

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач кафедри

Синєглазов В.М.

“ ____ ” __________2021.

ДИПЛОМНАРОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСНИКА ОСВІТНЬО-КВАЛІФІКАЦІЙНОГО РІВНЯ

“БАКАЛАВР”

Тема: Система відеоспостереження за контуром цілі

Виконав: Гайда М.В.

Керівник:к.т.н. Василенко М. П.

Нормоконтролер:к.т.н. Тупіцин М. Ф.

Київ – 2021

EDUCATION AND SCIENCE MINISTRY OF UKRAINE

NATIONAL AVIATION UNIVERSITY

COMPUTER-INTEGRATED COMPLEXES DEPARTMENT

ADMIT TO DEFENSE

Head of department

V. M. Sineglazov

“____” ______________ 2021.

BACHELOR WORK

(EXPLANATORY NOTES)

Topic: Video surveillance system of target contour

Done by: Haida M.V.

Supervised by: Vasylenko M. P.

Normcontrolled by: Tupitsyn M. F.

Kyiv 2021

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра авіаційних комп’ютерно-інтегрованих комплексів

Освітній ступінь бакалавр

Спеціальність: 151 " Автоматизація та комп'ютерно-інтегровані

технології"

ЗАТВЕРДЖУЮ

Завідувач кафедри

Синєглазов В.М.

“ ____ ” __________2021 р.

ЗАВДАННЯ

на виконання дипломної роботи студента

Гайди Максима Володимировича

1. Тема проекту (роботи): “ Система відеоспостереження за

контуром цілі”

2. Термін виконання проекту (роботи): з 10.05.2021 р. до 11.06.2021

р.

3. Вихідні данні до проекту (роботи): метод виділення контуру цілі на

відео, метод розпізнавання символів, метод визначення координат

цілі, алгоритм програми, середовище Matlab.

4. Зміст пояснювальної записки (перелік питань, що підлягають

розробці): 1. Актуальність системи відеоспостереження за контуром

цілі; 2. Аналіз існуючих підходів для виявлення об'єктів; 3.

Теоретичні основи системи відеоспостереження контуру цілі; 4.

Вирішення задачі виявлення номерної таблички розробленою

програмою та експерименти.

5. Перелік обов’язкового графічного матеріалу: 1. Структурна схема

експериментальної установки; 2. Блок-схема алгоритму роботи

програми; 3. Графічне зображення знайдених характерних точок; 4.

Графічне зображення відфільтрованих характерних точок ; 5. Папка

із зображеннями шаблонів цифр та літер; 6.Початкове зображення із

виділеною рамкою та символами.

6. Календарний план-графік

№

пор.
Завдання

Термін

виконання

Відмітка
про
виконання

1. Отримання завдання 10.05.2021 – 11.05.2021

2. Формування мети та основних

завдань дослідження
12.05.2021 – 13.05.2021

3. Аналіз існуючих методів 14.05.2021 – 19.05.2021

4. Теоретичний розгляд рішення

задачі
20.05.2021 – 25.05.2021

5. Розробка структури системи

відеоспостереження за контуром

цілі

25.05.2021 – 30.05.2021

6. Розробка програмного та

апаратного забезпечення системи

відеоспостереження за контуром

цілі

30.05.2021 – 05.06.2021

7. Оформлення пояснювальної

записки
05.06.2021 – 07.06.2021

8. Підготовка презентації та

роздаткового матеріалу
08.06.2021 – 11.06.2021

7. Дата видачі завдання: “10” травня 2021 р.

Керівник дипломної роботи __________________ М.П.

Василенко

 (підпис керівника) (П.І.Б.)

Завдання прийняла до виконання ___________________ М.В. Гайда

 (підпис випускника) (П.І.Б.)

NATIONAL AVIATION UNIVERSITY

Faculty of aeronavigation, electronics and telecommunications

Department of Aviation Computer Integrated Complexes

Educational level bachelor

Specialty: 151 "Automation and computer-integrated technologies"

APPROVED

Head of Department

Sineglazov V. M.

"____" __________2021

TASK

For the student's thesis

Haida Maksym Volodymyrovych

1. Theme of the project: " Video surveillance system of target contour "

2. The term of the project (work): from May 10, 2021 until June 11, 2021

3. Output data to the project (work): the method of selecting the target

contour on the video, the method of character recognition, the method of

determining the coordinates of the target, algorithm of the program, the

Matlab environment.

4. Contents of the explanatory note (list of questions to be developed):

1. The relevance of video surveillance system of target contour 2. Analysis

of existing approaches of objects detection; 3. Theoretical basis of the video

surveillance system of target contour; 4. Solution of number plate detection problem

by the developed program and experiments.

5. List of compulsory graphic material:

1. Block diagram of the experimental setup; 2. Block diagram of the algorithm

of the program; 3. Graphic representation of the found characteristic points; 4.

Graphic representation of filtered characteristic points; 5. Folder with images of

number and letter templates; 6. Initial image with a selected frame and symbols.

6. Planned schedule:

№ Task Execution term
Execution

mark

1. Task 10.05.2021 – 11.05.2021

2.
Purpose formation and describing

the main research tasks
12.05.2021 – 13.05.2021

3. Analysis of existing methods 14.05.2021 – 19.05.2021

4. Analysis of existing systems 20.05.2021 – 25.05.2021

5.

Theoretical consideration of the

problem solution
25.05.2021 – 30.05.2021

6.

Development of software and

hardware for video surveillance

system of target contour

30.05.2021 – 05.06.2021

7. Making an explanatory note 05.06.2021 – 07.06.2021

8.
Preparation of presentation and

handouts
08.06.2021 – 11.06.2021

7. Date of task receiving: “10” May 2021

Diploma thesis supervisor Mykola P. Vasylenko

 (signature)

Issued task accepted Maksym V. Haida

 (signature)

CONTENT

Glossary………………………………………………………………………...........

Introduction………………………………………………………………………….

1. The relevance of video surveillance system of target contour……………………

1.1. Description of video surveillance systems. …………………………………..

1.2. Computer vision and its tasks…………………………………………………

1.2.1. Identification………………………………………………………………...

1.2.2. Object recognition…………………………………………………………..

1.2.3. Image segmentation…………………………………………………………

1.2.4. Pose Estimation……………………………………………………………..

1.2.5. Text recognizing…………………………………………………………….

1.2.6. Objects generation…………………………………………………………..

1.2.7. Video analysis………………………………………………………………

1.3. The importance of detecting the target contour……………………………….

1.4. Problem solving necessity…………………………………………………….

2. Analysis of existing approaches of objects detection……………………………..

2.1. Correlation method of objects detecting in the image………………………...

2.2. The method of object recognizing in the image by its contour……………….

2.2.1. Roberts operator…………………………………………………………….

2.2.2. Laplace operator…………………………………………………………….

2.2.3. Prewitt operator……………………………………………………………..

2.2.4. Sobel operator……………………………………………………………….

2.2.5. Canny operator……………………………………………………………...

2.2.6. Comparative analysis of the described methods of contour selection………

2.3. The method of recognizing an object in an image by characteristic points…..

2.3.1. General information about the method……………………………………...

2.3.2. Corners detectors……………………………………………………………

2.3.3. Moravec corner detector general description……………………………….

2.3.4. Harris corner detector general description…………………………………..

2.3.5. Shi-Tomasi corner detector general description…………………………….

2.3.6. Förstner corner detector general description………………………………..

2.3.7. SUSAN corner detector general description………………………………..

2.3.8. Trajkovic corner detector general description………………………………

2.3.9. FAST corner detector general description…………………………………..

2.3.10. CSS corner detector general description…………………………………..

2.3.11. Corner detectors comparison………………………………………………

2.4. Object recognition using neural network (deep learning) and machine learning

2.4.1. Object recognition using deep learning general description………………..

2.4.2. Object recognition using machine learning general description……………

2.4.3. Machine learning and deep learning for object recognition comparison…...

3. Theoretical basis of the video surveillance system of target contour……………..

3.1. Blurring by Gaussian filter……………………………………………………

3.2. FAST characteristic points recognizing algorithm description……………….

3.3. Selection of contours by the Prewitt operator description…………………….

3.4. Image binarization using Otsu method………………………………………..

3.5. Template matching method description………………………………………

4. Solution of number plate detection problem by the developed program and

experiments…………………………………………………………………………..

4.1. Description of the experimental setup………………………………………...

4.2. Description of the algorithm of the program………………………………….

4.2.1. Recording image data to a computer………………………………………….

4.2.2. Preparation of image data for processing…………………………………...

4.2.3. Identification of all characteristic points in the image………………………..

4.2.4. Filtering of the found characteristic points……………………………………

4.2.5. Determining the coordinates and dimensions of the license plate……………

4.2.6. Recognition of symbols located on the license plate…………………………

4.2.7. Selecting the contour of the plate on the input image and output the

recognized characters………………………………………………………………..

4.3. Computational load analysis…………………………………………………..

Conclusions………………………………………………………………………….

References…………………………………………………………………………

Appendixes…………………………………………………………………………..

Appendix A. Code of the program for highlighting the number plate contour and

displaying the characters…………………………………………………………….

Appendix B. Program code that creates templates of alphabets and numbers………

Appendix C. Code for comparison of input image with templates………………….

GLOSSARY

AVSS – Automated video surveillance system

CV – Computer Vision

LTI – Linear Time Invariant

FIR – Finite impulse response

MSE – Mean square error

PSNR – Peak signal to noise ratio

CP – Characteristic points

FAST – Features from accelerated segment test

CSS – Curvature scale space

CNN – Convolutional Neural Networks

GPU – Graphics processing unit

CPU – Central processing unit

RAM – Random access memory

SSD – Sum of squared differences

CCORR – Cross-correlation

PC – Personal computer

INTRODUCTION

At a time when marauding, theft and various crimes are becoming more

frequent, there is a great need in video surveillance systems installing. Such systems

have already gained momentum and can be found in every supermarket or buildings

under control.

However, the quality of video cameras and optical sensors in general is

growing every year, as is the quality of the video they shoot, and it is no longer

enough to simply record the video stream on a storage medium. There is a need to

pre-process the video to efficiently use the storage memory and ensure automatic

operation of the system without the participation of the operator.

This paper proposes an intelligent video surveillance system of the license

plate contour, which will solve the problems described above.

Using a combination of methods for detecting objects by template matching,

contour detection and feature detection in the image, was developed a system that is

characterized by good accuracy and speed, can be both installed statically and be

mobile, does not require expensive equipment and computing resources for its work,

automatically detects the position of the number plate, highlights it, and recognizes

the characters displayed on it.

