepts, the following rule

structures can be designated:

1. One-network approach

2. Two-network approach

3. Regulator network approach

Neural state control is shown in Fig. 5.1. With this concept of control with

NN, the network receives the control difference)(te and its derivatives at its input,

as well as the vectors of the manipulated and controlled variables)(ty and)(tx .

Fig. 5.1 - Neural state control. One-network approach

The output of the NN is the manipulated variable)(ty , which is why the

network is referred to as an “action network” or “A network” in this case.

In order to optimize the control process, the trained A network should form

an inverse transfer function compared to the transfer function of the controlled

system [5]. Therefore, the task of the neural network is to set its own weights after

the monitored learning so that the difference between the desired output d and

the current output x is minimal.

The next procedure is shown in Fig. 5.2. This method belongs to the

category of predictive control and in this case is implemented with a two-network

method.

Fig. 5.2 - Neural predictive control. Two-network approach.

First, the “emulator network” (“E network”) is trained with the inputs and

outputs of the controlled system. The A network is then trained, as in the previous

case of the neural state control, but this time by the E network.

This procedure is referred to in the literature as “Model Predictive Control”

[6] and is a powerful procedure despite a long learning period.

The combination of both methods is also possible in that the A network is

not trained by the E network, but by monitored learning directly from the

controlled system to an inverse transfer function. Such procedures are referred to

in the literature as "Internal Model Control" [6].

The adaptive neural control is shown in Figure 5.3 using the controller-

network method. The weights ijW of the NN are here equivalent to the controller

setting parameters.

Fig. 5.3 - Neural adaptive control. Regulator network approach

This process is modified when the controller is replaced by an A network.

The NN for the control can again be implemented with one or two network

processes. Fig. 5.4 shows a model-based control system with two networks. As

with the new regulation, a distinction is made between the following two

operating modes, learning and controlling.

Fig. 5.4 - Neural control. Two-network approach

Fig. 5.5 - Neural control. One-network approach

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

6. CLASSIFICATION OF THE TYPICAL NON-LINEARITIES IN

PRACTICAL ELECTRIC DRIVE SYSTEMS

This chapter looks at typical non-linearities in practical electric drive

systems and their classification.

Definition of a non-linear system: If the system has non-linear transfer

elements, then this system is non-linear.

If there are input functions or real numerical values for a transfer element,

so that either the superposition principle or the amplification principle is not

fulfilled, then the transfer element is called non-linear [13].

In practice, non-linear transmission elements occur in almost all technical

applications. In nature, nonlinear systems are the rule and linear systems are the

exception [13]. However, linearization of most of the non-linear characteristics is

permissible, so that often only one non-linear element has to be taken into account.

Non-linear control loops can only be examined in the time domain or the

state (phase) level, while in linear systems an analysis and synthesis is possible in

the frequency domain. Powerful design tools are known in linear theory, but no

uniform non-linear systems theory exists. However, there are certain methods

mainly for analyzing the stability of nonlinear systems:

a) Method of harmonic linearization,

b) Phase level method,

c) Lyapunov's second method,

d) Stability criterion according to Popow.

There are various options for classifying non-linear transmission elements.

The classification is often based on mathematical criteria, only taking into account

the form of the differential equation in question. The second possibility is to use

the most important non-linear properties that occur in particular in technical

systems for a classification. For this purpose, one considers continuous and

discontinuous non-linear system characteristics, which are compiled in Table 1.

A distinction is made between clear characteristics (cases 1 to 4) and ambiguous

characteristics (cases 5 to 7). The characteristics are often symmetrical to the

origin of the coordinate system. A subdivision into unwanted and wanted non-

linearities is often recommended.

