
 

 

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ 

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ 

Кафедра авіаційних комп’ютерно-інтегрованих комплексів 

 

ДОПУСТИТИ ДО ЗАХИСТУ 

Завідувач кафедри 

Синєглазов В.М. 

“ ____ ” __________2021. 

 

ДИПЛОМНАРОБОТА 

(ПОЯСНЮВАЛЬНА ЗАПИСКА) 

ВИПУСНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ 

“БАКАЛАВР” 

 

Тема: Система відеоспостереження за контуром цілі 

 

Виконав: Гайда М.В. 

Керівник:к.т.н. Василенко М. П. 

Нормоконтролер:к.т.н.     Тупіцин М. Ф. 

 

Київ – 2021  



 

  

EDUCATION AND SCIENCE MINISTRY OF UKRAINE 

NATIONAL AVIATION UNIVERSITY 

COMPUTER-INTEGRATED COMPLEXES DEPARTMENT 

 

ADMIT TO DEFENSE 

Head of department 

V. M. Sineglazov 

“____” ______________ 2021. 

BACHELOR WORK 

(EXPLANATORY NOTES) 

 

Topic: Video surveillance system of target contour 

 

 

 

Done by:          Haida M.V. 

Supervised by:         Vasylenko M. P. 

Normcontrolled by:        Tupitsyn M. F. 

 

 

 

Kyiv 2021 



 

  

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ 

Факультет аеронавігації, електроніки та  телекомунікацій 

Кафедра авіаційних комп’ютерно-інтегрованих комплексів 

Освітній ступінь бакалавр 

Спеціальність:  151 " Автоматизація та комп'ютерно-інтегровані 

технології" 

ЗАТВЕРДЖУЮ  

Завідувач кафедри   

Синєглазов В.М. 

“ ____ ” __________2021 р. 

ЗАВДАННЯ 

на виконання дипломної роботи студента 

Гайди Максима Володимировича 

 

1. Тема проекту (роботи): “ Система відеоспостереження за 

контуром цілі” 

2. Термін виконання проекту (роботи): з 10.05.2021 р. до 11.06.2021 

р. 

3. Вихідні данні до проекту (роботи): метод виділення контуру цілі на 

відео, метод розпізнавання символів, метод визначення координат 

цілі, алгоритм програми, середовище Matlab. 

4. Зміст пояснювальної записки (перелік питань, що підлягають 

розробці):  1. Актуальність системи відеоспостереження за контуром 

цілі; 2. Аналіз існуючих підходів для виявлення об'єктів; 3. 

Теоретичні основи системи відеоспостереження контуру цілі; 4. 

Вирішення задачі виявлення номерної таблички розробленою 

програмою та експерименти. 

5. Перелік обов’язкового графічного матеріалу: 1. Структурна схема 

експериментальної установки; 2. Блок-схема алгоритму роботи 

програми; 3. Графічне зображення знайдених характерних точок;  4. 



 

  

Графічне зображення відфільтрованих характерних точок ; 5. Папка 

із зображеннями шаблонів цифр та літер; 6.Початкове зображення із 

виділеною рамкою та символами. 

 

6. Календарний план-графік 

№ 

пор. 
Завдання 

Термін 

виконання 

Відмітка 
про 
виконання 

1. Отримання завдання 10.05.2021 – 11.05.2021  

2. Формування мети та основних 

завдань дослідження 
12.05.2021 – 13.05.2021  

3. Аналіз існуючих методів 14.05.2021 – 19.05.2021  

4. Теоретичний розгляд рішення 

задачі  
20.05.2021 – 25.05.2021  

5. Розробка структури системи 

відеоспостереження за контуром 

цілі 

25.05.2021 – 30.05.2021  

6. Розробка програмного та 

апаратного забезпечення системи 

відеоспостереження за контуром 

цілі 

30.05.2021 – 05.06.2021  

7. Оформлення пояснювальної 

записки 
05.06.2021 – 07.06.2021  

8. Підготовка презентації та 

роздаткового матеріалу 
08.06.2021 – 11.06.2021  

 

7. Дата видачі завдання: “10” травня 2021 р.  

Керівник дипломної роботи   __________________         М.П. 

Василенко 

                                    (підпис керівника)                                        (П.І.Б.) 



 

  

 

Завдання прийняла до виконання    ___________________              М.В. Гайда 

                                            (підпис випускника)                         (П.І.Б.) 

 



 

  

NATIONAL AVIATION UNIVERSITY 

Faculty of aeronavigation, electronics and telecommunications 

Department of Aviation Computer Integrated Complexes 

Educational level bachelor 

Specialty: 151 "Automation and computer-integrated technologies" 

APPROVED 

Head of Department 

Sineglazov V. M. 

"____" __________2021 

TASK 

For the student's thesis 

Haida Maksym Volodymyrovych 

 

1. Theme of the project: " Video surveillance system of target contour " 

2. The term of the project (work): from May 10, 2021 until June 11, 2021 

3. Output data to the project (work): the method of selecting the target 

contour on the video, the method of character recognition, the method of 

determining the coordinates of the target, algorithm of the program, the 

Matlab environment. 

4. Contents of the explanatory note (list of questions to be developed): 

1. The relevance of video surveillance system of target contour 2. Analysis 

of existing approaches of objects detection; 3. Theoretical basis of the video 

surveillance system of target contour; 4. Solution of number plate detection problem 

by the developed program and experiments. 

5. List of compulsory graphic material: 

1. Block diagram of the experimental setup; 2. Block diagram of the algorithm 

of the program; 3. Graphic representation of the found characteristic points; 4. 

Graphic representation of filtered characteristic points; 5. Folder with images of 

number and letter templates; 6. Initial image with a selected frame and symbols.  

  



 

  

6. Planned schedule: 

 

№  Task Execution term 
Execution 

mark 

1. Task 10.05.2021 – 11.05.2021  

2. 
Purpose formation and describing 

the main research tasks 
12.05.2021 – 13.05.2021  

3. Analysis of existing methods 14.05.2021 – 19.05.2021  

4. Analysis of existing systems 20.05.2021 – 25.05.2021  

5. 

Theoretical consideration of the 

problem solution 
25.05.2021 – 30.05.2021  

6. 

Development of software and 

hardware for video surveillance 

system of target contour 

30.05.2021 – 05.06.2021  

7. Making an explanatory note 05.06.2021 – 07.06.2021  

8. 
Preparation of presentation and 

handouts 
08.06.2021 – 11.06.2021  

 

7. Date of task receiving: “10” May 2021 

Diploma thesis supervisor                                                         Mykola P. Vasylenko 

     (signature)  

Issued task accepted                                                                       Maksym V. Haida 

     (signature)  

 

  



 

  

CONTENT 

Glossary………………………………………………………………………........... 

Introduction…………………………………………………………………………. 

1. The relevance of video surveillance system of target contour…………………… 

1.1. Description of video surveillance systems. ………………………………….. 

1.2. Computer vision and its tasks………………………………………………… 

1.2.1. Identification………………………………………………………………... 

1.2.2. Object recognition………………………………………………………….. 

1.2.3. Image segmentation………………………………………………………… 

1.2.4. Pose Estimation…………………………………………………………….. 

1.2.5. Text recognizing……………………………………………………………. 

1.2.6. Objects generation………………………………………………………….. 

1.2.7. Video analysis……………………………………………………………… 

1.3. The importance of detecting the target contour………………………………. 

1.4. Problem solving necessity……………………………………………………. 

2. Analysis of existing approaches of objects detection…………………………….. 

2.1. Correlation method of objects detecting in the image………………………... 

2.2. The method of object recognizing in the image by its contour………………. 

2.2.1. Roberts operator……………………………………………………………. 

2.2.2. Laplace operator……………………………………………………………. 

2.2.3. Prewitt operator…………………………………………………………….. 

2.2.4. Sobel operator………………………………………………………………. 

2.2.5. Canny operator……………………………………………………………... 

2.2.6. Comparative analysis of the described methods of contour selection……… 

2.3. The method of recognizing an object in an image by characteristic points….. 

2.3.1. General information about the method……………………………………... 

2.3.2. Corners detectors…………………………………………………………… 

2.3.3. Moravec corner detector general description………………………………. 

2.3.4. Harris corner detector general description………………………………….. 

2.3.5. Shi-Tomasi corner detector general description……………………………. 



 

  

2.3.6. Förstner corner detector general description……………………………….. 

2.3.7. SUSAN corner detector general description……………………………….. 

2.3.8. Trajkovic corner detector general description……………………………… 

2.3.9. FAST corner detector general description………………………………….. 

2.3.10. CSS corner detector general description………………………………….. 

2.3.11. Corner detectors comparison……………………………………………… 

2.4. Object recognition using neural network (deep learning) and machine learning 

2.4.1. Object recognition using deep learning general description……………….. 

2.4.2. Object recognition using machine learning general description…………… 

2.4.3. Machine learning and deep learning for object recognition comparison…... 

3. Theoretical basis of the video surveillance system of target contour…………….. 

3.1. Blurring by Gaussian filter…………………………………………………… 

3.2. FAST characteristic points recognizing algorithm description………………. 

3.3. Selection of contours by the Prewitt operator description……………………. 

3.4. Image binarization using Otsu method……………………………………….. 

3.5. Template matching method description……………………………………… 

4. Solution of number plate detection problem by the developed program and 

experiments………………………………………………………………………….. 

4.1. Description of the experimental setup………………………………………... 

4.2. Description of the algorithm of the program…………………………………. 

4.2.1. Recording image data to a computer…………………………………………. 

4.2.2. Preparation of image data for processing…………………………………... 

4.2.3. Identification of all characteristic points in the image……………………….. 

4.2.4. Filtering of the found characteristic points…………………………………… 

4.2.5. Determining the coordinates and dimensions of the license plate…………… 

4.2.6. Recognition of symbols located on the license plate………………………… 

4.2.7. Selecting the contour of the plate on the input image and output the 

recognized characters……………………………………………………………….. 

4.3. Computational load analysis………………………………………………….. 

Conclusions…………………………………………………………………………. 



 

  

References………………………………………………………………………… 

Appendixes………………………………………………………………………….. 

Appendix A. Code of the program for highlighting the number plate contour and 

displaying the characters……………………………………………………………. 

Appendix B. Program code that creates templates of alphabets and numbers……… 

Appendix C. Code for comparison of input image with templates………………….



 

 

GLOSSARY 

AVSS – Automated video surveillance system 

CV – Computer Vision 

LTI – Linear Time Invariant 

FIR – Finite impulse response 

MSE – Mean square error 

PSNR – Peak signal to noise ratio 

CP – Characteristic points 

FAST – Features from accelerated segment test 

CSS – Curvature scale space 

CNN – Convolutional Neural Networks 

GPU – Graphics processing unit 

CPU – Central processing unit 

RAM – Random access memory 

SSD – Sum of squared differences 

CCORR – Cross-correlation 

PC – Personal computer 



 

 

INTRODUCTION 

At a time when marauding, theft and various crimes are becoming more 

frequent, there is a great need in video surveillance systems installing. Such systems 

have already gained momentum and can be found in every supermarket or buildings 

under control.  

However, the quality of video cameras and optical sensors in general is 

growing every year, as is the quality of the video they shoot, and it is no longer 

enough to simply record the video stream on a storage medium. There is a need to 

pre-process the video to efficiently use the storage memory and ensure automatic 

operation of the system without the participation of the operator. 

This paper proposes an intelligent video surveillance system of the license 

plate contour, which will solve the problems described above.  

Using a combination of methods for detecting objects by template matching, 

contour detection and feature detection in the image, was developed a system that is 

characterized by good accuracy and speed, can be both installed statically and be 

mobile, does not require expensive equipment and computing resources for its work, 

automatically detects the position of the number plate, highlights it, and recognizes 

the characters displayed on it. 

Further in the course of work it is possible to know about the relevance of 

solving such a problem, already existing methods of the algorithm of work 

realization, theoretical data and experimental results of system work.
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CHAPTER 1. THE RELEVANCE OF VIDEO SURVEILLANCE 

SYSTEM OF TARGET CONTOUR 

1.1. Description of video surveillance systems 

 

The rapid development of the functionality of video processing tools and 

their relatively low cost has led to the active use of digital technologies in various 

fields of human activity. In particular, computer video surveillance systems have 

become widespread for surveillance in banks, offices, airports, supermarkets, to 

search for subjects in the flow of people by appearance. In recent years, there has 

also been an active installation and use of video cameras at public transport stops, 

in parks, squares, schools, adjacent areas, etc. Such systems are increasingly used 

in forensics, access control systems, security systems [1]. 