Further in the course of work it is possible to know about the relevance of

solving such a problem, already existing methods of the algorithm of work

realization, theoretical data and experimental results of system work.

ACIC DEPARTMENT

Page

NAU 21 0217 000 EN

 Performed Haida M.V.
 Supervisor Vasylenko M.P.

Consultant

S. controller Tupitsyn M.F.
Tupitsyn

Dep. head Sineglazov V.M.

VIDEO SURVEILLANCE SYSTEM

OF TARGET CONTOUR

N. Pages

431 151

CHAPTER 1. THE RELEVANCE OF VIDEO SURVEILLANCE

SYSTEM OF TARGET CONTOUR

1.1. Description of video surveillance systems

The rapid development of the functionality of video processing tools and

their relatively low cost has led to the active use of digital technologies in various

fields of human activity. In particular, computer video surveillance systems have

become widespread for surveillance in banks, offices, airports, supermarkets, to

search for subjects in the flow of people by appearance. In recent years, there has

also been an active installation and use of video cameras at public transport stops,

in parks, squares, schools, adjacent areas, etc. Such systems are increasingly used

in forensics, access control systems, security systems [1].

In automated video surveillance systems (AVSS), the number of cameras is

constantly growing and, accordingly, resource consumption increases. However, a

significant limitation of such systems is the need for a large number of operators to

service them. This led to the transition to intelligent AVSS. However, such systems

reduce the efficiency of AVSS and require significant computing resources [2].

Video surveillance systems are one of the main components and occupy an

important place in the overall structure of integrated security systems for facilities

and individuals. In a world where crime, fighting, terrorist attacks and security

breaches are on the rise, video surveillance systems are the right solution to prevent,

detect and warn them [1].

Nowadays, video surveillance systems are increasingly integrated into

various aspects of everyday life. One of the options for classifying such systems is

the scope of their use:

- video surveillance of roads and highways: measuring the speed of cars,

detecting driving at a red traffic light, crossing the dividing strip and other

violations of traffic rules [1];

- public and commercial security: monitoring of public places to detect and

prevent crime. These include individual facilities: schools, banks, supermarkets,

theaters, department stores, parking lots, stadiums and entire transportation

systems: airports, railways, subways, seaports, etc.;

- environmental monitoring and research: observation of forest fires and

pollution, habitats and migration of animals, mountain ranges, plant diseases,

oceanographic research, preservation of historical and archaeological monuments,

cultural heritage;

- military sphere: patrolling state borders, measuring refugee flows,

monitoring civilians, ensuring the security of military bases, assistance and

management during hostilities, etc.;

- quality control: monitoring of industrial and automated processes,

production sites to identify faults and intrusions into their infrastructure;

- smart homes and personal safety: home surveillance to prevent theft and

intrusion, health of patients, children, animals, etc.;

- analysis of video information: determination of patterns and anomalies in

the movement of transport, pedestrians, sports indicators, traffic in shopping malls,

amusement parks, etc...

1.2. Computer vision and its tasks

Computer Vision (CV) is a field of artificial intelligence associated with

image and video analysis. It includes a set of techniques that empower the computer

to "see" and extract information from what it sees [3].

The systems consist of a photo or video camera and specialized software that

identifies and classifies objects. They are able to analyze images (photos, pictures,

videos, barcodes) as well as faces and emotions.

Machine learning technologies are used to teach a computer to "see". A lot

of data is collected that allow you to identify features and combinations of features

for further identification of similar objects.

All tasks of computer vision are reduced to the analysis of an image or video

stream (in fact, it is a set of alternating images), on which it is required first of all

to select a fragment containing the necessary information. For detection, is usually

used a rectangular area, which limits the original fragment, or simply select the

pixels belonging to it [4].

1.2.1. Identification

The identification task is to classify the whole image. To do this, key areas

are highlighted in the image and classification is performed on them, for example,

using decision trees, or convolutional neural networks.

1.2.2. Object recognition

The task is to be able to select a certain set of objects on the image. Until the

problem is solved in the general case, the algorithm cannot classify random objects

in the image. However, it is capable of recognizing a previously learned set of

objects with a sufficiently high accuracy.

1.2.3. Image segmentation

The task is similar to object detection, but in contrast to it, it is required not

to surround the found objects with frames, but to select the pixels that make up this

object. Segmentation is used in many areas, for example, in manufacturing to

indicate defects in the assembly of parts, in medicine for primary processing of

images, as well as for compiling terrain maps from satellite images. One of the

typical segmentation methods is the use of the U-Net model, which is several layers

of a convolutional network that differ in size and are U-shaped in the stack, which

is reflected in the name.

1.2.4. Pose Estimation

The problem of estimating the position of an object, in some way continues

the task of segmentation. It consists in selecting a certain frame of the object (for

example, a skeleton, if we are talking about people) and determining the position

of this frame in the image. This skeleton can be used subsequently, for example, to

predict the direction of movement. Depending on the number of objects under

consideration, a Single-person pose estimation and Multi-person pose estimation

are distinguished. The difference is that in the second case, it is also necessary to

take into account that objects can overlap each other. To accomplish this task, the

background is first cropped, leaving only the images of the objects themselves, and

then for each of the objects, using convolutional neural networks, areas of joints

are selected, which are then connected.

1.2.5. Text recognizing

One of the key tasks of computer vision. First, using detection algorithms,

the area in which the text is written is highlighted, then the text is recognized

directly, for example, using segmentation algorithms. At the same time, the tasks

of recognizing text written on a sheet of paper and recognizing text written

somewhere on the image (“in the wild”), for example, a text on a road sign, a car

number, etc., are very different, due to the presence in the latter case interference

that prevents you from detecting specific letters. In this case, for example, learning

to predict a letter from the rest of the letters in a word can help.

Fig.1.1. An example of a real-life text recognition task - Recognizing

numbers on doors

1.2.6. Objects generation

The task is to learn how to create similar objects using a known set of objects,

but at the same time they have not coincide with any of the test ones. For example,

create animated characters in the style of a cartoon, drawing only a couple of them

by hand. For this, such architectures are used as generative adversarial networks,

in which the network is divided into two, one of which seeks to create an object,

and the second to reject it, or a variational autoencoder that learns on the probability

densities of the initial data in order to create an object similar to the original, but

not the same.

Fig. 1.2. An example of image generation using the GAN method

1.2.7. Video analysis

Since a video is a set of images of the same size, usually taken at different

intervals of time, all the tasks that were described earlier are applicable to it. There

are also tasks such as motion prediction, which consists in predicting the position

of an object in the next frames from a set of frames, or a more general Situation

Awarness task, which is to be able to determine its position for each object in a

video. and status on all frames of the video.

1.3. The importance of detecting the target contour

In general, a video surveillance system is an information system consisting

of video cameras, a complex of display and storage of video information, which is

used to record, view and visually analyze video information. Video surveillance

can be performed both in real time and viewing saved information from other

storage [1].

In turn, the intelligent video surveillance system is a system with its own

real-time operating system, which provides high reliability and makes the most

efficient use of computer resources. Allows to achieve the maximum speed, the

minimum reaction time to events and has long-term stability.

When recognizing objects, the most informative part of the image is the

contour. An object contour is a part of an object that contains a lot of information

about the shape of the object and depends little on the color and texture of the

image.

The contour can be used to analyze the shape of the object. In many cases,

information about the shape of the object is sufficient for the organization of

automatic or automated systems. In addition, the transition to object recognition by

their contours allows to reduce the amount of information processed by several

orders, in addition, the contours are invariant to the brightness transformations.

Since the basic information about the shape of the object is contained in the

contour of the object, the selection and description of the contour is an important

task of image analysis.

1.4. Problem solving necessity

Nowadays, when video surveillance systems are installed at almost all

controlled entrances to private territories (for example, parking lots, territories of

government organizations, etc.), there is a great need to introduce systems with

algorithms for tracking the contour of the target. That is, to track and recognize the

license plate of a car that crosses the border of the controlled area, record

information about the time of its entry and exit, the coordinates of the car and

recognize the symbols located on the license plate and record them.

The first thing that comes to mind solving this problem is the application of

the approach of neural networks deep learning. However, learning a neural network

to recognize an object requires a large number of images from a training sample

(thousands of examples), and the learning process also takes hours. And the most

significant disadvantage of this approach is the process of its calculation on the

chip of the video adapter, which already imposes restrictions on the use of

hardware. Given the previous facts, such a system will be correspondingly

expensive.

There is a second approach to solving the problem ̶ Automatic Number Plate

Recognition systems. They work fast and do not require large computing resources.

However, in order for such a system to work properly, the camera is installed so

that the car occupies the entire area of the frame, and the license plate is the largest

rectangle in the frame. Such systems are very sensitive to changes in the position

of the subject and various noises in the image, and recognition becomes unreliable

if the background scenes of the frame occupy approximately more than 20% of the

total image.

Intelligent video surveillance systems with the ability to track the target are

now very expensive, with limited access to code and patented. The system shown

in this paper has an open source code and a price that is determined only by the

price of the camera and microcontroller.

Thus, there is a task to create a fast, inexpensive, easy to install system for

tracking the contour of the license plate and recognition of license plates. What will

be presented in this paper.

ACIC DEPARTMENT

Page

NAU 21 0217 000 EN

 Performed Haida M.V.
 Supervisor Vasylenko M.P.

Consultant

S. controller Tupitsyn M.F.

 Dep. head Sineglazov V.M.

VIDEO SURVEILLANCE SYSTEM

OF TARGET CONTOUR

N. Pages

431 151

CHAPTER 2. ANALYSIS OF EXISTING APPROACHES OF

OBJECTS DETECTION

There are many varieties of known methods for solving the problem of

detecting the contour of the target. Some are based on the location and detection of

moving objects in the video stream, while others detect the object by their

belonging to a certain class and their characteristics. The following chapters will

gradually describe the known methods of detecting objects in video and images.

2.1. Correlation method of objects detecting in the image

The task of detection is to establish the presence of objects (brightness areas)

with certain properties in the image, and also, if the objects are detected, to

determine their coordinates on the image plane [5].

The basic principle of object detection in an image is to compare the image

brightness function with a certain "standard" - a fragment of the brightness field

containing the desired object. When implementing the detection procedure, the

standard fragment moves sequentially over the image field, and in each position its

similarity with the real function of brightness on the fragment is examined.

Complete coincidence of the standard and the image, as a rule, does not happen due

to noise and distortions, and also due to the fact that there is usually no complete

information regarding the shape and structure of the object (you have to use a

standard that only approximately describes the object).