Table 6.1 - List of the most important non-linear terms

1

Limitation

ax

axforb

axaforx
a

b

axforb

e

ee

e







2

Two point behavior

 ee xbx sgn
0

0





e

e

xforb

xforb

3

Three-point behevior

ax

axforb

axafor

axforb

e

e

e











0

4

Dead zone

ax

axforax

axafor

axforax

ee

e

ee









tan)(

0

tan)(







5

Hysteresis behavior

ax

axforb

axafor

xaxb

axforb

e

e

ee

e















)sgnsgn(

6

Three-point behavior with hysteresis

Complex and difficult to visualize

mathematical formulation

7

Gearless

Complex and difficult to visualize

mathematical formulation

8

Any non-linear characteristic

)(ea xfx 

9

Quantization

ax
 can only gradually assume

discrete values

10

Module formation ax

ea xx 

11

Squaring

2

ea xx 

12

Multiplication

(Division)
2

1

21

e

e
a

eea

x

x
x

xxx





No physical system is exactly linear in the mathematical sense. The non-

linearity can be weak and therefore negligible, it can also be strong and have a

negative (sometimes positive) effect on the dynamic behavior of a system. On the

other hand, non-linear elements are sometimes deliberately used in controller

design, not only because it is easy and cheap to implement (e.g. switching

controllers), but also to achieve special system properties that cannot be achieved

with linear elements.

As already mentioned, when analyzing and synthesizing nonlinear systems

one will often start directly from the representation in the time domain, i.e. one

must try to solve the differential equations. Simulation methods are an important

aid here. Digital and hybrid computing systems are particularly suitable for

simulating non-linear systems; The analog computer can also be used for minor

problems.

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

7. MODELING AND SIMULATION OF DRY FRICTION

Depending on the frequency response of linear control loop elements, a

description function is defined for non-linear control loop elements. This function

takes linearization into account and is particularly suitable for considering the

stability of control loops using the two-position curve method.

One has to say that the linearization of a non-linear characteristic is

successful if the change in the input signal is only slight. Then it is sufficient to

replace the characteristic with the tangent at the respective operating point.

However, this method fails in the case of characteristics with discontinuities.

If it considers the control loop in the frequency domain, a linearization can

be carried out under the following conditions:

1) The control is in the steady state

2) Restriction to only one non-linear element in the control

3) The calculation refers to the ideal non-linear characteristic

With a sinusoidal input signal, the input and output variables are continuous

oscillations. The output signal ax of the non-linear element is then periodic, but

not harmonic. It contains harmonics of different frequencies),3,2( , which

can be specified with the Fourier analysis [12].

Each control loop has damping PT1 elements so that the harmonics can be

neglected. Therefore one can restrict oneself to the consideration of the

fundamental oscillation 1ax and has carried out a practically applicable

linearization.

The description function mentioned above, also known as harmonic

balance, is only dependent on the amplitude of the input variable. Reduced to the

fundamental oscillation of the output variable is defined:

)(

)(
)ˆ(1

tx

tx
xN

e

a

e



 (7.1)

In complex notation is input and output size:

tjtj

a ebeatx   

1

)2(

11)(, (7.2)

tj

ee extx   ˆ)((7.3)

This results in a form of the description function that is used for further

calculation:

e

e
x

ajb
xN

ˆ
)ˆ(11 
 (7.4)

The dry friction corresponds approximately to switching between two

specified signal states (Fig. 7.1).

Fig. 7.1 - Characteristic curve of dry friction (two-point behavior)

Such behavior is called two-point behavior. Corresponding behavior can also

be found with bimetal switches, solenoid valves, Schmitt triggers in analog and

digital technology, with relay circuits and also as two-point controllers.

ax
0

0





es

es

xforx

xforx


 (7.5)

Here, the Fourier coefficient becomes 01 a , because the static characteristic

is an odd function. For 1b then follows:

 






0

1 sin)(
2

dxb a (7.6)

Inserting equation (20) into the integral gives:


sx

b



4

1
 (7.7)

Thus the descriptive function of dry friction (two-point behavior) is:

e

s
e

x

x
xN

ˆ

4
)ˆ(







 (7.8)

The corresponding locus (Fig. 7.2) of the description function runs on the

positive real axis of 0 for  0ˆ
es xx .

Fig. 7.2 - Locus curve for the descriptive function of dry friction (two-point

behavior)

A signal flow diagram shown in Fig. 7.3 is also considered. This is the signal

flow diagram for the cascade control of the speed of a DC drive. Here the current

control loop is set according to the optimum amount and simulated by a PT-1

element. The speed control loop is set according to the symmetrical optimum. With

the help of this structure, the influence of dry friction on the drive speed can be

investigated. All parameters for this system and for the further considered signal

flow plans are given in table 7.1.