In automated video surveillance systems (AVSS), the number of cameras is 

constantly growing and, accordingly, resource consumption increases. However, a 

significant limitation of such systems is the need for a large number of operators to 

service them. This led to the transition to intelligent AVSS. However, such systems 

reduce the efficiency of AVSS and require significant computing resources [2]. 

Video surveillance systems are one of the main components and occupy an 

important place in the overall structure of integrated security systems for facilities 

and individuals. In a world where crime, fighting, terrorist attacks and security 

breaches are on the rise, video surveillance systems are the right solution to prevent, 

detect and warn them [1]. 

Nowadays, video surveillance systems are increasingly integrated into 

various aspects of everyday life. One of the options for classifying such systems is 

the scope of their use: 

  



 

 
  
 
 

 

- video surveillance of roads and highways: measuring the speed of cars, 

detecting driving at a red traffic light, crossing the dividing strip and other 

violations of traffic rules [1]; 

- public and commercial security: monitoring of public places to detect and 

prevent crime. These include individual facilities: schools, banks, supermarkets, 

theaters, department stores, parking lots, stadiums and entire transportation 

systems: airports, railways, subways, seaports, etc.; 

- environmental monitoring and research: observation of forest fires and 

pollution, habitats and migration of animals, mountain ranges, plant diseases, 

oceanographic research, preservation of historical and archaeological monuments, 

cultural heritage; 

- military sphere: patrolling state borders, measuring refugee flows, 

monitoring civilians, ensuring the security of military bases, assistance and 

management during hostilities, etc.; 

- quality control: monitoring of industrial and automated processes, 

production sites to identify faults and intrusions into their infrastructure; 

- smart homes and personal safety: home surveillance to prevent theft and 

intrusion, health of patients, children, animals, etc.; 

- analysis of video information: determination of patterns and anomalies in 

the movement of transport, pedestrians, sports indicators, traffic in shopping malls, 

amusement parks, etc... 

 

1.2. Computer vision and its tasks 

 

Computer Vision (CV) is a field of artificial intelligence associated with 

image and video analysis. It includes a set of techniques that empower the computer 

to "see" and extract information from what it sees [3]. 



 

 
  
 
 

 

The systems consist of a photo or video camera and specialized software that 

identifies and classifies objects. They are able to analyze images (photos, pictures, 

videos, barcodes) as well as faces and emotions. 

Machine learning technologies are used to teach a computer to "see". A lot 

of data is collected that allow you to identify features and combinations of features 

for further identification of similar objects. 

All tasks of computer vision are reduced to the analysis of an image or video 

stream (in fact, it is a set of alternating images), on which it is required first of all 

to select a fragment containing the necessary information. For detection, is usually 

used a rectangular area, which limits the original fragment, or simply select the 

pixels belonging to it [4]. 

1.2.1. Identification 

The identification task is to classify the whole image. To do this, key areas 

are highlighted in the image and classification is performed on them, for example, 

using decision trees, or convolutional neural networks. 

1.2.2. Object recognition 

The task is to be able to select a certain set of objects on the image. Until the 

problem is solved in the general case, the algorithm cannot classify random objects 

in the image. However, it is capable of recognizing a previously learned set of 

objects with a sufficiently high accuracy. 

1.2.3. Image segmentation 

The task is similar to object detection, but in contrast to it, it is required not 

to surround the found objects with frames, but to select the pixels that make up this 

object. Segmentation is used in many areas, for example, in manufacturing to 

indicate defects in the assembly of parts, in medicine for primary processing of 

images, as well as for compiling terrain maps from satellite images. One of the 



 

 
  
 
 

 

typical segmentation methods is the use of the U-Net model, which is several layers 

of a convolutional network that differ in size and are U-shaped in the stack, which 

is reflected in the name. 

1.2.4. Pose Estimation 

The problem of estimating the position of an object, in some way continues 

the task of segmentation. It consists in selecting a certain frame of the object (for 

example, a skeleton, if we are talking about people) and determining the position 

of this frame in the image. This skeleton can be used subsequently, for example, to 

predict the direction of movement. Depending on the number of objects under 

consideration, a Single-person pose estimation and Multi-person pose estimation 

are distinguished. The difference is that in the second case, it is also necessary to 

take into account that objects can overlap each other. To accomplish this task, the 

background is first cropped, leaving only the images of the objects themselves, and 

then for each of the objects, using convolutional neural networks, areas of joints 

are selected, which are then connected. 

1.2.5. Text recognizing 

One of the key tasks of computer vision. First, using detection algorithms, 

the area in which the text is written is highlighted, then the text is recognized 

directly, for example, using segmentation algorithms. At the same time, the tasks 

of recognizing text written on a sheet of paper and recognizing text written 

somewhere on the image (“in the wild”), for example, a text on a road sign, a car 

number, etc., are very different, due to the presence in the latter case interference 

that prevents you from detecting specific letters. In this case, for example, learning 

to predict a letter from the rest of the letters in a word can help. 

 



 

 
  
 
 

 

 

Fig.1.1. An example of a real-life text recognition task - Recognizing 

numbers on doors 

1.2.6. Objects generation 

The task is to learn how to create similar objects using a known set of objects, 

but at the same time they have not coincide with any of the test ones. For example, 

create animated characters in the style of a cartoon, drawing only a couple of them 

by hand. For this, such architectures are used as generative adversarial networks, 

in which the network is divided into two, one of which seeks to create an object, 

and the second to reject it, or a variational autoencoder that learns on the probability 

densities of the initial data in order to create an object similar to the original, but 

not the same. 



 

 
  
 
 

 

 

Fig. 1.2. An example of image generation using the GAN method 

1.2.7. Video analysis 

Since a video is a set of images of the same size, usually taken at different 

intervals of time, all the tasks that were described earlier are applicable to it. There 

are also tasks such as motion prediction, which consists in predicting the position 

of an object in the next frames from a set of frames, or a more general Situation 

Awarness task, which is to be able to determine its position for each object in a 

video. and status on all frames of the video. 

1.3. The importance of detecting the target contour  

In general, a video surveillance system is an information system consisting 

of video cameras, a complex of display and storage of video information, which is 

used to record, view and visually analyze video information. Video surveillance 

can be performed both in real time and viewing saved information from other 

storage [1]. 



 

 
  
 
 

 

In turn, the intelligent video surveillance system is a system with its own 

real-time operating system, which provides high reliability and makes the most 

efficient use of computer resources. Allows to achieve the maximum speed, the 

minimum reaction time to events and has long-term stability.  

When recognizing objects, the most informative part of the image is the 

contour. An object contour is a part of an object that contains a lot of information 

about the shape of the object and depends little on the color and texture of the 

image. 

The contour can be used to analyze the shape of the object. In many cases, 

information about the shape of the object is sufficient for the organization of 

automatic or automated systems. In addition, the transition to object recognition by 

their contours allows to reduce the amount of information processed by several 

orders, in addition, the contours are invariant to the brightness transformations. 

Since the basic information about the shape of the object is contained in the 

contour of the object, the selection and description of the contour is an important 

task of image analysis. 

1.4. Problem solving necessity 

Nowadays, when video surveillance systems are installed at almost all 

controlled entrances to private territories (for example, parking lots, territories of 

government organizations, etc.), there is a great need to introduce systems with 

algorithms for tracking the contour of the target. That is, to track and recognize the 

license plate of a car that crosses the border of the controlled area, record 

information about the time of its entry and exit, the coordinates of the car and 

recognize the symbols located on the license plate and record them. 

The first thing that comes to mind solving this problem is the application of 

the approach of neural networks deep learning. However, learning a neural network 

to recognize an object requires a large number of images from a training sample 



 

 
  
 
 

 

(thousands of examples), and the learning process also takes hours. And the most 

significant disadvantage of this approach is the process of its calculation on the 

chip of the video adapter, which already imposes restrictions on the use of 

hardware. Given the previous facts, such a system will be correspondingly 

expensive.  

There is a second approach to solving the problem  ̶  Automatic Number Plate 

Recognition systems. They work fast and do not require large computing resources. 

However, in order for such a system to work properly, the camera is installed so 

that the car occupies the entire area of the frame, and the license plate is the largest 

rectangle in the frame. Such systems are very sensitive to changes in the position 

of the subject and various noises in the image, and recognition becomes unreliable 

if the background scenes of the frame occupy approximately more than 20% of the 

total image. 

Intelligent video surveillance systems with the ability to track the target are 

now very expensive, with limited access to code and patented. The system shown 

in this paper has an open source code and a price that is determined only by the 

price of the camera and microcontroller. 

Thus, there is a task to create a fast, inexpensive, easy to install system for 

tracking the contour of the license plate and recognition of license plates. What will 

be presented in this paper. 
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CHAPTER 2. ANALYSIS OF EXISTING APPROACHES OF 

OBJECTS DETECTION 

There are many varieties of known methods for solving the problem of 

detecting the contour of the target. Some are based on the location and detection of 

moving objects in the video stream, while others detect the object by their 

belonging to a certain class and their characteristics. The following chapters will 

gradually describe the known methods of detecting objects in video and images. 

2.1. Correlation method of objects detecting in the image 

The task of detection is to establish the presence of objects (brightness areas) 

with certain properties in the image, and also, if the objects are detected, to 

determine their coordinates on the image plane [5]. 

The basic principle of object detection in an image is to compare the image 

brightness function with a certain "standard" - a fragment of the brightness field 

containing the desired object. When implementing the detection procedure, the 

standard fragment moves sequentially over the image field, and in each position its 

similarity with the real function of brightness on the fragment is examined. 

Complete coincidence of the standard and the image, as a rule, does not happen due 

to noise and distortions, and also due to the fact that there is usually no complete 

information regarding the shape and structure of the object (you have to use a 

standard that only approximately describes the object). 

Let's denote by t(k,l), (k,l)∈D  the function of the brightness of the standard 

object, specified on a certain area D in the standard’s own coordinate system 

(usually is considered a rectangular area D with the origin in the center). Let the 

x(m,n) – be samples of the brightness function of the observed image. As a measure 

of the difference between the standard and the image at the point (m, n), the 



 

 

quadratic measure is most often taken: 

 

𝜀2(𝑚, 𝑛) = ∑ [𝑥(𝑚 + 𝑘, 𝑛 + 𝑙) − 𝑡(𝑘, 𝑙)]2

(𝑘,𝑙)∈𝐷

 (2.1) 

 

It is considered that there is a similarity of the image fragment with the 

standard at the point (m, n), if: 

 

𝜀2(𝑚, 𝑛) < 𝐿𝜀  (2.2) 

 

Where 𝐿𝜀- some threshold depending on the intensity of the noise. 

Fig.2.1. shows a schematic illustration of the principle of comparison with a 

standard. 

 

Fig.2.1. Illustration of the principle of comparison with a standard: a) a 

standard for comparison with; b) examined area; c) matches with the standard 

In practice, the measure (2.1) is usually not calculated, but go over to related, 

but more simply calculated values. Transform the expression for the quadratic 

measure of difference: 

 



 

 

𝜀2(𝑚, 𝑛) = ∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙) − 2 ∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙) + ∑ 𝑡2(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

(𝑘,𝑙)∈𝐷(𝑘,𝑙)∈𝐷

 (2.3) 

 

Here, the first term characterizes the image energy within the "window" D. 

This energy usually changes rather slowly depending on (m, n) and practically does 

not characterize the sought object. The third term characterizes the energy of the 

standard and does not depend on (m, n). For detection, only the second term is 

essential, which, up to a constant factor, specifies the cross-correlation of the image 

and the standard [5]: 

 

𝐵(𝑚, 𝑛) = ∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

 (2.4) 

 

When the image and the reference coincide, the cross-correlation (2.4) is 

large, which ensures the smallness of the quadratic measure (2.1). However, direct 

use of cross-correlation as a measure of similarity usually results in poor detection 

performance. This is due to the fact that cross-correlation can increase even if the 

image does not match the standard if the brightness of the image in the vicinity of 

the point with coordinates (m, n) is high. This difficulty can be circumvented by 

using the normalized cross-correlation:  

  

𝑅(𝑚, 𝑛) =
∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)(𝑘,𝑙)∈𝐷

√[∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙)(𝑘,𝑙)∈𝐷 ][∑ 𝑡2(𝑘, 𝑙)(𝑘,𝑙)∈𝐷 ]

 (2.5)
 

 



 

 

The value R(m, n) is equal to the maximum value (one) if the standard 

coincides with the image up to a constant non-negative factor. In this case, the 

object at the point (m, n) is considered detected if R(m, n)>LR′, where LR′ is the 

threshold for measure (2.5). 