Let's denote by t(k,l), (k,l)∈D the function of the brightness of the standard

object, specified on a certain area D in the standard’s own coordinate system

(usually is considered a rectangular area D with the origin in the center). Let the

x(m,n) – be samples of the brightness function of the observed image. As a measure

of the difference between the standard and the image at the point (m, n), the

quadratic measure is most often taken:

𝜀2(𝑚, 𝑛) = ∑ [𝑥(𝑚 + 𝑘, 𝑛 + 𝑙) − 𝑡(𝑘, 𝑙)]2

(𝑘,𝑙)∈𝐷

 (2.1)

It is considered that there is a similarity of the image fragment with the

standard at the point (m, n), if:

𝜀2(𝑚, 𝑛) < 𝐿𝜀 (2.2)

Where 𝐿𝜀- some threshold depending on the intensity of the noise.

Fig.2.1. shows a schematic illustration of the principle of comparison with a

standard.

Fig.2.1. Illustration of the principle of comparison with a standard: a) a

standard for comparison with; b) examined area; c) matches with the standard

In practice, the measure (2.1) is usually not calculated, but go over to related,

but more simply calculated values. Transform the expression for the quadratic

measure of difference:

𝜀2(𝑚, 𝑛) = ∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙) − 2 ∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙) + ∑ 𝑡2(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

(𝑘,𝑙)∈𝐷(𝑘,𝑙)∈𝐷

 (2.3)

Here, the first term characterizes the image energy within the "window" D.

This energy usually changes rather slowly depending on (m, n) and practically does

not characterize the sought object. The third term characterizes the energy of the

standard and does not depend on (m, n). For detection, only the second term is

essential, which, up to a constant factor, specifies the cross-correlation of the image

and the standard [5]:

𝐵(𝑚, 𝑛) = ∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

 (2.4)

When the image and the reference coincide, the cross-correlation (2.4) is

large, which ensures the smallness of the quadratic measure (2.1). However, direct

use of cross-correlation as a measure of similarity usually results in poor detection

performance. This is due to the fact that cross-correlation can increase even if the

image does not match the standard if the brightness of the image in the vicinity of

the point with coordinates (m, n) is high. This difficulty can be circumvented by

using the normalized cross-correlation:

𝑅(𝑚, 𝑛) =
∑ 𝑥(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)(𝑘,𝑙)∈𝐷

√[∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙)(𝑘,𝑙)∈𝐷][∑ 𝑡2(𝑘, 𝑙)(𝑘,𝑙)∈𝐷]

 (2.5)

The value R(m, n) is equal to the maximum value (one) if the standard

coincides with the image up to a constant non-negative factor. In this case, the

object at the point (m, n) is considered detected if R(m, n)>LR′, where LR′ is the

threshold for measure (2.5).

The form of function (2.5) can be simplified if we first normalize the original

image x (m, n) by choosing the energy of the standard equal to one, that is, to ensure

∑ 𝑡2(𝑘, 𝑙)(𝑘,𝑙)∈𝐷 = 1, performing adaptive element-by-element image processing

with a "window" D to equalize the energy (variance) of the image

 ∑ 𝑥2(𝑚 + 𝑘, 𝑛 + 𝑙)(𝑘,𝑙)∈𝐷 all over the field. This further eliminates the influence

of variance variations within the image. Denoting the normalized image by x'(m,n),

come again to the linear measure of cross-correlation:

𝐵′(𝑚, 𝑛) = 𝑅′(𝑚, 𝑛) = ∑ 𝑥′(𝑚 + 𝑘, 𝑛 + 𝑙)𝑡(𝑘, 𝑙)

(𝑘,𝑙)∈𝐷

 (2.6)

It is easy to see that the normalized cross-correlation function (2.6) is formed

as a result of the passage of a two-dimensional signal - a normalized image x′(m,

n) - through a two-dimensional LTI system with an impulse response h(k,l)= t(-k,-

l):

𝐵′(𝑚, 𝑛) = 𝑥′(𝑚, 𝑛) ∗∗ ℎ(𝑘, 𝑙) = 𝑥′(𝑚, 𝑛) ∗∗ 𝑡(−𝑘, −𝑙) (2.7)

Thus, we obtain the general scheme of the correlation detection algorithm,

which is shown in Fig. 2. Here, at the last stage, a binary image is obtained with

ones at the points of object detection:

Fig. 2.2. Scheme of the correlation detection algorithm

LTI system, which in this case is called the correlator, is an FIR system and

can be implemented by window (direct convolution) or spectral processing (fast

convolution).

The considered correlation detection method is relatively simple, but it is

characterized by rather high probability of errors (false detection or missing

objects), which is explained by ignoring the properties of noise when synthesizing

the image processing algorithm.

2.2. The method of object recognizing in the image by its contour

When recognizing objects, the most informative part of the image is the

contour. An object outline is a part of an object that contains a lot of information

about the shape of the object and depends little on the color and texture of the

image.

The shape of the object can be analyzed along the contour. In many cases,

information about the shape of the object is sufficient for the organization of

automatic or automated systems. In addition, the transition to object recognition by

their contours allows to reduce the amount of information processed by several

orders of magnitude, in addition, the contours are invariant to the brightness

transformations [1].

After digitization, each pixel uniquely refers to either the background or the

image. There are different types of criteria for deciding whether each of the pixels

belongs to the background or contour of the image.

The result of the selection of contours is an image skeleton - a secondary

image of the same size as the original. Initially, all points of this image are black,

and in the process of selecting the contours of the pixels that correspond to the

detected boundary points of the image, become painted white.

The contour in the color image corresponds to the intensity difference.

However, this definition excludes contours associated with abrupt changes in hue

and intensity in areas with constant brightness.

Contour representation (encoding) is the step of obtaining a discrete signal

that describes the boundaries of a digitized image.

Requirements for contour representation algorithms:

1. reducing the amount of memory used for storage;

2. reducing the time and complexity of further processing;

3. obtaining informative features of the object.

Biological systems of visual perception, as studies show, use mainly

contours to highlight objects, rather than dividing objects by brightness. In practice,

the differences will not be sharp due to the blurring and limitations imposed by the

video recording equipment. Sometimes the brightness differences along the

boundaries are better traced in the form of jumps in the first brightness derivatives

than in the analysis of the values of the brightness itself.

When solving the problem of contour selection, a compromise between the

number of erroneous contours and the number and magnitude of contour breaks is

found. It is known that the result of the follow-up operation is much less affected

by small gaps. They are easier to eliminate than false contours, in which it is easy

to get confused [1].

The relationship between the number of false contours and the number and

magnitude of gaps is determined by the noise immunity of the method of contour

selection. Any region D of the plane of the complex variable contains internal

points and contour points (boundary points). The first of them have the property

that not only they themselves, but also some of their surroundings belong entirely

to the area D. Contour points are not internal, but in any small neighborhood of

such points there are internal points of area D and points which do not belong to

area D - external (background) points. Area D has the property of connectivity,

which is that any of its points are connected by a line that is completely in the

middle of D.

A contour line G is said to be convex if the rectilinear segment connecting

any two of its points consists entirely of the interior points of region D. The contour

section will be concave if such a segment will include external (background) points

(Fig. 2.3.).

Fig. 2.3. Fragments of the contour G: 1, 2 - convex; 3, 4 - indefinite; 5, 6 -

concave

Internal element (pixel) of a binary digitized image 𝜔(m1,m2) has the

property of four-connectivity, ie adjacent elements - upper, lower, left and right,

also belong 𝜔 (m1,m2).

To process the contour in an analytical way, it is necessary to encode it, ie to

set a certain number in accordance with each contour element. The sequence of

such numbers is called the contour code. Eight different standard placements are

possible on the square grid.

Let’s consider some ways to encode contours:

1. Coding by three features: the length of the current elementary vector, the

direction of rotation when moving to the next elementary vector and the angle

between adjacent elementary vectors.

2. Encoding the current elementary vector with a three- dimensional binary

code (numbers from 0 to 7). This code was proposed by Freeman and is widely

used in image processing.

3. The coding of the current elementary vector by its two projections on the

coordinate axis with the origin, combined with the beginning of the elementary

vector - two-dimensional code.

4. Polygonal representation of the contour obtained by its approximation by

linear segments (Fig. 2.4).

Coding is to fix the coordinates of the ends of these segments. This method

due to the compactness of the obtained descriptions has become widespread. This

causes a segmentation problem similar to the signal sampling problem. In real

cases, it is usually associated with the loss of information about the shape of the

images.

Fig. 2.4. Polygonal representation of a contour by means of approximation of a

contour by linear segments

5. Representation of a contour line by a polar code. In the image (m1,m2)

the pole is selected - the beginning of the reference (point P) ordinary (own)

coordinate system, ie the frame of reference associated with this image. The centers

of all boundary points of the image are connected with the point P. The result is a

sequence of radius vectors  (n), that uniquely define the contour of the image (Fig.

2.5). Often the center is aligned with the center of gravity of the image.

Fig. 2.5. An example of specifying a fragment of the contour in the polar

coordinate system

Methods of contour selection can be divided into two large groups:

differential and extreme correlation. In differential methods, the intensity

differences are amplified by numerical differentiation, then the contour is selected

by a threshold device, after which the binary image is subjected to secondary

processing, the purpose of which is to thin the contour to one pixel. The methods

are easy to implement and have high performance, but have low noise immunity.

The main criterion in assessing the noise immunity of the contours is the position

of the brightness difference.

On the other hand, two approaches are used to define and describe a contour:

selecting edges or selecting the area of a point that forms an object.

A large number of algorithms for selecting contours and boundaries are

given and described in the literature. The most popular methods include the

Roberts, Sobel, Previtt, Kirsch, Robinson operator, the Canny algorithm and the

LoG algorithm. These algorithms are based on emphasizing the sharp differences

in brightness that are characteristic of the contours of objects.

2.2.1. Roberts operator

The Roberts operator is one of the first contour selection algorithms that

calculates the sum of the squares of the differences between diagonally adjacent

pixels. This will be an image convolution with two cores:

[
+1 0
0 −1

] 𝑎𝑛𝑑 [
0 +1

−1 0
] (2.8)

Roberts' operator is still used for computing speed, but it loses compared to

alternatives due to its significant noise sensitivity. It makes the lines thinner than

other methods of contouring, which is almost equivalent to calculating the final

differences along the X and Y coordinates. It is sometimes called the "Roberts

filter".