Fig. 7.3 - System of speed control of a direct current drive with dry friction

-

-

 M

Table 7.1 - Parameters of the electric drive system

Name of the parameter Parameter Size

Time constant in the counter of the TF of the PI

controller
rT 0.008 s

Time constant in the denominator of the TF of the

PI controller
0T 0.0037 s

Equivalent time constant of the route iT 0.001 s

Torque constant k 0.28 sV 

Connection resistance AR 0.65 

Mechanical starting time constant MT 0.02 s

Rated current of the motor NI 14 A

 Rated speed nω 251.2 s

 Gain factor in the speed feedback K 1

Coefficient of sliding friction

The moment of sliding friction:)(ωsignbM CC 
Cb 0.5 mN 

Rolling friction coefficient

Moment of rolling friction: ωbM NN 
Nb 0.002





s

mN

After simulating the system with and without dry friction, the following

transition processes are obtained for the speed:

Fig. 7.4 - Step responses of the control loop. Curve 1 system without dry

friction. Curve 2- system with dry friction (friction is greatly increased)

From Fig. 7.4 it can be seen that the overshoot in the system with dry friction

is smaller than the overshoot in the system without dry friction.

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

350

400

1

2

t,s

sω,

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

8. MODELING AND SIMULATION OF DRY AND VISCOSE

FRICTION

The static characteristic of dry and viscous friction is shown in Fig. 8.1.

Internal viscous friction, which is proportional to the deformation speed of the

shafts, cables, couplings, etc., has a major influence on the dynamic processes in the

mechanical system.

Fig. 8.1 - Characteristic curve of dry and viscous friction

The output variable can be seen in Fig. 16:

ax
0sinˆ

0sinˆ

0

0





ee

ee

xforxx

xforxx








 (8.1)

Here the Fourier coefficient becomes 01 a . For 1b results:

 













2

0

1 sin)(
1

sin)(
1

dxdxb aa (8.2)

If you put the equation in the integrals, you get after calculation:

e

e

x
x

x
b ˆ

ˆ

4 0
1 







 (8.3)

Thus, the descriptive function is dry and viscous friction:

1
ˆ

4
)ˆ(0 






e

e
x

x
xN


 (8.4)

The corresponding locus of the description function is shown in Fig. 8.2:

Fig. 8.2 - Locus curve for the descriptive function of dry and viscous frictio

The locus of the description function runs on the positive real axis from 1

to  or plotted over the quotient n exx ˆ
0 from 0 to  .

The signal flow diagram shown in Figure 8.3 is used to investigate the

influence of dry and viscous friction on the transition processes of the speed. All

parameters for this system are given in table 7.1.

Fig. 8.3 - System of speed control of a direct current drive with dry and viscous

friction

After simulating the system with and without dry and viscous friction, the

following transition processes are obtained for the speed:

Fig. 8.4 - Step responses of the system. Curve 1 system without friction. Curve

2- system with dry and viscous friction (proportion of viscous friction is increased)

 -

-

0 0.01 0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

300

350

400

1

2

t,s

sω,
sω,

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

9. USE OF NEURAL NETWORKS TO COMPENSATE THE DRY

FRICTION

In order to compensate for the influence of dry friction in the system, which

is shown in Fig. 9.1, “Direct inverse control” is used in this work. But first an inverse

model of the system should be built.

To get the inverse model, the following scheme is used:

Figure 9.1 - Principle of the formation of an inverse model

The following relationship is used in the formation of the inverse NARX model:

)1(,),1(),1(,),1(()(ˆ  uy nkukunkykyNku ) (9.1)

The signal flow diagram, which illustrates the method of direct inverse

control in, for example, 2un and 2yn is shown in Fig. 9.2:

Route

inv.

Model

e +

-

u

u y

^

(S)

(N)

Fig. 9.2 - Direct inverse control

 When using this method, the following equation is used in the control phase:

)1(ˆ,),1(ˆ),1(,),(),1(()(ˆ  uysoll nkukunkykykyNku ) (9.2)

In the application, the setpoint)1(ky is entered instead of the value)1(kysoll . The

transfer and function of the series connection of the inverse model and the line

theoretically tends to be one. In this way, non-linearities present in the system can

be compensated [15].

In our case, the controlled system is part of the system shown in Fig. 7.3, from

NI to istω . It's also 
istωi nn . The program for training the network is given in

Appendix B and all commands used in this program are clarified in Appendix A

(experiment instructions for laboratory work).

The system with the neurocontroller is shown in Figure 9.3.