The form of function (2.5) can be simplified if we first normalize the original 

image x (m, n) by choosing the energy of the standard equal to one, that is, to ensure  

∑ 𝑡2(𝑘, 𝑙)(𝑘,𝑙)∈𝐷 = 1, performing adaptive element-by-element image processing 

with a "window" D to equalize the energy (variance) of the image 

 ∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙)(𝑘,𝑙)∈𝐷  all over the field. This further eliminates the influence 

of variance variations within the image. Denoting the normalized image by x'(m,n), 

come again to the linear measure of cross-correlation: 

 

𝐵′(𝑚, 𝑛) = 𝑅′(𝑚, 𝑛) = ∑ 𝑥′(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

 (2.6) 

 

It is easy to see that the normalized cross-correlation function (2.6) is formed 

as a result of the passage of a two-dimensional signal - a normalized image x′(m, 

n) - through a two-dimensional LTI system with an impulse response h(k,l )= t(-k,-

l): 

 

𝐵′(𝑚, 𝑛) = 𝑥′(𝑚, 𝑛) ∗∗ ℎ(𝑘, 𝑙) = 𝑥′(𝑚, 𝑛) ∗∗ 𝑡(−𝑘, −𝑙) (2.7) 

 

Thus, we obtain the general scheme of the correlation detection algorithm, 

which is shown in Fig. 2. Here, at the last stage, a binary image is obtained with 

ones at the points of object detection: 



 

 

 

Fig. 2.2. Scheme of the correlation detection algorithm 

LTI system, which in this case is called the correlator, is an FIR system and 

can be implemented by window (direct convolution) or spectral processing (fast 

convolution). 

The considered correlation detection method is relatively simple, but it is 

characterized by rather high probability of errors (false detection or missing 

objects), which is explained by ignoring the properties of noise when synthesizing 

the image processing algorithm. 

2.2. The method of object recognizing in the image by its contour 

When recognizing objects, the most informative part of the image is the 

contour. An object outline is a part of an object that contains a lot of information 

about the shape of the object and depends little on the color and texture of the 

image. 

The shape of the object can be analyzed along the contour. In many cases, 

information about the shape of the object is sufficient for the organization of 

automatic or automated systems. In addition, the transition to object recognition by 

their contours allows to reduce the amount of information processed by several 



 

 

orders of magnitude, in addition, the contours are invariant to the brightness 

transformations [1]. 

After digitization, each pixel uniquely refers to either the background or the 

image. There are different types of criteria for deciding whether each of the pixels 

belongs to the background or contour of the image.  

The result of the selection of contours is an image skeleton - a secondary 

image of the same size as the original. Initially, all points of this image are black, 

and in the process of selecting the contours of the pixels that correspond to the 

detected boundary points of the image, become painted white. 

The contour in the color image corresponds to the intensity difference. 

However, this definition excludes contours associated with abrupt changes in hue 

and intensity in areas with constant brightness. 

Contour representation (encoding) is the step of obtaining a discrete signal 

that describes the boundaries of a digitized image. 

Requirements for contour representation algorithms: 

1. reducing the amount of memory used for storage; 

2. reducing the time and complexity of further processing; 

3. obtaining informative features of the object. 

Biological systems of visual perception, as studies show, use mainly 

contours to highlight objects, rather than dividing objects by brightness. In practice, 

the differences will not be sharp due to the blurring and limitations imposed by the 

video recording equipment. Sometimes the brightness differences along the 

boundaries are better traced in the form of jumps in the first brightness derivatives 

than in the analysis of the values of the brightness itself. 

When solving the problem of contour selection, a compromise between the 

number of erroneous contours and the number and magnitude of contour breaks is 



 

 

found. It is known that the result of the follow-up operation is much less affected 

by small gaps. They are easier to eliminate than false contours, in which it is easy 

to get confused [1]. 

The relationship between the number of false contours and the number and 

magnitude of gaps is determined by the noise immunity of the method of contour 

selection. Any region D of the plane of the complex variable contains internal 

points and contour points (boundary points). The first of them have the property 

that not only they themselves, but also some of their surroundings belong entirely 

to the area D. Contour points are not internal, but in any small neighborhood of 

such points there are internal points of area D and points which do not belong to 

area D - external (background) points. Area D has the property of connectivity, 

which is that any of its points are connected by a line that is completely in the 

middle of D. 

A contour line G is said to be convex if the rectilinear segment connecting 

any two of its points consists entirely of the interior points of region D. The contour 

section will be concave if such a segment will include external (background) points 

(Fig. 2.3.). 

 

Fig. 2.3. Fragments of the contour G: 1, 2 - convex; 3, 4 - indefinite; 5, 6 - 

concave 

Internal element (pixel) of a binary digitized image 𝜔(m1,m2) has the 

property of four-connectivity, ie adjacent elements - upper, lower, left and right, 

also belong 𝜔 (m1,m2). 



 

 

To process the contour in an analytical way, it is necessary to encode it, ie to 

set a certain number in accordance with each contour element. The sequence of 

such numbers is called the contour code. Eight different standard placements are 

possible on the square grid. 

Let’s consider some ways to encode contours: 

1. Coding by three features: the length of the current elementary vector, the 

direction of rotation when moving to the next elementary vector and the angle 

between adjacent elementary vectors.  

2. Encoding the current elementary vector with a three- dimensional binary 

code (numbers from 0 to 7). This code was proposed by Freeman and is widely 

used in image processing. 

3. The coding of the current elementary vector by its two projections on the 

coordinate axis with the origin, combined with the beginning of the elementary 

vector - two-dimensional code. 

4. Polygonal representation of the contour obtained by its approximation by 

linear segments (Fig. 2.4). 

Coding is to fix the coordinates of the ends of these segments. This method 

due to the compactness of the obtained descriptions has become widespread. This 

causes a segmentation problem similar to the signal sampling problem. In real 

cases, it is usually associated with the loss of information about the shape of the 

images. 

 



 

 

Fig. 2.4. Polygonal representation of a contour by means of approximation of a 

contour by linear segments 

5. Representation of a contour line by a polar code. In the image (m1,m2) 

the pole is selected - the beginning of the reference (point P) ordinary (own) 

coordinate system, ie the frame of reference associated with this image. The centers 

of all boundary points of the image are connected with the point P. The result is a 

sequence of radius vectors  (n), that uniquely define the contour of the image (Fig. 

2.5). Often the center is aligned with the center of gravity of the image. 

 

Fig. 2.5. An example of specifying a fragment of the contour in the polar 

coordinate system 

Methods of contour selection can be divided into two large groups: 

differential and extreme correlation. In differential methods, the intensity 

differences are amplified by numerical differentiation, then the contour is selected 

by a threshold device, after which the binary image is subjected to secondary 

processing, the purpose of which is to thin the contour to one pixel. The methods 

are easy to implement and have high performance, but have low noise immunity. 

The main criterion in assessing the noise immunity of the contours is the position 

of the brightness difference.  

On the other hand, two approaches are used to define and describe a contour: 

selecting edges or selecting the area of a point that forms an object. 



 

 

A large number of algorithms for selecting contours and boundaries are 

given and described in the literature. The most popular methods include the 

Roberts, Sobel, Previtt, Kirsch, Robinson operator, the Canny algorithm and the 

LoG algorithm. These algorithms are based on emphasizing the sharp differences 

in brightness that are characteristic of the contours of objects. 

 

 

2.2.1. Roberts operator 

The Roberts operator is one of the first contour selection algorithms that 

calculates the sum of the squares of the differences between diagonally adjacent 

pixels. This will be an image convolution with two cores: 

 

[
+1 0
0 −1

] 𝑎𝑛𝑑 [
0 +1

−1 0
] (2.8) 

 

Roberts' operator is still used for computing speed, but it loses compared to 

alternatives due to its significant noise sensitivity. It makes the lines thinner than 

other methods of contouring, which is almost equivalent to calculating the final 

differences along the X and Y coordinates. It is sometimes called the "Roberts 

filter". 

2.2.2. Laplace operator 

The discrete Laplace operator is also often used in image processing to 

highlight contours. Discrete Laplacian is defined as the sum of the second 

derivatives and is calculated as the sum of the differences on the "neighbors" of the 

central pixel. For a one-dimensional signal, a discrete Laplacian can be written as 

a convolution with the next core: 



 

 

 

𝐷𝑥
2 = [1 − 2    1] (2.9) 

 

And for a two-dimensional signal: 

 

𝐷𝑥
2 = [

0 1 0
1 −4 1
0 1 0

]  𝑜𝑟 𝐷𝑥
2 = [

1 1 0
1 −8 1
1 1 0

] (2.10) 

2.2.3. Prewitt operator 

The Prewitt operator is a method of selecting contours in image processing, 

which calculates the maximum deviation on the set of convolution cores to find the 

local orientation of the contour in each pixel. It was created by Dr. Judith Prewitt 

to identify the contours of medical images. 

The operator uses two cores 3 × 3, convolving the original image to calculate 

the approximate values of the derivatives, one horizontally and the other vertically: 

 

𝐺𝑥 = [
−1 0 +1
−1 0 +1
−1 0 +1

]  𝑎𝑛𝑑 𝐺𝑥 = [
−1 −1 −1
0 0 0

+1 +1 +1
] (2.11) 

   

2.2.4. Sobel operator 

The Sobel operator is a discrete differential operator that calculates the 

approximate value of the image gradient. It is used in the field of image processing, 

in particular, often used in contour selection algorithms. The result of applying the 

Sobel operator at each point of the image is either the brightness gradient vector at 

this point, or its norm, calculated by formulas: 



 

 

 

𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] ∗ 𝐴 𝑎𝑛𝑑 𝐺𝑥 = [
−1 −2 −1
0 0 0

+1 +2 +1
] ∗ 𝐴 (2.12) 

 

where A is the input image. 

2.2.5. Canny operator 

Canny studied the mathematical problem of obtaining a filter, according to 

the optimal criteria for selection, localization and minimization. He showed that 

the desired filter is the sum of four exponents and can be well approximated by the 

first Gaussian derivative. Canny introduced the concept of Non-Maximum, which 

means that the pixels of the contours are declared pixels in which the local 

maximum of the gradient in the direction of the gradient vector is reached. 

Although his work was carried out in the early days of computer vision, Kanny's 

contour detector is still one of the best detectors. 

The result of the described algorithms is a set of incoherent areas. To obtain 

a connected contour, additional processing is required, such as morphological 

processing to obtain the connected edge of the object, which is called the contour 

of the object. 

2.2.6. Comparative analysis of the described methods of contour 

selection 

The comparative analysis of the described methods of contour selection is 

carried out. In comparative analysis, the assessment of image quality is widely 

used. This estimate is characterized by a number of metrics that show how exactly 

the resulting image matches the original. The best known metrics are the mean 

square error (MSE) and peak signal to noise ratio (PSNR). 



 

 

The mean square error (MSE) is an indicator of the dispersal of values of a 

random variable relative to its mathematical expectation: 

 

𝑀𝑆𝐸 =
∑ (𝑥𝑖,𝑗 − 𝑦𝑖,𝑗)

2𝑚,𝑛
𝑖=1,𝑗=1

𝑚𝑛
 (2.13) 

 

where MSE – the mean square error; 𝑥𝑖,𝑗 – sampling element; 𝑦𝑖,𝑗 – 

arithmetic mean of the sample; n, m is the sample size. 

The peak signal to noise ratio (PSNR) is the ratio between the maximum 

possible signal value and the noise power that distorts the signal value. The easiest 

way to determine this ratio is using mean square error: 

 

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (2.14) 

 

where MAXI is the maximum value of the pixel intensity in the image; MSE 

is the mean square error. 

The higher the value of the peak signal-to-noise ratio, the clearer and more 

accurate the image is considered. To evaluate the quality of the obtained image 

with the selected contours by the described methods and to compare them, the 

image from the ORL database was used. This image will be considered the original, 

ie in our case it is a perfect image.  

Also, an important indicator of the operation of contour selection methods is 

the speed, which is measured in seconds. Table 1 shows the results. 

 



 

 

Table 2.1. Comparison of the performance speed of known methods of 

contour selection 

Image contour selection method Performance speed, sec 

Roberts 0,60 

Laplace 0,86 

Prewitt 0,63 

Sobel 0,76 

Canny 2,45 

 

As can be seen from the results, the Canny method gives the best results in 

terms of standard deviation and peak signal-to-noise ratio, but it is the slowest of 

the considered methods. 

Thus, it is shown that the basic information about the object is contained in 

the contour, so the selection and description of the contour is an important task of 

image analysis, contours are invariant to brightness transformations, and the 

transition to object recognition by their contours allows to reduce the amount of 

processed information. 

A comparative analysis of contour selection methods was also performed. 

Analysis of the speed, standard deviation and peak ratio of signal to noise showed 

that the Canny method has the lowest contour selection speed, but according to the 

criteria of standard deviation and peak signal to noise shows the best results. 