2.2.2. Laplace operator

The discrete Laplace operator is also often used in image processing to

highlight contours. Discrete Laplacian is defined as the sum of the second

derivatives and is calculated as the sum of the differences on the "neighbors" of the

central pixel. For a one-dimensional signal, a discrete Laplacian can be written as

a convolution with the next core:

𝐷𝑥
2 = [1 − 2 1] (2.9)

And for a two-dimensional signal:

𝐷𝑥
2 = [

0 1 0
1 −4 1
0 1 0

] 𝑜𝑟 𝐷𝑥
2 = [

1 1 0
1 −8 1
1 1 0

] (2.10)

2.2.3. Prewitt operator

The Prewitt operator is a method of selecting contours in image processing,

which calculates the maximum deviation on the set of convolution cores to find the

local orientation of the contour in each pixel. It was created by Dr. Judith Prewitt

to identify the contours of medical images.

The operator uses two cores 3 × 3, convolving the original image to calculate

the approximate values of the derivatives, one horizontally and the other vertically:

𝐺𝑥 = [
−1 0 +1
−1 0 +1
−1 0 +1

] 𝑎𝑛𝑑 𝐺𝑥 = [
−1 −1 −1
0 0 0

+1 +1 +1
] (2.11)

2.2.4. Sobel operator

The Sobel operator is a discrete differential operator that calculates the

approximate value of the image gradient. It is used in the field of image processing,

in particular, often used in contour selection algorithms. The result of applying the

Sobel operator at each point of the image is either the brightness gradient vector at

this point, or its norm, calculated by formulas:

𝐺𝑥 = [
−1 0 +1
−2 0 +2
−1 0 +1

] ∗ 𝐴 𝑎𝑛𝑑 𝐺𝑥 = [
−1 −2 −1
0 0 0

+1 +2 +1
] ∗ 𝐴 (2.12)

where A is the input image.

2.2.5. Canny operator

Canny studied the mathematical problem of obtaining a filter, according to

the optimal criteria for selection, localization and minimization. He showed that

the desired filter is the sum of four exponents and can be well approximated by the

first Gaussian derivative. Canny introduced the concept of Non-Maximum, which

means that the pixels of the contours are declared pixels in which the local

maximum of the gradient in the direction of the gradient vector is reached.

Although his work was carried out in the early days of computer vision, Kanny's

contour detector is still one of the best detectors.

The result of the described algorithms is a set of incoherent areas. To obtain

a connected contour, additional processing is required, such as morphological

processing to obtain the connected edge of the object, which is called the contour

of the object.

2.2.6. Comparative analysis of the described methods of contour

selection

The comparative analysis of the described methods of contour selection is

carried out. In comparative analysis, the assessment of image quality is widely

used. This estimate is characterized by a number of metrics that show how exactly

the resulting image matches the original. The best known metrics are the mean

square error (MSE) and peak signal to noise ratio (PSNR).

The mean square error (MSE) is an indicator of the dispersal of values of a

random variable relative to its mathematical expectation:

𝑀𝑆𝐸 =
∑ (𝑥𝑖,𝑗 − 𝑦𝑖,𝑗)

2𝑚,𝑛
𝑖=1,𝑗=1

𝑚𝑛
 (2.13)

where MSE – the mean square error; 𝑥𝑖,𝑗 – sampling element; 𝑦𝑖,𝑗 –

arithmetic mean of the sample; n, m is the sample size.

The peak signal to noise ratio (PSNR) is the ratio between the maximum

possible signal value and the noise power that distorts the signal value. The easiest

way to determine this ratio is using mean square error:

𝑃𝑆𝑁𝑅 = 10𝑙𝑜𝑔10 (
𝑀𝐴𝑋𝐼

2

𝑀𝑆𝐸
) (2.14)

where MAXI is the maximum value of the pixel intensity in the image; MSE

is the mean square error.

The higher the value of the peak signal-to-noise ratio, the clearer and more

accurate the image is considered. To evaluate the quality of the obtained image

with the selected contours by the described methods and to compare them, the

image from the ORL database was used. This image will be considered the original,

ie in our case it is a perfect image.

Also, an important indicator of the operation of contour selection methods is

the speed, which is measured in seconds. Table 1 shows the results.

Table 2.1. Comparison of the performance speed of known methods of

contour selection

Image contour selection method Performance speed, sec

Roberts 0,60

Laplace 0,86

Prewitt 0,63

Sobel 0,76

Canny 2,45

As can be seen from the results, the Canny method gives the best results in

terms of standard deviation and peak signal-to-noise ratio, but it is the slowest of

the considered methods.

Thus, it is shown that the basic information about the object is contained in

the contour, so the selection and description of the contour is an important task of

image analysis, contours are invariant to brightness transformations, and the

transition to object recognition by their contours allows to reduce the amount of

processed information.

A comparative analysis of contour selection methods was also performed.

Analysis of the speed, standard deviation and peak ratio of signal to noise showed

that the Canny method has the lowest contour selection speed, but according to the

criteria of standard deviation and peak signal to noise shows the best results.

2.3. The method of recognizing an object in an image by characteristic

points

2.3.1. General information about the method

Characteristic points (CP) is an image point with high local informativeness,

ie it is the points of maximum, minimum, inflection and maximum curvature. CP

are also called salient, keypoints, representative, feature points, characteristic

points, inflection points.

Examples of CP are: the ends of the segment, the vertices of the polygons,

the inflection points, the inflection points of the splines, the end points of the semi-

axes of the ellipse.

In 1992, Haralick and Shapir identified the following requirements for CP:

- distinctness - CP should stand out clearly in the background and be unique

in its surroundings;

- invariance - the detection of CP should be independent to affine

transformations;

- stability - the detection of CP should be resistant to noise and errors;

- uniqueness - in addition to local differences, CP must have global

uniqueness in order to improve the distinction of repetitive elements;

- interpretability - CPs should be defined so that they can be used to analyze

matches and identify interpreted information from an image.

Tuytelaars and Mikolajczyk (2006) described the properties that CPs should

have:

- repeatability - CP is in the same place of the scene or image object, despite

changes in the point of view and lighting;

- distinctiveness / informativeness - there should be an environment of CP

where it should have big differences from other points in this neighborhood so that

it was possible to allocate and compare special points;

- locality - CP should occupy a small area of the image to reduce the

likelihood of sensitivity to geometric and photometric distortions between two

images taken at different points of view;

- quantity - the number of detected CP should be large enough so that they

are enough to detect even small objects. However, the optimal amount of CP

depends on the subject area. Ideally, the number of detected CP should be

adaptively determined using a simple and intuitive threshold.

- location density - CP should display the information content of the image

to ensure its compact presentation;

- accuracy - detected CP must be accurately localized, both in the original

image and in taken at another scale one;

- efficiency - the time of detection of CP in the image should be acceptable

in time-critical applications.

In general, these properties intersect with the previous ones, but are

interpreted differently.

The main advantage of using CP for identification tasks is the relative

simplicity and speed of their detection.

The class of methods for finding key points is called "keypoint detection",

and algorithms for comparing and searching for images using key points -

"keypoint matching". Searching for a pattern in a picture comes down to applying

the key point detection algorithm to the pattern and the picture, and matching the

key points of the pattern and the picture [6].

Usually “key points” are found automatically by finding pixels whose

surroundings have certain properties. Many methods and criteria for finding them

have been invented. All these algorithms are heuristics that find some characteristic

elements of the image, as a rule - corners or sharp drops in color.

The process of identifying special points is achieved through the use of a

detector and a descriptor.

A detector is a method for extracting specific points from an image. The

detector ensures the invariance of finding the same singular points with respect to

image transformations.

Descriptor - an identifier of a special point, which distinguishes it from the

rest of the set of special points. In turn, descriptors must ensure the invariance of

finding a correspondence between singular points with respect to image

transformations.

 A good detector should work quickly and be resistant to image

transformations (when the image changes key points detection should not stop /

moving).

2.3.2. Corners detectors

Corners are special points that are formed from two or more facets, and facets

usually define the border between different objects and/or parts of the same object.

The main property of such points is that two dominant directions prevail in the area

around the corner of the image gradient, which makes them distinguishable [7].

Gradient is a vector value that shows the direction of the steepest increase in

the function of the image intensity I(x,y). Since the image is discrete, the gradient

vector is determined through partial derivatives along the x and y axes through

changes in the intensities of neighboring points of the image. Most of the methods

consider angularity depending on the 2nd order derivative, therefore, in general,

the methods are sensitive to noise.

Depending on the number of intersecting facets, there are different types of

corners: L-, Y- (or T-), and X-connected (some also distinguish arrow-connected

angles). Different corner detectors react differently to each of these corner types.

Fig. 2.6. Corner types

The approaches of identifying special points can be divided into 3 categories:

1. Based on image intensity: the feature points are calculated directly

from the pixel intensities of the image.

2. Using image contours: methods extract contours and look for places

with maximum curvature or make a polygonal approximation of contours and

determine intersections. These methods are sensitive to neighborhood

intersections, as extraction can often be incorrect where 3 or more edges intersect.

3. Model Based: uses models with intensity as parameters which adjust

to template images with subpixel precision. They have limited use with special

types of feature points (for example, L-connected corners), depend on the templates

that are used.

In practice, for widespread use, the most common methods based on image

intensity are used.

Next, I will briefly discuss the pros and cons of basic corner detectors. Then

a comparative table of detectors will be presented with conclusions about their

applicability to different situations.

2.3.3. Moravec corner detector general description

Moravec detector - the simplest of the existing. The author examines the

change in the brightness of a square window W (usually 3x3, 5x5, 7x7 pixels)

relative to the point of interest when the window W is shifted by 1 pixel in 8

directions (horizontal, vertical and diagonal).

The Moravec detector has the property of anisotropy in 8 directions of

window displacement. The main disadvantages of the considered detector are the

lack of invariance to the rotation transformation and the occurrence of detection

errors in the presence of a large number of diagonal edges.

2.3.4. Harris corner detector general description

Harris and Stephens improved the Moravec detector by introducing

anisotropy in all directions, i.e. consider the derivatives of the brightness of the

image to study changes in brightness in many directions. They introduce

derivatives in some fundamental directions.

The Harris detector is rotational invariant, partially invariant to affine

intensity changes. The disadvantages include the sensitivity to noise and the

dependence of the detector on the image scale (to eliminate this disadvantage, a

multi-scale Harris detector is used).

2.3.5. Shi-Tomasi corner detector general description

The Shi-Tomasi angle detector (Shi-Tomasi or Kanade-Tomasi, 1993) is

largely the same as the Harris detector, but differs in the computation of the

response measure: the algorithm computes the value directly because it makes the

assumption that the search for corners will be more stable. The authors use the same

equation to analyze the optical flow of Lucas and Kanade.