Fig. 9.3 - System with dry friction and the neurocontroller

After the simulation of this system, the transition processes for the speed are

obtained, which are given in Figure 9.4. This picture shows the work of the system

with the neurocontroller from a setpoint generator. It can be seen that the setpoint

and the actual value of the speed almost overlap and the non-linearity is

compensated. From Fig. 9.5 it becomes clear that the actual speed value is delayed

by one discretization step (discretization step = 0.001 s). The error of the actual speed

value compared to the speed setpoint is approximately 0.02%. It corresponds to the

direct inverse control.

-

M

Neural

network

Fig. 9.4 - Work of the system with the neurocontroller from a setpoint

generator

Fig. 9.5 - Enlarged part of the transition processes when the system works with the

neurocontroller from a setpoint generator (discretization step = 0.001 s)

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-400

-300

-200

-100

0

100

200

300

400

500

600

t,s

sω,

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

Setpoint

actual value

t,s

sω,

The associated motor current and actual speed value curves are shown in Fig.

9.6.

Fig. 9.6 - Motor current and actual speed value curve

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
-50

0

50

100

150

200

250

300

350

400

450

Rotation speed

Motor current

t,s

AI

sω

,

, 

sω,

ACIC DEPARTMENT NAU 21 01 31 000 EN

Рerformed Bilai Y.S.

Automatic DC motor control system
with PI-speed neuroregulator

N Page Pages all

Supervisor Pantyeyev R. L.

431 151 Normcontrol Тupitsyn N. F.

Dep. head Sineglazov V. M.

10. USE OF NEURAL NETWORKS TO COMPENSATE DRY AND

VISCOSE FRICTION

In order to compensate for the influence of dry and viscous friction in the

system, which is shown in Fig. 10.1, direct inverse control is also used in this case.

First, an inverse model of the controlled system is also built. A part of the system

from NI to istω is taken as the controlled system. It's also 
istωi nn . The program

for training the network is given in Appendix B and all commands used in this

program are clarified in Appendix A (experiment instructions for laboratory work).

 The system with the neurocontroller is shown in Fig. 10.1.

Fig. 10.1 - System with dry and viscous friction and the neurocontroller

-

M

Neural

network

After the simulation of this system, the transition processes for the speed are

obtained, which are given in Fig. 10.2. This picture shows the work of the system

with the neurocontroller from a setpoint generator. It can be seen that in this case the

setpoint and the actual value of the speed almost overlap and the non-linearity is also

compensated. From Figure 10.3 it becomes clear that the actual speed value is

delayed by one discretization step (discretization step = 0.001 s). The error of the

actual speed value compared to the speed setpoint is approximately 0.02%. It

corresponds to the direct inverse control.

Fig. 10.2 - Work of the system with the neurocontroller from a setpoint

generator

0 0.2 0.4 0.6 0.8 1 1.2 1.4
-400

-300

-200

-100

0

100

200

300

400

500

600

t,s

sω,

Fig. 10.3 - Enlarged part of the transition processes when the system works

with the neurocontroller from a setpoint generator (discretization step = 0.001 s)

The associated motor current and actual speed value curves are shown in

Figure 10.4.

Fig. 10.4 - Motor current and actual speed value curve

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

Setpoint

Actual value

t,s

sω,

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07
0

50

100

150

200

250

300

350

400

450

Motor current

Rotation speed

t,s

AI

sω

,

, 

Conclusions

In this thesis, two drive systems with the cascade control of the speed are considered.

Dry friction is noted in one of these systems and dry and viscous friction is noted in

the other. An inverse neuro-model was built on for the controlled system of each

system. Then the obtained inverse neuro-model is built into the system according to

the method “Direct inverse control” and used as the speed controller. The transfer

and function of the series connection of the inverse model and the segment tends to

be one. This compensates for non-linearities that exist in the system.

The method of mathematical modeling with a computer and the programming

package MatLab 5.2 / Simulink, which is oriented towards the modeling of

automated electric drive systems, was used to investigate the drive systems.

The modeling of the speed control systems carried out with the

neurocontroller has shown the effectiveness of direct inverse control in non-linear

electric drive systems.

The obtained non-linear electric drive systems with the neurocontroller, which

compensates for the non-linearities in the systems, follow the setpoint with the static

error 0.02% and are delayed by one discretization step. These results correspond to

the method of direct inverse control.