2.3. The method of recognizing an object in an image by characteristic 

points 

2.3.1. General information about the method 



 

 

Characteristic points (CP) is an image point with high local informativeness, 

ie it is the points of maximum, minimum, inflection and maximum curvature. CP 

are also called salient, keypoints, representative, feature points, characteristic 

points, inflection points. 

Examples of CP are: the ends of the segment, the vertices of the polygons, 

the inflection points, the inflection points of the splines, the end points of the semi-

axes of the ellipse. 

In 1992, Haralick and Shapir identified the following requirements for CP: 

- distinctness - CP should stand out clearly in the background and be unique 

in its surroundings; 

- invariance - the detection of CP should be independent to affine 

transformations; 

- stability - the detection of CP should be resistant to noise and errors; 

- uniqueness - in addition to local differences, CP must have global 

uniqueness in order to improve the distinction of repetitive elements; 

- interpretability - CPs should be defined so that they can be used to analyze 

matches and identify interpreted information from an image. 

Tuytelaars and Mikolajczyk (2006) described the properties that CPs should 

have: 

- repeatability - CP is in the same place of the scene or image object, despite 

changes in the point of view and lighting; 

- distinctiveness / informativeness - there should be an environment of CP 

where it should have big differences from other points in this neighborhood so that 

it was possible to allocate and compare special points; 



 

 

- locality - CP should occupy a small area of the image to reduce the 

likelihood of sensitivity to geometric and photometric distortions between two 

images taken at different points of view; 

- quantity - the number of detected CP should be large enough so that they 

are enough to detect even small objects. However, the optimal amount of CP 

depends on the subject area. Ideally, the number of detected CP should be 

adaptively determined using a simple and intuitive threshold. 

- location density - CP should display the information content of the image 

to ensure its compact presentation; 

- accuracy - detected CP must be accurately localized, both in the original 

image and in taken at another scale one; 

- efficiency - the time of detection of CP in the image should be acceptable 

in time-critical applications. 

In general, these properties intersect with the previous ones, but are 

interpreted differently. 

The main advantage of using CP for identification tasks is the relative 

simplicity and speed of their detection. 

The class of methods for finding key points is called "keypoint detection", 

and algorithms for comparing and searching for images using key points - 

"keypoint matching". Searching for a pattern in a picture comes down to applying 

the key point detection algorithm to the pattern and the picture, and matching the 

key points of the pattern and the picture [6]. 

Usually “key points” are found automatically by finding pixels whose 

surroundings have certain properties. Many methods and criteria for finding them 

have been invented. All these algorithms are heuristics that find some characteristic 

elements of the image, as a rule - corners or sharp drops in color. 



 

 

The process of identifying special points is achieved through the use of a 

detector and a descriptor. 

A detector is a method for extracting specific points from an image. The 

detector ensures the invariance of finding the same singular points with respect to 

image transformations. 

Descriptor - an identifier of a special point, which distinguishes it from the 

rest of the set of special points. In turn, descriptors must ensure the invariance of 

finding a correspondence between singular points with respect to image 

transformations. 

 A good detector should work quickly and be resistant to image 

transformations (when the image changes key points detection should not stop / 

moving). 

 

 

2.3.2. Corners detectors 

Corners are special points that are formed from two or more facets, and facets 

usually define the border between different objects and/or parts of the same object. 

The main property of such points is that two dominant directions prevail in the area 

around the corner of the image gradient, which makes them distinguishable [7]. 

Gradient is a vector value that shows the direction of the steepest increase in 

the function of the image intensity I(x,y). Since the image is discrete, the gradient 

vector is determined through partial derivatives along the x and y axes through 

changes in the intensities of neighboring points of the image. Most of the methods 

consider angularity depending on the 2nd order derivative, therefore, in general, 

the methods are sensitive to noise. 



 

 

Depending on the number of intersecting facets, there are different types of 

corners: L-, Y- (or T-), and X-connected (some also distinguish arrow-connected 

angles). Different corner detectors react differently to each of these corner types. 

 

Fig. 2.6. Corner types 

The approaches of identifying special points can be divided into 3 categories: 

1. Based on image intensity: the feature points are calculated directly 

from the pixel intensities of the image. 

2. Using image contours: methods extract contours and look for places 

with maximum curvature or make a polygonal approximation of contours and 

determine intersections. These methods are sensitive to neighborhood 

intersections, as extraction can often be incorrect where 3 or more edges intersect. 

3. Model Based: uses models with intensity as parameters which adjust 

to template images with subpixel precision. They have limited use with special 

types of feature points (for example, L-connected corners), depend on the templates 

that are used. 

In practice, for widespread use, the most common methods based on image 

intensity are used. 

Next, I will briefly discuss the pros and cons of basic corner detectors. Then 

a comparative table of detectors will be presented with conclusions about their 

applicability to different situations. 

2.3.3. Moravec corner detector general description 

Moravec detector - the simplest of the existing. The author examines the 

change in the brightness of a square window W (usually 3x3, 5x5, 7x7 pixels) 



 

 

relative to the point of interest when the window W is shifted by 1 pixel in 8 

directions (horizontal, vertical and diagonal). 

The Moravec detector has the property of anisotropy in 8 directions of 

window displacement. The main disadvantages of the considered detector are the 

lack of invariance to the rotation transformation and the occurrence of detection 

errors in the presence of a large number of diagonal edges. 

2.3.4. Harris corner detector general description 

Harris and Stephens improved the Moravec detector by introducing 

anisotropy in all directions, i.e. consider the derivatives of the brightness of the 

image to study changes in brightness in many directions. They introduce 

derivatives in some fundamental directions. 

The Harris detector is rotational invariant, partially invariant to affine 

intensity changes. The disadvantages include the sensitivity to noise and the 

dependence of the detector on the image scale (to eliminate this disadvantage, a 

multi-scale Harris detector is used). 

 

 

2.3.5. Shi-Tomasi corner detector general description 

The Shi-Tomasi angle detector (Shi-Tomasi or Kanade-Tomasi, 1993) is 

largely the same as the Harris detector, but differs in the computation of the 

response measure: the algorithm computes the value directly because it makes the 

assumption that the search for corners will be more stable. The authors use the same 

equation to analyze the optical flow of Lucas and Kanade. 

2.3.6. Förstner corner detector general description 

Förstner and Gülch (1987) were the first who described a method that uses 

the same measure of angularity as the Harris detector. They used a more 



 

 

computationally complex implementation. Unlike the Harris detector, the 

eigenvalues are calculated explicitly. The Förstner angle response function is 

defined as follows: 

 

𝑅 = 𝜆1𝜆2 (𝜆1 + 𝜆2)⁄ =
𝑑ⅇ𝑡𝑀

𝑡𝑟𝑀
 (2.15) 

 

Also, for the correctness of the definition, the measure of the roundness of the angle 

is considered, equal to: 

  

1 − (
𝜆1 − 𝜆2

𝜆1 + 𝜆2
)

2

=
4𝑑ⅇ𝑡𝑀

(𝑡𝑟𝑀)2
(2.16) 

 

The Förstner detector is often used in practice to expand the capabilities of the 

Harris detector - finding circular feature points along with angles. Also, the 

algorithm has the best localization property. 

 

 

2.3.7. SUSAN corner detector general description 

Angles are defined by segmentation of circular neighborhoods into similar 

(orange) and dissimilar (blue) areas (Fig. 2.7). The corners are located where the 

relative area of similar areas (similar USAN) reaches a local minimum below a 

certain threshold. 



 

 

 

Fig. 2.7. SUSAN detection algorithm visualisation 

The algorithm shows good accuracy for all kinds of angles, but is not 

resistant to blur in images. 

2.3.8. Trajkovic corner detector general description 

The detector checks the area around a pixel by examining nearby pixels: let 

c be the pixel to be examined and P the point on the circle SN at the center at point 

N. Point P' is a point opposite P in diameter. 

In comparison with the Harris detector, the repetition rate of the Trajkovic4 

algorithm is worse, but the localization is comparable to the determination of L-

connected angles and is superior in other types of angles.  

Also disadvantages include the fact that this 4-adjacent operator reacts 

falsely to diagonal edges and is sensitive to noise. Therefore, an 8-connected 

version of this Trajkovic8 algorithm is used. Trajkovic8 differs from Trajkovic4 in 

how it calculates angularity. However, Trajkovic8 still finds false angles on some 

of the diagonal edges of the object (it doesn't work well on artificial images). 

2.3.9. FAST corner detector general description 

An alternative to Harris's method is FAST. As the name suggests, FAST is 

much faster than the mentioned method. This algorithm tries to find points that lie 

on the edges and corners of objects, i.e. in places where there is a difference in 



 

 

contrast. They are found as follows: FAST builds a circle of radius R around the 

candidate pixel and checks if there is a continuous segment of pixels of length t on 

it, which is K units darker (or lighter) than the candidate pixel. If this condition is 

met, then the pixel is considered a “key point” [6]. 

The main disadvantage of the algorithm is that several singular points can be 

found near a certain neighborhood; the efficiency of the algorithm depends on the 

order of image processing and the distribution of pixels. But it works fast enough 

in comparison to competitors. 

2.3.10. CSS corner detector general description 

Rattarangsi and Chin (1992) proposed a curvature scale space (CSS) 

algorithm that detects corners on planar curves. CSS is suitable for extracting 

invariant geometric features on a flat curve at various scales.  

Algorithm identifies feature points using multiple scales of the same image. 

However, it is computationally complex and detects false angles in circular areas. 

This algorithm has the following disadvantages: an image with only one 

scale is used to determine the number of angles, and images at multiple scales are 

used for localization. As a result, the algorithm skips corners when σ is large and 

detects false angles when σ is small. 

  

 

 

 

2.3.11. Corner detectors comparison 

 



 

 

Table 2.2. Comparison of angle detectors (where 1 - Very bad, 2 - poor, 3 - 

fair, 4 - good, 5 - excellent) 

Operator 

(algorithm) 

Detection 

efficiency 

Localization Repetition 

frequency 

Noise 

resistance 

Speed 

Moravec 3 4 3 3 4 

Förstner 4 4 5 for affine 

transformations, 3 

for scaling 

4 2 

FAST 4 4 5 4 5 

Harris 4 4 for L-

connected 

angles, 2 for 

other types 

5 for affine 

transformations if 

anisotropic 

gradient is 

computed, 3 for 

scaling 

3 2 

SUSAN 4 1 for blurry 

images, 4+ 

otherwise 

4 for scaling, 2 for 

affine 

transformations 

5 4 

CSS 4 4 5 4 Strongly 

depends on 

the contour 

detector 

Trajkovic 

& Hedley 

2 4 3 (not invariant to 

rotations) 

2 5 

 



 

 

After analyzing the available methods, it was decided to use the FAST angle 

detector in algorithm because of its ease of use, the method for finding CPs and, 

most importantly, speed. 

2.4. Object recognition using neural networks (deep learning) and 

machine learning 

It is possible to use various approaches for object recognition. Recently, 

machine learning and deep learning techniques have become popular approaches 

to object recognition problems. Both technologies learn to recognize objects in 

images, but they differ in their performance [8]. 

 

Fig. 2.8. Machine learning and deep learning techniques for object 

recognition 

2.4.1. Object recognition using deep learning general description 

Deep learning techniques have become a popular method of object 

recognition. Deep learning models such as Convolutional Neural Networks (or 

CNNs) are used to automatically learn the inherent properties of an object in order 

to identify that object. For example, CNN can learn to distinguish between cats and 



 

 

dogs by analyzing thousands of images and studying the characteristics that 

distinguish cats and dogs. 

There are two approaches to object recognition using deep learning: 

- Model training from scratch. To train a deep network from scratch, you 

need to collect a very large labeled dataset and develop a network architecture that 

learns characteristics and builds a model. The results can be impressive, but this 

approach requires a lot of training data and also requires setting the levels and 

weights in CNN. 

- Using a pretrained deep learning model: most deep learning applications 

use a transfer learning approach - a process that involves fine-tuning of pre-trained 

model. To begin with, an existing network such as AlexNet or GoogLeNet is taken 

and new data containing previously unknown classes is entered. This method is less 

time consuming and can provide faster results since the model has already been 

trained on thousands or millions of images. 

Deep learning offers a high level of accuracy, but requires a lot of data to 

make accurate predictions. 

2.4.2. Object recognition using machine learning general description 

Machine learning techniques are also popular for object recognition and offer 

different approaches than deep learning. Common examples of machine learning 

techniques are:  

- extracting HOG features using SVM machine learning model; 

- bag-of-words models with functions such as SURF and MSER; 

- Viola-Jones algorithm, which can be used to recognize various objects, 

including faces and upper part of the body. 