2.3.6. Förstner corner detector general description

Förstner and Gülch (1987) were the first who described a method that uses

the same measure of angularity as the Harris detector. They used a more

computationally complex implementation. Unlike the Harris detector, the

eigenvalues are calculated explicitly. The Förstner angle response function is

defined as follows:

𝑅 = 𝜆1𝜆2 (𝜆1 + 𝜆2)⁄ =
𝑑ⅇ𝑡𝑀

𝑡𝑟𝑀
 (2.15)

Also, for the correctness of the definition, the measure of the roundness of the angle

is considered, equal to:

1 − (
𝜆1 − 𝜆2

𝜆1 + 𝜆2
)

2

=
4𝑑ⅇ𝑡𝑀

(𝑡𝑟𝑀)2
(2.16)

The Förstner detector is often used in practice to expand the capabilities of the

Harris detector - finding circular feature points along with angles. Also, the

algorithm has the best localization property.

2.3.7. SUSAN corner detector general description

Angles are defined by segmentation of circular neighborhoods into similar

(orange) and dissimilar (blue) areas (Fig. 2.7). The corners are located where the

relative area of similar areas (similar USAN) reaches a local minimum below a

certain threshold.

Fig. 2.7. SUSAN detection algorithm visualisation

The algorithm shows good accuracy for all kinds of angles, but is not

resistant to blur in images.

2.3.8. Trajkovic corner detector general description

The detector checks the area around a pixel by examining nearby pixels: let

c be the pixel to be examined and P the point on the circle SN at the center at point

N. Point P' is a point opposite P in diameter.

In comparison with the Harris detector, the repetition rate of the Trajkovic4

algorithm is worse, but the localization is comparable to the determination of L-

connected angles and is superior in other types of angles.

Also disadvantages include the fact that this 4-adjacent operator reacts

falsely to diagonal edges and is sensitive to noise. Therefore, an 8-connected

version of this Trajkovic8 algorithm is used. Trajkovic8 differs from Trajkovic4 in

how it calculates angularity. However, Trajkovic8 still finds false angles on some

of the diagonal edges of the object (it doesn't work well on artificial images).

2.3.9. FAST corner detector general description

An alternative to Harris's method is FAST. As the name suggests, FAST is

much faster than the mentioned method. This algorithm tries to find points that lie

on the edges and corners of objects, i.e. in places where there is a difference in

contrast. They are found as follows: FAST builds a circle of radius R around the

candidate pixel and checks if there is a continuous segment of pixels of length t on

it, which is K units darker (or lighter) than the candidate pixel. If this condition is

met, then the pixel is considered a “key point” [6].

The main disadvantage of the algorithm is that several singular points can be

found near a certain neighborhood; the efficiency of the algorithm depends on the

order of image processing and the distribution of pixels. But it works fast enough

in comparison to competitors.

2.3.10. CSS corner detector general description

Rattarangsi and Chin (1992) proposed a curvature scale space (CSS)

algorithm that detects corners on planar curves. CSS is suitable for extracting

invariant geometric features on a flat curve at various scales.

Algorithm identifies feature points using multiple scales of the same image.

However, it is computationally complex and detects false angles in circular areas.

This algorithm has the following disadvantages: an image with only one

scale is used to determine the number of angles, and images at multiple scales are

used for localization. As a result, the algorithm skips corners when σ is large and

detects false angles when σ is small.

2.3.11. Corner detectors comparison

Table 2.2. Comparison of angle detectors (where 1 - Very bad, 2 - poor, 3 -

fair, 4 - good, 5 - excellent)

Operator

(algorithm)

Detection

efficiency

Localization Repetition

frequency

Noise

resistance

Speed

Moravec 3 4 3 3 4

Förstner 4 4 5 for affine

transformations, 3

for scaling

4 2

FAST 4 4 5 4 5

Harris 4 4 for L-

connected

angles, 2 for

other types

5 for affine

transformations if

anisotropic

gradient is

computed, 3 for

scaling

3 2

SUSAN 4 1 for blurry

images, 4+

otherwise

4 for scaling, 2 for

affine

transformations

5 4

CSS 4 4 5 4 Strongly

depends on

the contour

detector

Trajkovic

& Hedley

2 4 3 (not invariant to

rotations)

2 5

After analyzing the available methods, it was decided to use the FAST angle

detector in algorithm because of its ease of use, the method for finding CPs and,

most importantly, speed.

2.4. Object recognition using neural networks (deep learning) and

machine learning

It is possible to use various approaches for object recognition. Recently,

machine learning and deep learning techniques have become popular approaches

to object recognition problems. Both technologies learn to recognize objects in

images, but they differ in their performance [8].

Fig. 2.8. Machine learning and deep learning techniques for object

recognition

2.4.1. Object recognition using deep learning general description

Deep learning techniques have become a popular method of object

recognition. Deep learning models such as Convolutional Neural Networks (or

CNNs) are used to automatically learn the inherent properties of an object in order

to identify that object. For example, CNN can learn to distinguish between cats and

dogs by analyzing thousands of images and studying the characteristics that

distinguish cats and dogs.

There are two approaches to object recognition using deep learning:

- Model training from scratch. To train a deep network from scratch, you

need to collect a very large labeled dataset and develop a network architecture that

learns characteristics and builds a model. The results can be impressive, but this

approach requires a lot of training data and also requires setting the levels and

weights in CNN.

- Using a pretrained deep learning model: most deep learning applications

use a transfer learning approach - a process that involves fine-tuning of pre-trained

model. To begin with, an existing network such as AlexNet or GoogLeNet is taken

and new data containing previously unknown classes is entered. This method is less

time consuming and can provide faster results since the model has already been

trained on thousands or millions of images.

Deep learning offers a high level of accuracy, but requires a lot of data to

make accurate predictions.

2.4.2. Object recognition using machine learning general description

Machine learning techniques are also popular for object recognition and offer

different approaches than deep learning. Common examples of machine learning

techniques are:

- extracting HOG features using SVM machine learning model;

- bag-of-words models with functions such as SURF and MSER;

- Viola-Jones algorithm, which can be used to recognize various objects,

including faces and upper part of the body.

To recognize objects using the standard machine learning approach, you

need to start with a set of images (or video) and select the appropriate characteristic

in each image. For example, the feature extraction algorithm can extract edge or

corner features that can be used to distinguish classes in user data. These features

are added to a machine learning model that separates these characteristics into

separate categories, and then uses this information to analyze and classify new

objects. Variety of machine learning algorithms and feature extraction techniques

can be used that offer many combinations to create an accurate object recognition

model.

Using machine learning for object recognition gives you the flexibility to

choose the best combination of features and classifiers for training. It can achieve

accurate results with minimal data.

2.4.3. Machine learning and deep learning for object recognition

comparison

The choice of the best approach to object recognition depends on the task at

hand. In most cases, machine learning can be an effective method, especially if you

know which image characteristics are best used to distinguish classes of objects.

Fig. 2.9. Key factors in choosing between deep learning and machine

learning

The main thing to keep in mind when choosing between machine learning

and deep learning is having a powerful GPU and lots of labeled training images. If

the answer to any of these questions is no, a machine learning approach may be the

best choice. Deep learning techniques tend to work better with large numbers of

images, and the GPU helps to reduce the time it takes to train the model.

ACIC DEPARTMENT

Page

NAU 21 0217 000 EN

 Performed Haida M.V.
 Supervisor Vasylenko M.P.

Consultant

S. controller Tupitsyn M.F.

 Dep. head Sineglazov V.M.

VIDEO SURVEILLANCE SYSTEM

OF TARGET CONTOUR

N. Pages

431 151

CAPTER 3. THEORETICAL BASIS OF THE VIDEO SURVEILLANCE

SYSTEM OF TARGET CONTOUR

A car was chosen as the object of surveillance for the program. All cars

have common features such as headlights, windshield, rear-view mirrors, wheels,

license plate. However, for each of the existing cars, the models of which there

are a very large number, almost all of these characteristics differ in size, shape

and even location.

The task of object recognition, with taking into account all the above-

described features, could be solved only by neural networks. However, for this

they need thousands, or even hundreds of thousands of images of the training

sample and large computing power. Therefore, it was decided to develop own

program that identifies the car on the video stream, namely its license plate. The

license plate was chosen as the object of tracking, because it is the feature that has

constant proportions, is present on all cars, and is the best object to track it.

3.1. Blurring by Gaussian filter

Blurring is an integral part of various image correction techniques aimed at

eliminating specific defects (excessive detail, scan defects, dust, etc.). One of

their possible applications is noise reduction, i.e. the problem of restoring the

original image with random noise added to its pixels [9].

Gaussian blur is a generic image blur filter that uses a normal distribution

(Gaussian distribution) to compute the transform applied to each pixel in an

image. The noise in the image changes independently from pixel to pixel and if

the mathematical expectation of the noise value is equal to zero, the noise of

neighboring pixels will compensate each other. The larger the filtering window,

 the less the average intensity of the noise will be, however, significant blurring of

significant image details will also occur.

The Gaussian distribution equation in N dimensions has the form:

𝐺(𝑟) =
1

(2𝜋𝜎2)
𝑁
2

ⅇ
−

𝑟2

2𝜎2 (3.1)

Noise reduction using a rectangular filter has a significant drawback: pixels

at a distance "r" from the processed one have the same effect on the result as

neighboring ones.

Thus, more effective noise reduction can be realized if the influence of

pixels on each other decreases with distance (a special case - for two dimensions):

𝐺(𝑢. 𝑣) =
1

2𝜋𝜎2
ⅇ

−
𝑢2+𝑣2

2𝜎2 (3.2)

where r is the blur radius, r2 = u2 + v2, y is the standard deviation of the

Gaussian distribution.

In the case of two dimensions, this formula defines a surface that looks like

concentric circles with a Gaussian distribution from the center point. Pixels where

the distribution is nonzero are used to construct a convolution matrix that is

applied to the original image. The value of each pixel becomes a weighted

average for the neighborhood. The original pixel value gets the biggest weight

(has the highest Gaussian value), and neighboring pixels get less weights,

depending on the distance to them. In theory, the distribution at each point in the

image will be nonzero, which would require the calculation of weighting factors

for each pixel in the image. But, in practice, when the discrete approximation of

the Gaussian function is calculated, pixels at a distance of more than 3 are not

taken into account, since they are small enough. Thus, it is enough for the

program filtering the image to calculate the matrix in order to guarantee sufficient

accuracy in the approximation of the Gaussian distribution.