On the basis of this work, an internship experiment has been developed to

examine the performance of neurocontrollers in non-linear electric drive systems,

which can be used in the learning process at the technical faculty.

References

1. Zakharian, S .; Ladewig-Riebler, P .: Controller setting with artificial neural

networks, symposium “Modern methods of regulation and control design”,

Otto von Guericke University Magdeburg, 2007.

2. Wassermaan P. Neural Computing – Theoty and Practice. Van Nostrand

Reinhold, 1998

3. Scherer, A .: Neural Networks. Basics and Applications, Vieweg Verlag,

2017.

4. Palis, F .; Schmied, Th .; Buch, A .: Fuzzy and Neurocontrol of Mechanically

Coupled Drive Systems. 2nd Magdeburg Mechanical Engineering Days,

September 14th and 15th, 2005. Article No. 6 (4 pages).

5. Заенцев И. Нейронный сети: основные модели. Учебное пособие.

Воронежский государственный университет, 1999.

6. Bishop C.M. Neural Networks for Pattern Recognition. Oxford University

Press Inc., 2003.

7. Zakharian, S .: Neural networks for engineers: work and exercise book for

control engineering applications, Vieweg Verlag, 2008.

8. Калашников В.И .; Палис Ф .; Денисенко И.В .: Теория нейросетей:

учебное пособие, Донецк, Магдебург, ДонГТУ, 1997.

9. Калашников В.И .; Палис Ф .: Введение в интеллектуальные системы

программирования: учебное пособие, Киев, ИСМО, 1997.

10. Pinkus A. Approximation theory of the MLP model in neural networks. Acta

Numerica, 1999.

11. Jung, D .: Controller setting with neural networks, diploma thesis, FB MND,

FH Wiesbaden, 2017.

12. Bavarian, B .: Introduction to Neural Networks for Intelligent Control, IEEE

Control Systems Magazine, 4 (2008).

13. Haykin S. Neural Networks: A Comprehensive Foundation. NY: Macmillan,

1994.

14. Старостин С.С .: Методические указания по оформлению текстовой

документации, Донецк, ДонГТУ, 1997.

15. Zurada J.M. Introduction To Artificial Neural Systems. Bostom: PWS

Publishing Company,1992

16. Vogel, J .: Electric Drive Technology, 6th, completely revised. Ed.,

Heidelberg: Hüthig, 2018.

17. Галушкин А.И. Нейрокомпьютеры. Кн. 3. М.: ИПРЖ, 2000.

18. DARPA Neural Network Study, AFCEA International Press, 1998.

APPENDIX A.

Network training program (dry friction system)

i1= [0; i(1:length(i)-1)];

i2= [0; i1(1:length(i1)-1)];

w1= [w(2:length(w));w(length(w))];

w2= [0; w(1:length(w)-1)];

w3= [0; w2(1:length(w2)-1)];

P=[i1';i2';w1';w';w2';w3'];

size(P)

T=i';

size(T)

net=newff([-2.1327e+003 2.1763e+003;

 -2.1327e+003 2.1763e+003;

 -953.4054 661.0935;

 -953.4054 661.0935;

 -953.4054 661.0935;

 -953.4054 661.0935],[1],{'purelin'});

net.trainParam.goal=0.01;

net.trainParam.epochs=1000;

[net,tr]=train(net,P,T);

P=[i1';i2';w1';w';w2';w3'];

y2=sim(net,P);

plot(t,y2,t,i);

grid on;

zoom on;

APPENDIX B.

Network training program (dry and viscous friction system)

i1= [0; i(1:length(i)-1)];

i2= [0; i1(1:length(i1)-1)];

w1= [w(2:length(w));w(length(w))];

w2= [0; w(1:length(w)-1)];

w3= [0; w2(1:length(w2)-1)];

P=[i1';i2';w1';w';w2';w3'];

size(P)

T=i';

size(T)

net=newff([-2.1296e+003 2.1692e+003;

 -2.1296e+003 2.1692e+003;

 -301.2456 552.1529;

 -301.2456 552.1529;

 -301.2456 552.1529;

 -301.2456 552.1529],[1],{'purelin'});

net.trainParam.goal=0.0001;

net.trainParam.epochs=1000;

[net,tr]=train(net,P,T);

P=[i1';i2';w1';w';w2';w3'];

y2=sim(net,P);

plot(t,y2,t,i);

grid on;

zoom on;