To recognize objects using the standard machine learning approach, you 

need to start with a set of images (or video) and select the appropriate characteristic 



 

 

in each image. For example, the feature extraction algorithm can extract edge or 

corner features that can be used to distinguish classes in user data. These features 

are added to a machine learning model that separates these characteristics into 

separate categories, and then uses this information to analyze and classify new 

objects. Variety of machine learning algorithms and feature extraction techniques 

can be used that offer many combinations to create an accurate object recognition 

model. 

Using machine learning for object recognition gives you the flexibility to 

choose the best combination of features and classifiers for training. It can achieve 

accurate results with minimal data. 

2.4.3. Machine learning and deep learning for object recognition 

comparison 

The choice of the best approach to object recognition depends on the task at 

hand. In most cases, machine learning can be an effective method, especially if you 

know which image characteristics are best used to distinguish classes of objects. 

 

Fig. 2.9.  Key factors in choosing between deep learning and machine 

learning 



 

 

The main thing to keep in mind when choosing between machine learning 

and deep learning is having a powerful GPU and lots of labeled training images. If 

the answer to any of these questions is no, a machine learning approach may be the 

best choice. Deep learning techniques tend to work better with large numbers of 

images, and the GPU helps to reduce the time it takes to train the model.
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CAPTER 3. THEORETICAL BASIS OF THE VIDEO SURVEILLANCE 

SYSTEM OF TARGET CONTOUR 

 

A car was chosen as the object of surveillance for the program. All cars 

have common features such as headlights, windshield, rear-view mirrors, wheels, 

license plate. However, for each of the existing cars, the models of which there 

are a very large number, almost all of these characteristics differ in size, shape 

and even location.  

The task of object recognition, with taking into account all the above-

described features, could be solved only by neural networks. However, for this 

they need thousands, or even hundreds of thousands of images of the training 

sample and large computing power. Therefore, it was decided to develop own 

program that identifies the car on the video stream, namely its license plate. The 

license plate was chosen as the object of tracking, because it is the feature that has 

constant proportions, is present on all cars, and is the best object to track it. 

3.1. Blurring by Gaussian filter 

Blurring is an integral part of various image correction techniques aimed at 

eliminating specific defects (excessive detail, scan defects, dust, etc.). One of 

their possible applications is noise reduction, i.e. the problem of restoring the 

original image with random noise added to its pixels [9]. 

Gaussian blur is a generic image blur filter that uses a normal distribution 

(Gaussian distribution) to compute the transform applied to each pixel in an 

image. The noise in the image changes independently from pixel to pixel and if 

the mathematical expectation of the noise value is equal to zero, the noise of 

neighboring pixels will compensate each other. The larger the filtering window, 

  



 

 

 the less the average intensity of the noise will be, however, significant blurring of 

significant image details will also occur. 

The Gaussian distribution equation in N dimensions has the form: 

 

𝐺(𝑟) =
1

(2𝜋𝜎2)
𝑁
2

ⅇ
−

𝑟2

2𝜎2  (3.1) 

 

Noise reduction using a rectangular filter has a significant drawback: pixels 

at a distance "r" from the processed one have the same effect on the result as 

neighboring ones. 

Thus, more effective noise reduction can be realized if the influence of 

pixels on each other decreases with distance (a special case - for two dimensions): 

 

𝐺(𝑢. 𝑣) =
1

2𝜋𝜎2
ⅇ

−
𝑢2+𝑣2

2𝜎2  (3.2) 

 

where r is the blur radius, r2 = u2 + v2, y is the standard deviation of the 

Gaussian distribution. 

In the case of two dimensions, this formula defines a surface that looks like 

concentric circles with a Gaussian distribution from the center point. Pixels where 

the distribution is nonzero are used to construct a convolution matrix that is 

applied to the original image. The value of each pixel becomes a weighted 

average for the neighborhood. The original pixel value gets the biggest weight 

(has the highest Gaussian value), and neighboring pixels get less weights, 

depending on the distance to them. In theory, the distribution at each point in the 

image will be nonzero, which would require the calculation of weighting factors 



 

 

for each pixel in the image. But, in practice, when the discrete approximation of 

the Gaussian function is calculated, pixels at a distance of more than 3 are not 

taken into account, since they are small enough. Thus, it is enough for the 

program filtering the image to calculate the matrix in order to guarantee sufficient 

accuracy in the approximation of the Gaussian distribution. 

To apply this filter, convolution by function is used: 

 

𝐼′(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑙)(𝑗 − 𝑘) ∗
1

√2𝜋𝜎
ⅇ

−𝑑2

2𝜎2

𝑚

𝑘=−𝑚

𝑛

𝐼=−𝑛

 (3.3) 

 

The parameter y sets the degree of blur. On the graph, a function with у = 5 

 

Fig. 3.1. Graph of Gaussian function 

 



 

 

Fig. 3.2. The results of convolution by the Gaussian function and by a 

constant function (averaging). 

The Gaussian filter is well suited for a situation where a noisy image has a 

large amount of details, because this filter blurs small details less and removes 

noise quite adequately. 

3.2. FAST characteristic points recognizing algorithm description 

FAST, was first proposed in 2005 in the work, was one of the first heuristic 

methods for finding special points, which gained great popularity due to its 

computational efficiency [10]. To decide whether to consider a given point C 

special or not, this method considers the brightness of pixels on a circle with a 

center at point C and a radius of 3: 

 

Fig. 3.3. Pixels considered by FAST detector 

Comparing the brightness of the pixels of the circle with the brightness of 

the center C, we get for each three possible outcomes (lighter, darker, it seems): 

 

𝐼𝑝 > 𝐼𝐶 + 𝑡

𝐼𝑝 < 𝐼𝐶 + 𝑡

𝐼𝐶 − 𝑡 < 𝐼𝐶 < 𝐼𝐶 + 𝑡

 (3.4) 

 



 

 

here I is the brightness of pixels, t is some predetermined brightness 

threshold.  

A point is marked as special if there are n = 12 pixels in a row on the circle 

that are darker, or 12 pixels that are lighter than the center. 

As practice has shown, on average, to make a decision, it was necessary to 

check about 9 points. In order to speed up the process, the authors proposed to 

first check only four pixels numbered: 1, 5, 9, 13. If among them there are 3 

pixels lighter or darker, then a full check is performed by 16 points, otherwise - 

the point is immediately marked as "not special". This greatly reduces the 

operating time; to make a decision, on average, it is enough to interrogate only 

about 4 points of the circle. 

Initially, the original algorithm was FAST-12. There are modifications of 

the algorithm: the tree based FAST-9 and FAST-12. 

The original algorithm has a number of disadvantages, for example, several 

special points may be found near a certain neighborhood, the efficiency of the 

algorithm depends on the order of image processing and the distribution of pixels. 

Edward Rosten, Reid Porter, and Tom Drummond (2008) introduce 

improvements to the FAST algorithm in that they use machine learning to 

identify feature points. 

They called this algorithm FAST-ER (ER - Enhanced Repeatability). The 

algorithm is stable to the property of repeatability: on the same scene, viewed 

from different angles, there are feature points belonging to the same objects. 

This algorithm uses a circle of more than 1 pixel unlike FAST (48 pixels). 

The authors use the ID3 algorithm to classify feature points (whether a candidate 

point is characteristic) using decision trees. ID3 algorithm optimizes the order in 

which pixels are processed, resulting in the most computationally efficient 

detector. 



 

 

 

Fig. 3.4. Pixels considered by FAST-ER detector 

The decision tree cost function is calculated as follows: 

 

𝑐𝑜𝑠𝑡 = (𝑘𝑅 + 𝑅−2)(𝑘𝑁 + 𝑁−2)(𝑘𝑆 + 𝑆−2) (3.5) 

 

Where R is a measure of repeatability; N is the number of detected feature 

points; S is the number of nodes in the decision tree. 

FAST-ER is better than FAST, but slower in execution speed. The authors 

concluded that the FAST-ER detector is the best in terms of repeatability. 

Through experiments on images, it was determined that the FAST 

algorithm fully meets the needs of the program, and was chosen for use. 

3.3. Selection of contours by the Prewitt operator description 

All known methods are based on one of the basic properties of the brightness 

signal - discontinuity. The most common way to find gaps is to process an image 

using a sliding mask, also called a filter, kernel, window, or pattern, which is a kind 

of square matrix corresponding to a specified group of pixels in the original image. 

Matrix elements are usually called coefficients. Operating with such a matrix in 

any local transformations is called filtering or spatial filtering [11]. 



 

 

 

Fig. 3.5. Spatial filtering scheme 

The process is based on simply moving the filter mask from point to point in 

the image; at each point (x, y), the filter response is computed using predefined 

links. In the case of linear spatial filtering, the response is given by the sum of the 

product of the filter coefficients by the corresponding pixel values in the area 

covered by the filter mask. For a 3x3 element mask shown in Figure 3.5, the result 

(response) R of linear filtering at the point (x, y) of the image will be: 

 

𝑅 = 𝑤(−1, −1)𝑓(𝑥 − 1, 𝑦 − 1) + 𝑤(−1,0)𝑓(𝑥 − 1, 𝑦) + ⋯

+𝑤(0,0)𝑓(𝑥, 𝑦) + ⋯ + 𝑤(1,0)𝑓(𝑥 + 1, 𝑦) + 𝑤(1,1)𝑓(𝑥 + 1, 𝑦 + 1) (3.6)
 

 



 

 

which, as you can see, is the sum of the products of the mask coefficients by 

the pixel values directly under the mask. In particular, note that the coefficient w 

(0,0) is at the value of f(x, y), indicating that the mask is centered at the point (x, y). 

Discrete analogs of the derivatives of the first and second order are used 

when detecting differences in brightness. For simplicity of presentation, one-

dimensional derivatives will be considered. 

The first derivative of the one-dimensional function f(x) is defined as the 

difference between the values of neighboring elements: 

 

𝜕𝑓

𝜕𝑥
= 𝑓(𝑥 + 1) − 𝑓(𝑥) (3.7) 

 

Here, we used a partial derivative notation in order to preserve the same 

notation in the case of two variables f(x, y), where we have to deal with partial 

derivatives along two spatial axes. The use of a partial derivative does not change 

the essence of the consideration. 

Similarly, the second derivative is defined as the difference between adjacent 

values of the first derivative: 

 

𝜕2𝑓

𝜕2𝑥
= 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) − 2𝑓(𝑥) (3.8) 

 

The calculation of the first derivative of a digital image is based on various 

discrete approximations of a two-dimensional gradient. By definition, the gradient 

of the image f(x, y) at the point (x, y) is the vector: 

 



 

 

𝛻𝑓 = [
𝐺𝑥

𝐺𝑦
] = [

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

] (3.9) 

 

As it is known, the direction of the gradient vector coincides with the 

direction of the maximum rate of change of the function f at the point (x, y). 

An important role in the detection of contours is played by the modulus of 

this vector, which is denoted by ∇f and is equal to 

 

𝛻𝑓 = |𝛻𝑓| = √𝐺𝑥
2 + 𝐺𝑦

2 (3.10) 

 

This value is equal to the value of the maximum rate of change of the 

function f at the point (x, y), and the maximum is reached in the direction of the 

vector ∇f. The value ∇f is also often called the gradient. 

The direction of the gradient vector is also an important characteristic. Let 

α(x,y) denote the angle between the direction of the vector ∇f at the point (x,y) and 

the x-axis. As it is known from mathematical analysis, 

 

𝛼(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑔 (
𝐺𝑦

𝐺𝑥
) (3.11) 

 

From here it is easy to find the direction of the contour at the point (x, y), 

which is perpendicular to the direction of the gradient vector at this point. And you 

can calculate the gradient of the image by calculating the values of the partial 

derivatives ∂f/∂x and ∂f ∂y for each point. 



 

 

Let the 3x3 area shown in the figure below (see Fig. 3.6) represent the 

brightness values in the vicinity of some image element. 

 

Fig. 3.6 Neighborhood 3x3 in the image 

The use of such a mask by the Prewitt operator is specified by the following 

expressions: 

𝐺𝑥 = (𝑧7 + 𝑧8 + 𝑧9) − (𝑧1 + 𝑧2 + 𝑧3) (3.12) 

and 

𝐺𝑦 = (𝑧3 + 𝑧6 + 𝑧9) − (𝑧1 + 𝑧4 + 𝑧7) (3.13) 

 

In these formulas, the difference between the sums along the top and bottom 

rows of the 3x3 neighborhood is the approximate value of the derivative along the 

x-axis, and the difference between the sums along the first and last columns of this 

neighborhood is the derivative along the y-axis. To implement these formulas, an 

operator described by the masks in Fig. 3.7 is used, which is called the Prewitt 

operator. 