To apply this filter, convolution by function is used:

𝐼′(𝑖, 𝑗) = ∑ ∑ 𝐼(𝑖 − 𝑙)(𝑗 − 𝑘) ∗
1

√2𝜋𝜎
ⅇ

−𝑑2

2𝜎2

𝑚

𝑘=−𝑚

𝑛

𝐼=−𝑛

 (3.3)

The parameter y sets the degree of blur. On the graph, a function with у = 5

Fig. 3.1. Graph of Gaussian function

Fig. 3.2. The results of convolution by the Gaussian function and by a

constant function (averaging).

The Gaussian filter is well suited for a situation where a noisy image has a

large amount of details, because this filter blurs small details less and removes

noise quite adequately.

3.2. FAST characteristic points recognizing algorithm description

FAST, was first proposed in 2005 in the work, was one of the first heuristic

methods for finding special points, which gained great popularity due to its

computational efficiency [10]. To decide whether to consider a given point C

special or not, this method considers the brightness of pixels on a circle with a

center at point C and a radius of 3:

Fig. 3.3. Pixels considered by FAST detector

Comparing the brightness of the pixels of the circle with the brightness of

the center C, we get for each three possible outcomes (lighter, darker, it seems):

𝐼𝑝 > 𝐼𝐶 + 𝑡

𝐼𝑝 < 𝐼𝐶 + 𝑡

𝐼𝐶 − 𝑡 < 𝐼𝐶 < 𝐼𝐶 + 𝑡

 (3.4)

here I is the brightness of pixels, t is some predetermined brightness

threshold.

A point is marked as special if there are n = 12 pixels in a row on the circle

that are darker, or 12 pixels that are lighter than the center.

As practice has shown, on average, to make a decision, it was necessary to

check about 9 points. In order to speed up the process, the authors proposed to

first check only four pixels numbered: 1, 5, 9, 13. If among them there are 3

pixels lighter or darker, then a full check is performed by 16 points, otherwise -

the point is immediately marked as "not special". This greatly reduces the

operating time; to make a decision, on average, it is enough to interrogate only

about 4 points of the circle.

Initially, the original algorithm was FAST-12. There are modifications of

the algorithm: the tree based FAST-9 and FAST-12.

The original algorithm has a number of disadvantages, for example, several

special points may be found near a certain neighborhood, the efficiency of the

algorithm depends on the order of image processing and the distribution of pixels.

Edward Rosten, Reid Porter, and Tom Drummond (2008) introduce

improvements to the FAST algorithm in that they use machine learning to

identify feature points.

They called this algorithm FAST-ER (ER - Enhanced Repeatability). The

algorithm is stable to the property of repeatability: on the same scene, viewed

from different angles, there are feature points belonging to the same objects.

This algorithm uses a circle of more than 1 pixel unlike FAST (48 pixels).

The authors use the ID3 algorithm to classify feature points (whether a candidate

point is characteristic) using decision trees. ID3 algorithm optimizes the order in

which pixels are processed, resulting in the most computationally efficient

detector.

Fig. 3.4. Pixels considered by FAST-ER detector

The decision tree cost function is calculated as follows:

𝑐𝑜𝑠𝑡 = (𝑘𝑅 + 𝑅−2)(𝑘𝑁 + 𝑁−2)(𝑘𝑆 + 𝑆−2) (3.5)

Where R is a measure of repeatability; N is the number of detected feature

points; S is the number of nodes in the decision tree.

FAST-ER is better than FAST, but slower in execution speed. The authors

concluded that the FAST-ER detector is the best in terms of repeatability.

Through experiments on images, it was determined that the FAST

algorithm fully meets the needs of the program, and was chosen for use.

3.3. Selection of contours by the Prewitt operator description

All known methods are based on one of the basic properties of the brightness

signal - discontinuity. The most common way to find gaps is to process an image

using a sliding mask, also called a filter, kernel, window, or pattern, which is a kind

of square matrix corresponding to a specified group of pixels in the original image.

Matrix elements are usually called coefficients. Operating with such a matrix in

any local transformations is called filtering or spatial filtering [11].

Fig. 3.5. Spatial filtering scheme

The process is based on simply moving the filter mask from point to point in

the image; at each point (x, y), the filter response is computed using predefined

links. In the case of linear spatial filtering, the response is given by the sum of the

product of the filter coefficients by the corresponding pixel values in the area

covered by the filter mask. For a 3x3 element mask shown in Figure 3.5, the result

(response) R of linear filtering at the point (x, y) of the image will be:

𝑅 = 𝑤(−1, −1)𝑓(𝑥 − 1, 𝑦 − 1) + 𝑤(−1,0)𝑓(𝑥 − 1, 𝑦) + ⋯

+𝑤(0,0)𝑓(𝑥, 𝑦) + ⋯ + 𝑤(1,0)𝑓(𝑥 + 1, 𝑦) + 𝑤(1,1)𝑓(𝑥 + 1, 𝑦 + 1) (3.6)

which, as you can see, is the sum of the products of the mask coefficients by

the pixel values directly under the mask. In particular, note that the coefficient w

(0,0) is at the value of f(x, y), indicating that the mask is centered at the point (x, y).

Discrete analogs of the derivatives of the first and second order are used

when detecting differences in brightness. For simplicity of presentation, one-

dimensional derivatives will be considered.

The first derivative of the one-dimensional function f(x) is defined as the

difference between the values of neighboring elements:

𝜕𝑓

𝜕𝑥
= 𝑓(𝑥 + 1) − 𝑓(𝑥) (3.7)

Here, we used a partial derivative notation in order to preserve the same

notation in the case of two variables f(x, y), where we have to deal with partial

derivatives along two spatial axes. The use of a partial derivative does not change

the essence of the consideration.

Similarly, the second derivative is defined as the difference between adjacent

values of the first derivative:

𝜕2𝑓

𝜕2𝑥
= 𝑓(𝑥 + 1) + 𝑓(𝑥 − 1) − 2𝑓(𝑥) (3.8)

The calculation of the first derivative of a digital image is based on various

discrete approximations of a two-dimensional gradient. By definition, the gradient

of the image f(x, y) at the point (x, y) is the vector:

𝛻𝑓 = [
𝐺𝑥

𝐺𝑦
] = [

𝜕𝑓
𝜕𝑥
𝜕𝑓
𝜕𝑦

] (3.9)

As it is known, the direction of the gradient vector coincides with the

direction of the maximum rate of change of the function f at the point (x, y).

An important role in the detection of contours is played by the modulus of

this vector, which is denoted by ∇f and is equal to

𝛻𝑓 = |𝛻𝑓| = √𝐺𝑥
2 + 𝐺𝑦

2 (3.10)

This value is equal to the value of the maximum rate of change of the

function f at the point (x, y), and the maximum is reached in the direction of the

vector ∇f. The value ∇f is also often called the gradient.

The direction of the gradient vector is also an important characteristic. Let

α(x,y) denote the angle between the direction of the vector ∇f at the point (x,y) and

the x-axis. As it is known from mathematical analysis,

𝛼(𝑥, 𝑦) = 𝑎𝑟𝑐𝑡𝑔 (
𝐺𝑦

𝐺𝑥
) (3.11)

From here it is easy to find the direction of the contour at the point (x, y),

which is perpendicular to the direction of the gradient vector at this point. And you

can calculate the gradient of the image by calculating the values of the partial

derivatives ∂f/∂x and ∂f ∂y for each point.

Let the 3x3 area shown in the figure below (see Fig. 3.6) represent the

brightness values in the vicinity of some image element.

Fig. 3.6 Neighborhood 3x3 in the image

The use of such a mask by the Prewitt operator is specified by the following

expressions:

𝐺𝑥 = (𝑧7 + 𝑧8 + 𝑧9) − (𝑧1 + 𝑧2 + 𝑧3) (3.12)

and

𝐺𝑦 = (𝑧3 + 𝑧6 + 𝑧9) − (𝑧1 + 𝑧4 + 𝑧7) (3.13)

In these formulas, the difference between the sums along the top and bottom

rows of the 3x3 neighborhood is the approximate value of the derivative along the

x-axis, and the difference between the sums along the first and last columns of this

neighborhood is the derivative along the y-axis. To implement these formulas, an

operator described by the masks in Fig. 3.7 is used, which is called the Prewitt

operator.

Fig. 3.7 Prewitt operator masks

3.4. Image binarization using Otsu method

Image binarization is a transformation, the essence of which is that the

brightest and most significant pixels for any subsequent processing become as

bright as possible, turning into white points (the color with maximum intensity or

brightness), and all other points that are considered background, become minimally

bright, that is, they are converted to black points (absolute absence of color,

minimum brightness or intensity). Thus, the entire binarization operation is reduced

to the usual pixel-by-pixel transformation of each point of the image either to white

or black, depending on a certain brightness feature, that is, on a certain minimum

acceptable brightness value, exceeding which the point becomes white. This

feature will be called the binarization threshold, and this is the first thing that needs

to be determined when implementing image binarization [12].

At the moment, there are a huge variety of binarization algorithms and

methods, ranging from a simple manual one (the threshold is set manually and

depending on the image itself) to complex adaptive and multi-methods (including

multilayer binarization), but here will be considered an interesting and effective

method, which is called the Otsu method.

Otsu's method is an algorithm that allows you to divide image pixels into two

classes ("useful" and "background"), due to a simple statistical analysis of the

image, which, when dividing pixels into classes, makes sure that the variance

within one class is minimal.

Otsu's method looks for a threshold that reduces the variance within a class,

which is defined as the weighted sum of the variances of two classes [13]:

𝜎𝜔
2(𝑡) = 𝜔1(𝑡)𝜎1

2(𝑡) + 𝜔2(𝑡)𝜎2
2(𝑡) (3.14)

where the weights 𝜔𝑖 — are the probabilities of two classes separated by a

threshold t, 𝜇𝑖 — the variance of these classes.

Otsu showed that minimizing variance within a class is equivalent to

maximizing variance between classes:

𝜎𝑏
2(𝑡) = 𝜎2 − 𝜎𝜔

2 (𝑡) = 𝜔1(𝑡)𝜔2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2 (3.15)

which is expressed in terms of the probability 𝜔𝑖 and the arithmetic mean 𝜇𝑖,

which, in turn, can be updated iteratively. This idea led to an efficient algorithm:

Let a monochrome image be given 𝐺(𝑖, 𝑗), 𝑖 = 1, 𝐻ⅇ𝑖𝑔ℎ𝑡̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , 𝑗 = 1, 𝑊𝑖𝑑𝑡ℎ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅,

repetition counter k=0.

1. Calculate the histogram 𝑝(𝑙) of the image and the frequency 𝑁(𝑙) for each

intensity level of the image 𝐺.

2. Calculate the initial values for 𝜔1(0), 𝜔2(0) и 𝜇1(0), 𝜇2(0).

3. For each value 𝑡 = 1, 𝑚𝑎𝑥(𝐺)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ - semitones - horizontal axis of the

histogram:

1. Updating 𝜔1, 𝜔2 and 𝜇1, 𝜇2

2. Calculate 𝜎𝑏
2(𝑡) = 𝜔1(𝑡)𝜔2(𝑡)[𝜇1(𝑡) − 𝜇2(𝑡)]2

3. If 𝜎𝑏
2(𝑡) is greater than the existing one, then remember 𝜎𝑏

2 and the

value of the threshold t.

4. The desired threshold corresponds to the maximum 𝜎𝑏
2(𝑡)

𝑁𝑇 = ∑ 𝑝(𝑖)

max (𝐺)

𝑖=0

,

𝜔1(𝑡) =
∑ 𝑝(𝑖)𝑡−1

𝑖=0

𝑁𝑇
= ∑ 𝑁(𝑖), 𝜔2(𝑡) = 1 − 𝜔1(𝑡),

𝑡−1

𝑖=0

𝜇𝑇 =
∑ 𝑖 ∗ 𝑝(𝑖)

max (𝐺)
𝑖=0

𝑁𝑇
= ∑ 𝑖 ∗ 𝑁(𝑖),

max (𝐺)

𝑖=0

𝜇1(𝑡) =
∑ 𝑖 ∗ 𝑝(𝑖)𝑡−1

𝑖=0

𝑁𝑇 ∗ 𝜔1(𝑡)
=

∑ 𝑖 ∗ 𝑁(𝑖)𝑡−1
𝑖=0

𝜔1(𝑡)
, 𝜇2(𝑡) =

 𝜇𝑇 − 𝜇1(𝑡) ∗ 𝜔1(𝑡)

𝜔2(𝑡)
.

Fig. 3.8. Original image and after binarization with Otsu threshold

3.5. Template matching method description

In order to determine which characters are located on the number plate, the

method of comparing the input image with the template, ie the Template matching

method, was used [6].

The "similarity" of an image is defined by a certain metric. That is, the

pattern is "superimposed" on the image, and the discrepancy between the image

and the pattern is considered. The position of the template at which this discrepancy

will be minimal, and will mean the location of the desired object.

As a metric, you can use different options, for example, the sum of squared

differences (SSD), or cross-correlation (CCORR). Let f and g be an image and a

template with sizes (k, l) and (m, n), respectively (the color channels will be

ignored); i, j - position on the image to which we "attached" the template.

𝑆𝑆𝐷𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

 (3.16)

𝐶𝐶𝑂𝑅𝑅𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

 (3.17)

Let's try to apply the difference of squares to find a kitten on the picture.

Fig. 3.9. Tamplate image

Fig. 3.10. Picture taken from the resource PETA Caring for Cats [6]

On Fig. 3.11 the values of the metric of the similarity of the place in the

picture to the template (i.e. SSD values for different i, j). The dark area is where the

difference is minimal. This is the pointer to the place that most resembles the

template - in the Fig. 3.12. picture this place is circled.

Fig. 3.11. SSD values for different i, j

Fig. 3.12. Highlighted matched area

Cross-correlation is actually a convolution of two images. Convolutions can

be implemented quickly using Fast Fourier Transform. According to the

convolution theorem, after the Fourier transform, the convolution turns into a

simple element-wise multiplication:

𝐶𝐶𝑂𝑅𝑅𝑖.𝑗 = 𝑓 ∗ 𝑔 = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑓 ∗ 𝑔)) = 𝐼𝐹𝐹𝑇(𝐹𝐹𝑇(𝑓) ∙ 𝐹𝐹𝑇(𝑔)) (3.18)

Where * is the convolution operator. This way the cross-correlation can be

quickly calculated. This gives the overall complexity O(kllog (kl) + mnlog (mn)),

versus O(klmn) when implemented straight. The squared difference can also be

implemented using convolution, since after expanding the brackets, it turns into the

difference between the sum of the squares of the image pixel values and the cross-

correlation:

𝑆𝑆𝐷𝑖.𝑗 = ∑ (𝑓𝑖+𝑎,𝑗+𝑏 − 𝑔𝑎.𝑏)
2

𝑎=0..𝑚,𝑏=0..𝑛

=

∑ 𝑓𝑖+𝑎,𝑗+𝑏
2 − 2𝑓𝑖+𝑎,𝑗+𝑏𝑔𝑎.𝑏 + 𝑔𝑎,𝑏

2

𝑎=0..𝑚,𝑏=0..𝑛

= ∑ 𝑓𝑖+𝑎,𝑗+𝑏
2 + 𝑔𝑎,𝑏

2

𝑎=0..𝑚,𝑏=0..𝑛

− 2𝐶𝐶𝑂𝑅𝑖.𝑗

(3.19)

In the case of resizing, the method may not work correctly. This is due to the

fact that the method assumes that the object is resized by the same number of times

both horizontally and vertically. However, this is not always the case. When the

size is changed too much, the distortion caused by the log-to-polar conversion

makes the search unstable.

ACIC DEPARTMENT

Page

NAU 21 0217 000 EN

 Performed Haida M.V.
 Supervisor Vasylenko M.P.

Consultant

S. controller Tupitsyn M.F.

 Dep. head Sineglazov V.M.

VIDEO SURVEILLANCE SYSTEM

OF TARGET CONTOUR

N. Pages

431 151

CHAPTER 4. SOLUTION OF NUMBER PLATE DETECTION

PROBLEM BY THE DEVELOPED PROGRAM AND EXPERIMENTS

4.1. Description of the experimental setup

In order to make the detection of number plate contour possible such

experimental installation is introduced:

1) Mobile phone Samsung galaxy S8 (or WEB-cam).

2) Personal computer with installed Matlab2021.

3) Developed program for computing the algorithm.

To obtain photos, images and videos, was used the optical sensor of the

Samsung Galaxy S8 mobile phone, Sony IMX333 with an optical stabilizer, which

has a size of 1 / 2.55 ", a resolution of 12.2 MP and a pixel width of 1.4 microns.

Own laptop Dell Precision 7520 was used as a computer. The characteristics

of this PC are described in Table 4.1.

Table 4.1. PC characteristics.

PC name Dell Precision 7520

CPU Intel Core i7-6820HQ CPU 2,7 GHz

Number of cores 4

Logical processors number 8

Installed RAM 32 Гб

Video adapters Intel(R) HD Graphics 530

NVIDIA Quadro M2200 4Gb

To develop the program, the Matlab2021 programming environment and its

components and libraries Image Acquisition Toolbox, Image Processing Toolbox,

Computer Vision Toolbox, Support Package for USB Webcams were installed on

the PC. This software is the most accessible and simple to perform the task and

allows to easily work with image and video processing.

Below is shown a compact block diagram of the experimental setup.

Fig. 4.1. Block diagram of the experimental setup

4.2. Description of the algorithm of the program

Algorithm of work:

1. Recording image data to a computer;

2. Preparation of image data for processing:

a. Uploading an image to the MATLAB programming

environment;

b. Translate the image into grayscale;

c. Extra image pixels crop;

d. Bluring image pixels by Gauss filter;

3. Identification of all characteristic points in the image;

4. Filtering of the found characteristic points;

5. Determining the coordinates and dimensions of the license plate;

6. Recognition of symbols located on the license plate;

7. Selecting the contour of the plate on the input image and output the

recognized characters.

Fig. 4.2. Block diagram of the algorithm of the program work

4.2.1. Recording image data to a computer

To transfer images from the phone's optical sensor to a computer, the phone

connects to a computer via DroidCamApp. This program allows you to connect an

optical sensor from the phone and transfer data via USB port or Wifi channel (Fig.

4.3 and Fig. 4.4). Both types of connections were used during the experiments.

Fig. 4.3. Connection of a smartphone camera via DroidCamApp

Fig. 4.4. Received video stream from DroidCamApp

Video taken from an optical sensor at 30 frames per second frequency is

stored on computer's hard drive. However, for the correct operation of the program

it is enough to process every 10th frame, and to demonstrate the algorithm will be

used static images with different cars parked in the parking lot.

4.2.2. Preparation of image data for processing

Images from the optical sensor are obtained in RGB format, in a resolution

of 1280 × 960 pixels, with a lot of noise and unnecessary information. In order for

the data encoded in the image to be processed and various mathematical operations

can be performed on it, it must be prepared in advance. This will be described in

the following subsections.

a. Uploading an image to the MATLAB programming environment

The first step in image processing is to import it from the drive into the

Matlab2021 programming environment, which has the appropriate built-in features

and tools.

After importing the image (using the imread function), it is written to a

variable as a three-dimensional data array, which consists of the values of each

pixel on three color channels (red, green, blue), which overlap each other to give

the color of the pixel (Fig. 4.5).

Fig. 4.5. Example of a "raw" downloaded image

Now with these arrays it is possible to carry out calculations in the

programming environment.

b. Translate the image into grayscale

Further calculations will be performed with the uint8 data type, which is an

integer from 0 to 255 and takes up 1 byte of memory.

Each of the R, G, B channels may have a pixel value from 0 to 255. The

value of their sum can exceed 255, so these three channels must be combined into

one grascaled. This problem is solved by means of function rgb2gray().

Function rgb2gray converts RGB values to grayscale values by forming a

weighted sum of the R, G, and B components:

𝐼𝑔𝑟𝑎𝑦 = 0.2989 ∗ 𝑅 + 0.587 ∗ 𝐺 + 0.114 ∗ 𝐵 (4.1)

At the output a grayscale image (Fig. 4.6) recorded as a one-dimensional

array of points was gotten.

Fig. 4.6. Converted into grayscale image

c. Extra image pixels crop

The picture above shows that the optical sensor captured many extra objects

besides the car itself. This will interfere with the identification of characteristic

points in the further course of work. To reduce the amount of unnecessary

information, the image must be cropped at its edges to a certain number of pixels

using the function imcrop (Fig. 4.7.).

Fig. 4.7. Cropped image

After cropping, the number of pixels and unnecessary information in the

image decreased, which has a positive effect on the speed of the program work.

d. Bluring image pixels by Gauss filter

Now, when the cropped grayscale image is done it is needed to smooth

unnecessary noises by 2-D Gaussian filtering [14].