 

Fig. 3.7 Prewitt operator masks 

3.4. Image binarization using Otsu method 



 

 

Image binarization is a transformation, the essence of which is that the 

brightest and most significant pixels for any subsequent processing become as 

bright as possible, turning into white points (the color with maximum intensity or 

brightness), and all other points that are considered background, become minimally 

bright, that is, they are converted to black points (absolute absence of color, 

minimum brightness or intensity). Thus, the entire binarization operation is reduced 

to the usual pixel-by-pixel transformation of each point of the image either to white 

or black, depending on a certain brightness feature, that is, on a certain minimum 

acceptable brightness value, exceeding which the point becomes white. This 

feature will be called the binarization threshold, and this is the first thing that needs 

to be determined when implementing image binarization [12]. 

At the moment, there are a huge variety of binarization algorithms and 

methods, ranging from a simple manual one (the threshold is set manually and 

depending on the image itself) to complex adaptive and multi-methods (including 

multilayer binarization), but here will be considered an interesting and effective 

method, which is called the Otsu method. 

Otsu's method is an algorithm that allows you to divide image pixels into two 

classes ("useful" and "background"), due to a simple statistical analysis of the 

image, which, when dividing pixels into classes, makes sure that the variance 

within one class is minimal.  

Otsu's method looks for a threshold that reduces the variance within a class, 

which is defined as the weighted sum of the variances of two classes [13]: 

 

𝜎𝜔
2(𝑡) = 𝜔1(𝑡)𝜎1

2(𝑡) + 𝜔2(𝑡)𝜎2
2(𝑡) (3.14) 

 

where the weights 𝜔𝑖 —  are the probabilities of two classes separated by a 

threshold t,  𝜇𝑖 — the variance of these classes. 



 

 

Otsu showed that minimizing variance within a class is equivalent to 

maximizing variance between classes: 

 

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝜔

2 (𝑡) = 𝜔1(𝑡)𝜔2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2 (3.15) 

 

which is expressed in terms of the probability 𝜔𝑖  and the arithmetic mean  𝜇𝑖, 

which, in turn, can be updated iteratively. This idea led to an efficient algorithm: 

Let a monochrome image be given 𝐺(𝑖, 𝑗), 𝑖 = 1, 𝐻ⅇ𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 1, 𝑊𝑖𝑑𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅, 

repetition counter k=0. 

1. Calculate the histogram 𝑝(𝑙) of the image and the frequency  𝑁(𝑙) for each 

intensity level of the image  𝐺. 

2. Calculate the initial values for 𝜔1(0), 𝜔2(0) и 𝜇1(0), 𝜇2(0). 

3. For each value  𝑡 = 1, 𝑚𝑎𝑥(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ - semitones - horizontal axis of the 

histogram: 

1. Updating 𝜔1, 𝜔2 and 𝜇1, 𝜇2 

2. Calculate 𝜎𝑏
2(𝑡) = 𝜔1(𝑡)𝜔2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2  

3. If 𝜎𝑏
2(𝑡) is greater than the existing one, then remember 𝜎𝑏

2  and the 

value of the threshold t. 

4. The desired threshold corresponds to the maximum 𝜎𝑏
2(𝑡)  

𝑁𝑇 = ∑ 𝑝(𝑖)

max (𝐺)

𝑖=0

, 

𝜔1(𝑡) =
∑ 𝑝(𝑖)𝑡−1

𝑖=0

𝑁𝑇
= ∑ 𝑁(𝑖),    𝜔2(𝑡) = 1 − 𝜔1(𝑡),

𝑡−1

𝑖=0

 



 

 

𝜇𝑇 =
∑ 𝑖 ∗ 𝑝(𝑖)

max (𝐺)
𝑖=0

𝑁𝑇
= ∑ 𝑖 ∗ 𝑁(𝑖),

max (𝐺)

𝑖=0

 

𝜇1(𝑡) =
∑ 𝑖 ∗ 𝑝(𝑖)𝑡−1

𝑖=0

𝑁𝑇 ∗ 𝜔1(𝑡)
=

∑ 𝑖 ∗ 𝑁(𝑖)𝑡−1
𝑖=0

𝜔1(𝑡)
,   𝜇2(𝑡) =

  𝜇𝑇 −   𝜇1(𝑡) ∗ 𝜔1(𝑡)

𝜔2(𝑡)
.  

 

 

Fig. 3.8. Original image and after binarization with Otsu threshold 

3.5. Template matching method description 

In order to determine which characters are located on the number plate, the 

method of comparing the input image with the template, ie the Template matching 

method, was used [6]. 

The "similarity" of an image is defined by a certain metric. That is, the 

pattern is "superimposed" on the image, and the discrepancy between the image 

and the pattern is considered. The position of the template at which this discrepancy 

will be minimal, and will mean the location of the desired object. 

As a metric, you can use different options, for example, the sum of squared 

differences (SSD), or cross-correlation (CCORR). Let f and g be an image and a 

template with sizes (k, l) and (m, n), respectively (the color channels will be 

ignored); i, j - position on the image to which we "attached" the template. 

 



 

 

𝑆𝑆𝐷𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

 (3.16) 

𝐶𝐶𝑂𝑅𝑅𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

 (3.17) 

 

Let's try to apply the difference of squares to find a kitten on the picture. 

 

Fig. 3.9. Tamplate image 

 

Fig. 3.10. Picture taken from the resource PETA Caring for Cats [6] 

On Fig. 3.11 the values of the metric of the similarity of the place in the 

picture to the template (i.e. SSD values for different i, j). The dark area is where the 

difference is minimal. This is the pointer to the place that most resembles the 

template - in the Fig. 3.12. picture this place is circled. 



 

 

 

Fig. 3.11. SSD values for different i, j 

 

Fig. 3.12. Highlighted matched area 

Cross-correlation is actually a convolution of two images. Convolutions can 

be implemented quickly using Fast Fourier Transform. According to the 

convolution theorem, after the Fourier transform, the convolution turns into a 

simple element-wise multiplication: 

 

𝐶𝐶𝑂𝑅𝑅𝑖.𝑗 = 𝑓 ∗ 𝑔 = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑓 ∗ 𝑔)) = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑓) ∙ 𝐹𝐹𝑇(𝑔)) (3.18) 

 

Where * is the convolution operator. This way the cross-correlation can be 

quickly calculated. This gives the overall complexity O(kllog (kl) + mnlog (mn)), 

versus O(klmn) when implemented straight. The squared difference can also be 

implemented using convolution, since after expanding the brackets, it turns into the 



 

 

difference between the sum of the squares of the image pixel values and the cross-

correlation: 

 

𝑆𝑆𝐷𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

= 

∑ 𝑓𝑖+𝑎,𝑗+𝑏
2 − 2𝑓𝑖+𝑎,𝑗+𝑏𝑔𝑎.𝑏 + 𝑔𝑎,𝑏

2

𝑎=0..𝑚,𝑏=0..𝑛

= ∑ 𝑓𝑖+𝑎,𝑗+𝑏
2 + 𝑔𝑎,𝑏

2

𝑎=0..𝑚,𝑏=0..𝑛

− 2𝐶𝐶𝑂𝑅𝑖.𝑗   

(3.19) 

In the case of resizing, the method may not work correctly. This is due to the 

fact that the method assumes that the object is resized by the same number of times 

both horizontally and vertically. However, this is not always the case. When the 

size is changed too much, the distortion caused by the log-to-polar conversion 

makes the search unstable.  
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CHAPTER 4. SOLUTION OF NUMBER PLATE DETECTION 

PROBLEM BY THE DEVELOPED PROGRAM AND EXPERIMENTS 

4.1. Description of the experimental setup 

In order to make the detection of number plate contour possible such 

experimental installation is introduced:  

1) Mobile phone Samsung galaxy S8 (or WEB-cam). 

2) Personal computer with installed Matlab2021. 

3) Developed program for computing the algorithm. 

To obtain photos, images and videos, was used the optical sensor of the 

Samsung Galaxy S8 mobile phone, Sony IMX333 with an optical stabilizer, which 

has a size of 1 / 2.55 ", a resolution of 12.2 MP and a pixel width of 1.4 microns.  

Own laptop Dell Precision 7520 was used as a computer. The characteristics 

of this PC are described in Table 4.1.  

Table 4.1. PC characteristics. 

PC name Dell Precision 7520 

CPU Intel Core i7-6820HQ CPU 2,7 GHz 

Number of cores 4 

Logical processors number 8 

Installed RAM 32 Гб 

Video adapters Intel(R) HD Graphics 530 

NVIDIA Quadro M2200 4Gb 

 

  



 

 

To develop the program, the Matlab2021 programming environment and its 

components and libraries Image Acquisition Toolbox, Image Processing Toolbox, 

Computer Vision Toolbox, Support Package for USB Webcams were installed on 

the PC. This software is the most accessible and simple to perform the task and 

allows to easily work with image and video processing. 

Below is shown a compact block diagram of the experimental setup. 

 

Fig. 4.1. Block diagram of the experimental setup 

 

 

 

 

 



 

 

 

4.2. Description of the algorithm of the program 

Algorithm of work: 

1. Recording image data to a computer; 

2. Preparation of image data for processing: 

a. Uploading an image to the MATLAB programming 

environment; 

b. Translate the image into grayscale; 

c. Extra image pixels crop; 

d. Bluring image pixels by Gauss filter; 

3. Identification of all characteristic points in the image; 

4. Filtering of the found characteristic points; 

5. Determining the coordinates and dimensions of the license plate; 

6. Recognition of symbols located on the license plate; 

7. Selecting the contour of the plate on the input image and output the 

recognized characters. 



 

 

 

Fig. 4.2. Block diagram of the algorithm of the program work 

4.2.1. Recording image data to a computer 



 

 

To transfer images from the phone's optical sensor to a computer, the phone 

connects to a computer via DroidCamApp. This program allows you to connect an 

optical sensor from the phone and transfer data via USB port or Wifi channel (Fig. 

4.3 and Fig. 4.4). Both types of connections were used during the experiments. 

 

Fig. 4.3. Connection of a smartphone camera via DroidCamApp 

 

Fig. 4.4. Received video stream from DroidCamApp 

Video taken from an optical sensor at 30 frames per second frequency is 

stored on computer's hard drive. However, for the correct operation of the program 



 

 

it is enough to process every 10th frame, and to demonstrate the algorithm will be 

used static images with different cars parked in the parking lot.  

4.2.2. Preparation of image data for processing 

Images from the optical sensor are obtained in RGB format, in a resolution 

of 1280 × 960 pixels, with a lot of noise and unnecessary information. In order for 

the data encoded in the image to be processed and various mathematical operations 

can be performed on it, it must be prepared in advance. This will be described in 

the following subsections. 

a. Uploading an image to the MATLAB programming environment 

The first step in image processing is to import it from the drive into the 

Matlab2021 programming environment, which has the appropriate built-in features 

and tools. 

After importing the image (using the imread function), it is written to a 

variable as a three-dimensional data array, which consists of the values of each 

pixel on three color channels (red, green, blue), which overlap each other to give 

the color of the pixel (Fig. 4.5).  

 



 

 

Fig. 4.5. Example of a "raw" downloaded image 

Now with these arrays it is possible to carry out calculations in the 

programming environment. 

b. Translate the image into grayscale 

Further calculations will be performed with the uint8 data type, which is an 

integer from 0 to 255 and takes up 1 byte of memory. 

Each of the R, G, B channels may have a pixel value from 0 to 255. The 

value of their sum can exceed 255, so these three channels must be combined into 

one grascaled. This problem is solved by means of function rgb2gray().  

Function rgb2gray converts RGB values to grayscale values by forming a 

weighted sum of the R, G, and B components:  

 

𝐼𝑔𝑟𝑎𝑦 = 0.2989 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 (4.1) 

 

At the output a grayscale image (Fig. 4.6) recorded as a one-dimensional 

array of points was gotten. 

 



 

 

Fig. 4.6. Converted into grayscale image 

 

 

c. Extra image pixels crop 

The picture above shows that the optical sensor captured many extra objects 

besides the car itself. This will interfere with the identification of characteristic 

points in the further course of work. To reduce the amount of unnecessary 

information, the image must be cropped at its edges to a certain number of pixels 

using the function imcrop (Fig. 4.7.). 

 

Fig. 4.7. Cropped image 

After cropping, the number of pixels and unnecessary information in the 

image decreased, which has a positive effect on the speed of the program work. 

d. Bluring image pixels by Gauss filter 

Now, when the cropped grayscale image is done it is needed to smooth 

unnecessary noises by 2-D Gaussian filtering [14].  



 

 

Pixels in the sliding window that are closer to the analyzed pixel should have 

a greater influence on the filtering result than the extreme ones. Therefore, the 

coefficients of the mask weights can be described by a bell-shaped Gaussian 

function. When filtering images, a two-dimensional Gaussian filter is used:  

 

𝐺𝜎 =
1

2𝜋𝜎2
ⅇ

−
𝑥2+𝑦2

2𝜎2 =
1

𝜎√2𝜋
ⅇ

−
𝑥2

2𝜎2 ∗
1

𝜎√2𝜋
ⅇ

−
𝑦2

2𝜎2  (4.2) 

 

The larger is the parameter 𝜎, the more the image is blurred. Typically, the 

filter radius is 𝑟 = 3𝜎. In this case, the size of the mask 2𝑟+1×2𝑟+1 and the size of 

the matrix 6𝜎+1×6𝜎+1. Outside this neighborhood, the values of the Gaussian 

function will be negligible. In MATLAB, Gaussian filtering of an image can be 

performed using the imgaussfilt () function, shown in Fig. 4.8. 

 

Fig. 4.8. Result of Gaussian filtering 

4.2.3. Identification of all characteristic points in the image 



 

 

The task of the program is to monitor the contour of the target. The tracking  

object in this case is a car, and the license plate is a common and most distinctive 

feature which each regular car has. Therefore, its very position will be detecded.  

In order to find out the location of the license plate, firstly it is in need to find 

all the characteristic points in the image, and then process them.  

Feature point m is a point of the image, the neighborhood of which o(m) can 

be distinguished from the neighborhood of any other point of the image o(n) in 

some other neighborhood of the feature point o2(m). The process of identifying 

special points is achieved through the use of a detector and a descriptor. 

A detector is a method of extracting specific points from an image. The 

detector ensures the invariance of finding the same feature points with respect to 

image transformations. There are many types of characteristic point detectors, the 

most famous of which are Harris corner detector, FAST, SIFT.  

By the research method was determined that the FAST detector is the best 

for determining the characteristic points. As the name suggests, this algorithm 

works faster than existing competitors but also fulfills its direct purpose. This 

algorithm tries to find points that lie at the edges and corners of an object, i.e. in 

places where contrast drops (Fig. 4.9.).  

 

Fig. 4.9. Pixels checked by the algorithm FAST 



 

 

They are found as follows: FAST builds a circle of radius R around the 

candidate pixel and checks if there is a continuous segment of pixels of length t on 

it, which is K units darker (or lighter) than the candidate pixel. If this condition is 

met, then the pixel is considered a “key point”. 

 

Fig. 4.10. Characteristic points found by the FAST algorithm  

4.2.4. Filtering of the found characteristic points 

The image above (Fig. 4.10.) shows that the characteristic points were found 

not only on the license plate itself, but the largest accumulation of them is in this 

area. This means that they must be filtered under certain conditions. 

The filtering algorithm will be based on the knowledge that the largest 

number of characteristic points is located on the symbols written on the license 

plate and its edges. Next, the operation of this algorithm will be gradually 

described. 

Firstly write the coordinates x, y of each characteristic point in their arrays 

(Fig. 4.11.) using the function corners.Location(). 



 

 

 

Fig. 4.11. Recorded arrays of coordinates of characteristic points 

After the coordinates of the characteristic points are obtained, filter out those 

that are more than 60 pixels apart from each other. This value was chosen by 

experiments and proved as optimal. Next, calculate the distance between each point 

and other characteristic points by the formula: 

 

𝐷𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

 (4.3) 

 

Where 𝐷𝑖,𝑗 – distance between points; 𝑥𝑖 ,  𝑦𝑖  – coordinates of the starting 

point; 𝑥𝑗 ,  𝑦𝑗 – coordinates of the next point. 

Now, for each point whose neighbor is closer than 60 pixels, assign the 

variable m, which will be equal to the weight coefficient of the point. That is, the 

more neighbors has a feature point at a distance of up to 60 pixels, the greater will 

be the value of its weight. 

 

Fig. 4.12. An array of weight values for each point 

When the weight values for each characteristic point are known, they can be 

filtered by this criterion. For this purpose the minimum threshold of weight of 

characteristic points 𝑚𝑚𝑖𝑛 is entered. The approximate number of characteristic 

points, which are located on the number plate, is determined experimentally. Based 



 

 

on this, adjust the minimum weight threshold by assigning it a value 𝑚𝑚𝑖𝑛 = 6, 

and compare it with the value of the weight of each point. If 𝑚 ≥ 𝑚𝑚𝑖𝑛, the point 

passes the check and its coordinates 𝑥1𝑖 ,  𝑦1𝑖  are written to a new array.. The 

coordinates of points that have not passed the check are set to 0.  

The last step in filtering points is to remove the coordinates of the points, 

which now have a value of 0 with the nonzeros() function. Now an array of points 

that fit the desired criterion is found, ie those that are directly on the number plate 

(Fig. 4.13.).  

 

Fig. 4.13. Graphic representation of filtered points 

There is also an option that the criterion of the minimum weight of the point 

may fit smaller clusters of characteristic points, which are further from the number 

plate but are not far enough to not to pass the distance checking. In this case the 

following code to determine the coordinates of the number plate will work 

incorrectly. In this case, 𝑚𝑚𝑖𝑛 will increase by 1 until the threshold value of the 



 

 

minimum weight of the point is large enough to weed out the parasitic points, and 

the program will be executed correctly.  

4.2.5. Determining the coordinates and dimensions of the license plate 

After filtering the characteristic points, it is safe to say that they all belong 

only to the license plate, and now the work can proceed to determination of its 

coordinates and dimensions.  

To define the image cropping limits, in order to leave only the image of the 

plate itself, it is needed to have such data as the coordinates of the upper left 

corner 𝑀𝑙𝑒𝑓𝑡 , 𝑀𝑢𝑝𝑝𝑒𝑟 and the values of the width W and height H of the plate, 

which can be calculated as follows: 

 

𝑊 = 𝑀𝑟𝑖𝑔ℎ𝑡 − 𝑀𝑙𝑒𝑓𝑡  (4.4) 

𝐻 = 𝑀𝑙𝑜𝑤𝑒𝑟 − 𝑀𝑢𝑝𝑝𝑒𝑟  (4.5) 

 

Where 𝑀𝑙𝑒𝑓𝑡 – the minimum value from the array of coordinates of points 𝑥1𝑖 

(left crop border); 𝑀𝑟𝑖𝑔ℎ𝑡 – the maximum value from the array of coordinates of 

points 𝑥1𝑖 (right crop border); 𝑀𝑙𝑜𝑤𝑒𝑟 – the maximum value from the array of 

coordinates of points 𝑦1𝑖  (lower crop border); 𝑀𝑢𝑝𝑝𝑒𝑟 – the minimum value from 

the array of coordinates of points 𝑦1𝑖 (upper crop border). 

Knowing the values described above, the image of the license plate is 

cropped, as shown in Fig. 4.14. 



 

 

 

Fig. 4.14. The resulting image of the license plate after cropping according 

to characteristic points 

To further clarifying the coordinates of the number frame, the resulting 

image must be translated from grayscale to binary. 

Image binarization is a transformation, the essence of which is that the 

brightest and most significant pixels for any subsequent processing become as 

bright as possible, turning into white points (the color with maximum intensity or 

brightness), and all other points that are considered to be background, become 

minimally bright, that is, they are converted to black points (absolute absence of 

color, minimum brightness or intensity). 

In the Matlab programming environment, an image can be binarized using 

the imbinarize() function, which performs it using the Otsu binarization method 

(Fig. 4.15.). 

 

Fig. 4.15. Binary image of the license plate 



 

 

To further refining of the coordinates, it is needed to select the contours of 

the objects in the image (Fig. 4.16.). I chose the method of selecting contours using 

the Prewitt operator. 

 

Fig. 4.16. Selected contours in the image 

The Prewitt operator is used to select horizontal contours of objects using a 

mask (Fig. 4.17.).   

 

Fig. 4.17. Horizontal mask of the Prewitt operator 

 To select vertical contours, this mask is transposed. 

Now find the properties of the resulting binary image by the function 

regionprops() for the final cropping of the number plate. These parameters include 

Area, BoundingBox, Image.  

Where Area - the actual number of pixels in the closed area; BoundingBox - 

coordinates and dimensions of the smallest rectangle containing a closed area; 

Image - a binary image of the same size as the BoundingBox returned as a binary 

array. 



 

 

Next, by comparing the Area with the BoundingBox the coordinates, width 

and height of the largest BoundingBox are found. This will be the final cropping 

of the number plate (Fig. 4.18.). 

 

Fig. 4.18. Finally cutted out image of the plate 

 

 

4.2.6. Recognition of symbols located on the license plate 

Since the number plate location and its parameters have already been found, 

recognizing the characters depicted on it can be started. 

Firstly, using the bwareaopen() function remove some extra pixels if their 

closed area is less than 50 pixels, and invert the resulting binary image (Fig. 4.19).  

 

Fig. 4.19. Inverted image with removed noise 

Now a kind of preparation for the recognition of letters and numbers is done. 



 

 

Letter recognition will be based on the Template matching method. This is a 

method based on finding the place in the image that most closely resembles a 

template. The "similarity" of an image is defined by a certain metric. That is, the 

pattern is "superimposed" on the image, and the divergence between the image and 

the pattern is considered. The position of the template at which this divergence will 

be minimal, will mean the location of the desired object. 

Therefore, to implement this algorithm, firstlly a database of templates for 

images of letters and numbers was created and saved in folder Alpha. Each image 

is binary, stored in .bmp format and has a resolution of 24 × 42 pixels (see 

Appendix B). 

 

Fig. 4.20. Folder with saved letter and number templates 

Each image is written to the appropriate variable, then these variables are 

written to their arrays letter (for letters) and number (for numbers), which in turn 

are entered into a two-dimensional array NewTemplates. 

After saving the array with images of letters and numbers, the resulting tablet 

image resolution is changed to be able to compare it with the templates. Each 

template is compared with the resulting image of the license plate from left to right. 

For each of them a correlation coefficient is found using the function corr2(), which 

calculates it by the formula: 



 

 

 

𝑟 =
∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)(𝐵𝑚𝑛

− 𝐵̅)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)2
𝑛𝑚 )(∑ ∑ (𝐵𝑚𝑛 − 𝐵̅)2

𝑛𝑚 )
 (4.6) 

 

Where 𝐴 ̅ - arithmetic mean of A; 𝐵̅ - arithmetic mean B; A – the first input 

array of points; B – the second input array of points; m, n – number of points in 

first and second array. 

The larger the is correlation coefficient, the more is the pattern and the input 

image match (see Appendix C).  

Each of the templates has its own assigned index. The find() function finds 

the index with the largest value of the correlation coefficient, and then displays the 

letter or number that has this index. 

Thus there are the read characters from the plate (Fig. 4.21). 

 

Fig. 4.21. Recognized symbols from the plate 

Sometimes the algorithm can work incorrectly and display more than 8 

characters, so there is also a check for the number of characters found. And if their 

number is greater, then the extra characters are removed.  

There are also cases when pre-preparation of the image is not enough and 

the program finds fewer characters than needed. Therefore, if the number of 

characters found is less than 8, the algorithm described above is repeated again, 

and so on until it is executed correctly. 



 

 

4.2.7. Selecting the contour of the plate on the input image and output 

the recognized characters 

In order for the result of the program to be visible, the number plate must be 

highlighted. To implement this, the rectangle() function will be used, which draws 

a rectangle by the specified initial coordinates, width and height (Fig. 4.22). 

To find these coordinates it is needed to perform inverse calculations, the 

opposite of those done earlier. So, knowing the number of iterations of the cycle, 

namely how many times the procedures for cropping the input image was executed, 

you can easily calculate the coordinates of the number plate frame on the original 

input image. 

And after finding these coordinates, using the function text(), an inscription 

that duplicates the text of the characters that are located on the license plate is 

displayed (Fig. 4.22.). 

 



 

 

Fig. 4.22. Input image with highlighted number frame and displayed 

characters 

In this way, the program works successfully, tracks license plates and 

recognizes the symbols on them (The code of the working program is shown in 

Appendix A). 

It, of course, has its limitations, which are manifested in the magnitude of 

the angle at which the video frame was taken for tracking the contour of the object. 

Experimentally, it was found that the system finds the coordinates of the number 

plate correctly until the angle of observation on the vertical and horizontal axes has 

reached more than about 40 degrees, and the accuracy of detection of symbols on 

the plate becomes less informative after an angle of 35 degrees. 

4.3. Computational load analysis 

To use the system effectively, understanding of what computing power it 

needs is strongly required. After all, if the system loads the computer too much, it 

will have a bad effect on its speed of work. And the less the system loads the 

computer, the wider its scope of use can be.  

In Table 4.2, how the computer system is loaded when running a single-

frame program can be seen. Using the tic and toc functions from Matlab, the 

program  execution time of the cycle for one frame was calculated. It also can be 

seen how much RAM was needed for calculations and how much CPU it used. 

Measurements are presented for 4 different images. 

 

Table 4.2. The results of experiments 

Image №  Resolution, 

pixels 

Computing 

time, sec 

Used RAM, 

Mb 

CPU load, 

% 



 

 

1 1280×960 0.678983 22 18.5 

2 1280×960 0.568815 18 16 

3 1280×960 0.577579 19 12.3 

4 1280×960 0.535034 19 15 

 

Fig. 4.23. Images used for tests 

The idle Matlab programming environment uses approximately 1000 MB of 

RAM. When running the program, the use of RAM rises to the values specified in 

the table, but not more than on 30 MB. And when processing the most complex 

images, the computer's processor is not loaded by more than 20%. 

It took from 0.5 to 0.7 seconds to process the image with a resolution of 1280 

× 960, which is enough for the normal program work. If there is a need to increase 

the speed of the program, this can be achieved by reducing the frame resolution. 

Reducing the resolution by half the processing speed will increase accordingly. 



 

 

However, such manipulations should be performed carefully, because when the 

number of pixels in the image are reduced, its informativeness can be lost. Which 

is not critical for outlining the object of observation, but can greatly affect on the 

adequacy of the symbols definition on the plate. 

So, judging by the experiments on the estimation of computing costs, we can 

conclude that this system requires up to 2 GB of RAM for stable operation, and 

does not require large amounts of CPU power. These features allow it to be used 

in more mobile versions, no longer using a PC for computing, but a Raspberry Pi 

microcontroller. 



 

 

CONCLUSION 

So, during the implementation of this work, an analysis of existing methods 

of implementing the algorithm was performed. It was determined that each of them 

individually cannot fully meet the requirements for the video surveillance system of 

target contour:  

 the correlation detection method is relatively simple, but it is characterized by 

rather high probability of errors (false detection or missing objects), which is 

explained by ignoring the properties of noise when synthesizing the image 

processing algorithm; 

 the method of recognizing an object in an image by its contour is not very fast, 

and can sometimes find erroneous contours; 

 the method of recognizing the object in the image by characteristic points does 

not allow to determine the exact coordinates of the number plate, because the 

characteristic points for the new license plate will change accordingly; 

 Neural network object recognition is quite accurate, but requires relatively 

large computing resources, the presence of a graphics accelerator and a large number 

of training sample images. 

Therefore, the system's own algorithm based on a combination of methods 

was developed. There was also developed own algorithm for filtering characteristic 

points, which always allows to correctly identify the location of the number plate on 

the image. With the help of Template Matching method has been added function of 

the character recognition on the license plate. 

Compared to existing systems based on deep learning, the developed system 

also accurately detects the object of tracking, works quickly, and has the ability to 

be compact using casual webcam and Raspberry Pi microcontroller with installed on 

MATLAB programming environment. 
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APPENDIXES 

Appendix A. Code of the program for highlighting the number plate contour 

and displaying the characters. 

close all; 

clear all; 

tic 

im = 

imread('C:\Users\Admin\Desktop\РГБ1\макс\РГБ\gg3.jpg'); 

  

 im3 = im; % save variable with input image 

imgray = rgb2gray(im); % conversion of the image to gray 

halftones 

imgray = imcrop(imgray, [400 300 500 500]); % crop image 

pixels 

  

G = fspecial('gaussian',[4 4],2); % Blur image with 

Gaussian filter 

 %# Filter it 

imgray = imfilter(imgray,G,'same'); 

  

corners = detectFASTFeatures(imgray); % determination of 

characteristic points by the FAST detector 

% imshow(imgray); hold on; 

% plot(corners.selectStrongest(200)); % Display points with 

selected mass 

% pause(2); 

  

  

for i=1:length(corners.Location) % Record the coordinates 

of x, at each characteristic point 

    x(i)= corners.Location(i); 

    y(i)= corners.Location(i,2); 

end 

for i=1:length(corners.Location) % Calculation of the mass 

of each characteristic point for the distance between them 

    mass(i)=0; 

    for j=1:length(corners.Location) 

    dist(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); % equation 

for determining the distance 

    if  dist(i,j)<=60 % comparison of the distance between 

points with a certain threshold 

        mass(i)= mass(i)+1; 

    end 

    end 

end 



 

 

 

 
masso=6;   % Record the initial threshold of the mass of 

points 

num_of_iter=1; % initialization of the cycle iteration 

count variable 

  

while(1) % Start of the number plate definition cycle and 

the symbols on it 

    

for i=1:length(corners.Location) % Cycle of elimination of 

characteristic points with too little mass 

    if mass(i)<=masso 

        mass(i)=0; 

    else 

        x_1(i)=x(i); % coordinates of points that have been 

checked 

        y_1(i)=y(i); 

    end 

end 

x_1=nonzeros(x_1)'; % screening points with 0 coordinates 

y_1=nonzeros(y_1)'; 

% imshow(imgray); hold on; 

% plot(x_1,y_1,'c*'); % Display of characteristic points 

that have passed all checks 

  

Mleft = min(x_1)-0;%left crop edge point 

Mright = max(x_1)+20;%right crop edge point 

Mupper =  min(y_1)-10;%upper crop edge point 

Mlower =  max(y_1)+10;%lower crop edge point 

  

X=400+Mleft*(num_of_iter); % calculation of the trimming 

edge after each iteration 

Y=300+Mupper*(num_of_iter); 

  

num_of_iter=num_of_iter+1; % cycle iteration counter 

  

imgray = imcrop(imgray, [Mleft Mupper Mright-Mleft Mlower-

Mupper]); % Crop image at extreme characteristic points 

  

imbin = imbinarize(imgray); % image binarization 

  

im = edge(imgray, 'prewitt'); % Select contours on the 

cropped image using the Prewitt method 

% figure, imshow(im); 

% figure, imshow(imbin); % binary cropped image 

%Below steps are to find location of number plate 

Iprops=regionprops(imbin,'BoundingBox','Area', 'Image'); % 

finding image properties: coordinates and dimensions of the 

smallest rectangle, actual number of pixels in the region, 

binary image of the same size as BoundingBox returned as a 

binary array 



 

 

 

 
area = Iprops.Area; % actual number of pixels in the region 

count = numel(Iprops); % number of elements of the array 

maxa= area;  

boundingBox = Iprops.BoundingBox; 

  

for i=1:count               % Frame definition 

   if maxa<Iprops(i).Area 

       maxa=Iprops(i).Area; 

       boundingBox=Iprops(i).BoundingBox; 

   end 

end     

  

im = imcrop(imbin, boundingBox);%crop the number plate area 

%figure, imshow(im); 

im = bwareaopen(~im, 50); %remove some object if it width 

is too long or too small than 50 

%figure, imshow(im); 

 [h, w] = size(im);%get width and height 

  

%imshow(im); 

  

Iprops=regionprops(im,'BoundingBox','Area', 'Image'); 

%reading the letter 

count = numel(Iprops); 

noPlate=[]; % Initializing the variable of number plate 

string. 

  

for i=1:count 

   ow = length(Iprops(i).Image(1,:)); % image height 

   oh = length(Iprops(i).Image(:,1)); % image width 

   if ow<(h/2) && oh>(h/3) 

       letter=Letter_detection(Iprops(i).Image); % Reading 

the letter corresponding the binary image. 

       noPlate=[noPlate letter] % Appending every 

subsequent character in noPlate variable. 

   end 

end 

masso=masso+1; % increase in the threshold mass of the 

points with each cycle  

if masso > 13 % Limit the value of the mass of points 

    masso_err = 0; 

    break 

end 

  

if length(noPlate)==9 % Corrects the incorrect definition 

of the first character 

    if isnumeric(noPlate(3))==0 

    

    noPlate(1)=''; 

end 



 

 

 

 
end 

if length(noPlate)==8 % output of characters read from the 

plate 

    masso_err = 1; 

    noPlate 

    break 

end 

close all 

end 

toc 

% Frame the area of the number and display the read 

characters on 

% to the original image 

if masso_err == 1 

imshow(im3); hold on; 

rectangle('Position',[X+boundingBox(1) Y+boundingBox(2) 

boundingBox(3) 

boundingBox(4)],'EdgeColor','r','LineWidth',3); 

text(X+boundingBox(1),Y+boundingBox(2)+2*boundingBox(4),noP

late,'Color','red','FontSize',16); 

  

 end 

   



 

 

 

 
Appendix B. Program code that creates templates of alphabets and numbers. 

%CREATE TEMPLATES  

%Alphabets 

A=imread('alpha/A.bmp');B=imread('alpha/B.bmp');C=imread('a

lpha/C.bmp'); 

D=imread('alpha/D.bmp');E=imread('alpha/E.bmp');F=imread('a

lpha/F.bmp'); 

G=imread('alpha/G.bmp');H=imread('alpha/H.bmp');I=imread('a

lpha/I.bmp'); 

J=imread('alpha/J.bmp');K=imread('alpha/K.bmp');L=imread('a

lpha/L.bmp'); 

M=imread('alpha/M.bmp');N=imread('alpha/N.bmp');O=imread('a

lpha/O.bmp'); 

P=imread('alpha/P.bmp');Q=imread('alpha/Q.bmp');R=imread('a

lpha/R.bmp'); 

S=imread('alpha/S.bmp');T=imread('alpha/T.bmp');U=imread('a

lpha/U.bmp'); 

V=imread('alpha/V.bmp');W=imread('alpha/W.bmp');X=imread('a

lpha/X.bmp'); 

Y=imread('alpha/Y.bmp');Z=imread('alpha/Z.bmp'); 

  

%Natural Numbers 

one=imread('alpha/1.bmp');two=imread('alpha/2.bmp'); 

three=imread('alpha/3.bmp');four=imread('alpha/4.bmp'); 

five=imread('alpha/5.bmp'); six=imread('alpha/6.bmp'); 

seven=imread('alpha/7.bmp');eight=imread('alpha/8.bmp'); 

nine=imread('alpha/9.bmp'); zero=imread('alpha/0.bmp'); 

  

%Creating Array for Alphabets 

letter=[A B C D E F G H I J K L M N O P Q R S T U V W X Y 

Z]; 

%Creating Array for Numbers 

number=[one two three four five six seven eight nine zero]; 

  

NewTemplates=[letter number]; 

save ('NewTemplates','NewTemplates') 

clear all 

   



 

 

 

 
Appendix C. Code for comparison of input image with templates. 

function letter=readLetter(snap) 

  

load NewTemplates  

snap=imresize(snap,[42 24]);  

rec=[ ]; 

  

for n=1:length(NewTemplates) 

    cor=corr2(NewTemplates{1,n},snap);  

    rec=[rec cor];  

end 

  

ind=find(rec==max(rec)); 

display(ind); 

  

% Alphabets listings. 

if ind==1 || ind==2 

    letter='A'; 

elseif ind==3 || ind==4 

    letter='B'; 

elseif ind==5 

    letter='C'; 

elseif ind==6 || ind==7 

    letter='D'; 

elseif ind==8 

    letter='E'; 

elseif ind==9 

    letter='F'; 

elseif ind==10 

    letter='G'; 

elseif ind==11 

    letter='H'; 

elseif ind==12 

    letter='I'; 

elseif ind==13 

    letter='J'; 

elseif ind==14 

    letter='K'; 

elseif ind==15 

    letter='L'; 

elseif ind==16 

    letter='M'; 

elseif ind==17 

    letter='N'; 

elseif ind==18 || ind==19 

    letter='O'; 

elseif ind==20 || ind==21 

    letter='P'; 

elseif ind==22 || ind==23 



 

 

 

 
    letter='Q'; 

elseif ind==24 || ind==25 

    letter='R'; 

elseif ind==26 

    letter='S'; 

elseif ind==27 

    letter='T'; 

elseif ind==28 

    letter='U'; 

elseif ind==29 

    letter='V'; 

elseif ind==30 

    letter='W'; 

elseif ind==31 

    letter='X'; 

elseif ind==32 

    letter='Y'; 

elseif ind==33 

    letter='Z'; 

    %*-*-*-*-* 

% Numerals listings. 

elseif ind==34 

    letter='1'; 

elseif ind==35 

    letter='2'; 

elseif ind==36 

    letter='3'; 

elseif ind==37 || ind==38 

    letter='4'; 

elseif ind==39 

    letter='5'; 

elseif ind==40 || ind==41 || ind==42 

    letter='6'; 

elseif ind==43 

    letter='7'; 

elseif ind==44 || ind==45 

    letter='8'; 

elseif ind==46 || ind==47 || ind==48 

    letter='9'; 

else 

    letter='0'; 

end 

end 

 

 

 