Pixels in the sliding window that are closer to the analyzed pixel should have

a greater influence on the filtering result than the extreme ones. Therefore, the

coefficients of the mask weights can be described by a bell-shaped Gaussian

function. When filtering images, a two-dimensional Gaussian filter is used:

𝐺𝜎 =
1

2𝜋𝜎2
ⅇ

−
𝑥2+𝑦2

2𝜎2 =
1

𝜎√2𝜋
ⅇ

−
𝑥2

2𝜎2 ∗
1

𝜎√2𝜋
ⅇ

−
𝑦2

2𝜎2 (4.2)

The larger is the parameter 𝜎, the more the image is blurred. Typically, the

filter radius is 𝑟 = 3𝜎. In this case, the size of the mask 2𝑟+1×2𝑟+1 and the size of

the matrix 6𝜎+1×6𝜎+1. Outside this neighborhood, the values of the Gaussian

function will be negligible. In MATLAB, Gaussian filtering of an image can be

performed using the imgaussfilt () function, shown in Fig. 4.8.

Fig. 4.8. Result of Gaussian filtering

4.2.3. Identification of all characteristic points in the image

The task of the program is to monitor the contour of the target. The tracking

object in this case is a car, and the license plate is a common and most distinctive

feature which each regular car has. Therefore, its very position will be detecded.

In order to find out the location of the license plate, firstly it is in need to find

all the characteristic points in the image, and then process them.

Feature point m is a point of the image, the neighborhood of which o(m) can

be distinguished from the neighborhood of any other point of the image o(n) in

some other neighborhood of the feature point o2(m). The process of identifying

special points is achieved through the use of a detector and a descriptor.

A detector is a method of extracting specific points from an image. The

detector ensures the invariance of finding the same feature points with respect to

image transformations. There are many types of characteristic point detectors, the

most famous of which are Harris corner detector, FAST, SIFT.

By the research method was determined that the FAST detector is the best

for determining the characteristic points. As the name suggests, this algorithm

works faster than existing competitors but also fulfills its direct purpose. This

algorithm tries to find points that lie at the edges and corners of an object, i.e. in

places where contrast drops (Fig. 4.9.).

Fig. 4.9. Pixels checked by the algorithm FAST

They are found as follows: FAST builds a circle of radius R around the

candidate pixel and checks if there is a continuous segment of pixels of length t on

it, which is K units darker (or lighter) than the candidate pixel. If this condition is

met, then the pixel is considered a “key point”.

Fig. 4.10. Characteristic points found by the FAST algorithm

4.2.4. Filtering of the found characteristic points

The image above (Fig. 4.10.) shows that the characteristic points were found

not only on the license plate itself, but the largest accumulation of them is in this

area. This means that they must be filtered under certain conditions.

The filtering algorithm will be based on the knowledge that the largest

number of characteristic points is located on the symbols written on the license

plate and its edges. Next, the operation of this algorithm will be gradually

described.

Firstly write the coordinates x, y of each characteristic point in their arrays

(Fig. 4.11.) using the function corners.Location().

Fig. 4.11. Recorded arrays of coordinates of characteristic points

After the coordinates of the characteristic points are obtained, filter out those

that are more than 60 pixels apart from each other. This value was chosen by

experiments and proved as optimal. Next, calculate the distance between each point

and other characteristic points by the formula:

𝐷𝑖,𝑗 = √(𝑥𝑖 − 𝑥𝑗)
2

+ (𝑦𝑖 − 𝑦𝑗)
2

 (4.3)

Where 𝐷𝑖,𝑗 – distance between points; 𝑥𝑖 , 𝑦𝑖 – coordinates of the starting

point; 𝑥𝑗 , 𝑦𝑗 – coordinates of the next point.

Now, for each point whose neighbor is closer than 60 pixels, assign the

variable m, which will be equal to the weight coefficient of the point. That is, the

more neighbors has a feature point at a distance of up to 60 pixels, the greater will

be the value of its weight.

Fig. 4.12. An array of weight values for each point

When the weight values for each characteristic point are known, they can be

filtered by this criterion. For this purpose the minimum threshold of weight of

characteristic points 𝑚𝑚𝑖𝑛 is entered. The approximate number of characteristic

points, which are located on the number plate, is determined experimentally. Based

on this, adjust the minimum weight threshold by assigning it a value 𝑚𝑚𝑖𝑛 = 6,

and compare it with the value of the weight of each point. If 𝑚 ≥ 𝑚𝑚𝑖𝑛, the point

passes the check and its coordinates 𝑥1𝑖 , 𝑦1𝑖 are written to a new array.. The

coordinates of points that have not passed the check are set to 0.

The last step in filtering points is to remove the coordinates of the points,

which now have a value of 0 with the nonzeros() function. Now an array of points

that fit the desired criterion is found, ie those that are directly on the number plate

(Fig. 4.13.).

Fig. 4.13. Graphic representation of filtered points

There is also an option that the criterion of the minimum weight of the point

may fit smaller clusters of characteristic points, which are further from the number

plate but are not far enough to not to pass the distance checking. In this case the

following code to determine the coordinates of the number plate will work

incorrectly. In this case, 𝑚𝑚𝑖𝑛 will increase by 1 until the threshold value of the

minimum weight of the point is large enough to weed out the parasitic points, and

the program will be executed correctly.

4.2.5. Determining the coordinates and dimensions of the license plate

After filtering the characteristic points, it is safe to say that they all belong

only to the license plate, and now the work can proceed to determination of its

coordinates and dimensions.

To define the image cropping limits, in order to leave only the image of the

plate itself, it is needed to have such data as the coordinates of the upper left

corner 𝑀𝑙𝑒𝑓𝑡 , 𝑀𝑢𝑝𝑝𝑒𝑟 and the values of the width W and height H of the plate,

which can be calculated as follows:

𝑊 = 𝑀𝑟𝑖𝑔ℎ𝑡 − 𝑀𝑙𝑒𝑓𝑡 (4.4)

𝐻 = 𝑀𝑙𝑜𝑤𝑒𝑟 − 𝑀𝑢𝑝𝑝𝑒𝑟 (4.5)

Where 𝑀𝑙𝑒𝑓𝑡 – the minimum value from the array of coordinates of points 𝑥1𝑖

(left crop border); 𝑀𝑟𝑖𝑔ℎ𝑡 – the maximum value from the array of coordinates of

points 𝑥1𝑖 (right crop border); 𝑀𝑙𝑜𝑤𝑒𝑟 – the maximum value from the array of

coordinates of points 𝑦1𝑖 (lower crop border); 𝑀𝑢𝑝𝑝𝑒𝑟 – the minimum value from

the array of coordinates of points 𝑦1𝑖 (upper crop border).

Knowing the values described above, the image of the license plate is

cropped, as shown in Fig. 4.14.

Fig. 4.14. The resulting image of the license plate after cropping according

to characteristic points

To further clarifying the coordinates of the number frame, the resulting

image must be translated from grayscale to binary.

Image binarization is a transformation, the essence of which is that the

brightest and most significant pixels for any subsequent processing become as

bright as possible, turning into white points (the color with maximum intensity or

brightness), and all other points that are considered to be background, become

minimally bright, that is, they are converted to black points (absolute absence of

color, minimum brightness or intensity).

In the Matlab programming environment, an image can be binarized using

the imbinarize() function, which performs it using the Otsu binarization method

(Fig. 4.15.).

Fig. 4.15. Binary image of the license plate

To further refining of the coordinates, it is needed to select the contours of

the objects in the image (Fig. 4.16.). I chose the method of selecting contours using

the Prewitt operator.

Fig. 4.16. Selected contours in the image

The Prewitt operator is used to select horizontal contours of objects using a

mask (Fig. 4.17.).

Fig. 4.17. Horizontal mask of the Prewitt operator

 To select vertical contours, this mask is transposed.

Now find the properties of the resulting binary image by the function

regionprops() for the final cropping of the number plate. These parameters include

Area, BoundingBox, Image.

Where Area - the actual number of pixels in the closed area; BoundingBox -

coordinates and dimensions of the smallest rectangle containing a closed area;

Image - a binary image of the same size as the BoundingBox returned as a binary

array.

Next, by comparing the Area with the BoundingBox the coordinates, width

and height of the largest BoundingBox are found. This will be the final cropping

of the number plate (Fig. 4.18.).

Fig. 4.18. Finally cutted out image of the plate

4.2.6. Recognition of symbols located on the license plate

Since the number plate location and its parameters have already been found,

recognizing the characters depicted on it can be started.

Firstly, using the bwareaopen() function remove some extra pixels if their

closed area is less than 50 pixels, and invert the resulting binary image (Fig. 4.19).

Fig. 4.19. Inverted image with removed noise

Now a kind of preparation for the recognition of letters and numbers is done.

Letter recognition will be based on the Template matching method. This is a

method based on finding the place in the image that most closely resembles a

template. The "similarity" of an image is defined by a certain metric. That is, the

pattern is "superimposed" on the image, and the divergence between the image and

the pattern is considered. The position of the template at which this divergence will

be minimal, will mean the location of the desired object.

Therefore, to implement this algorithm, firstlly a database of templates for

images of letters and numbers was created and saved in folder Alpha. Each image

is binary, stored in .bmp format and has a resolution of 24 × 42 pixels (see

Appendix B).

Fig. 4.20. Folder with saved letter and number templates

Each image is written to the appropriate variable, then these variables are

written to their arrays letter (for letters) and number (for numbers), which in turn

are entered into a two-dimensional array NewTemplates.

After saving the array with images of letters and numbers, the resulting tablet

image resolution is changed to be able to compare it with the templates. Each

template is compared with the resulting image of the license plate from left to right.

For each of them a correlation coefficient is found using the function corr2(), which

calculates it by the formula:

𝑟 =
∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)(𝐵𝑚𝑛

− 𝐵̅)𝑛𝑚

√(∑ ∑ (𝐴𝑚𝑛 − 𝐴̅)2
𝑛𝑚)(∑ ∑ (𝐵𝑚𝑛 − 𝐵̅)2

𝑛𝑚)
 (4.6)

Where 𝐴 ̅ - arithmetic mean of A; 𝐵̅ - arithmetic mean B; A – the first input

array of points; B – the second input array of points; m, n – number of points in

first and second array.

The larger the is correlation coefficient, the more is the pattern and the input

image match (see Appendix C).

Each of the templates has its own assigned index. The find() function finds

the index with the largest value of the correlation coefficient, and then displays the

letter or number that has this index.

Thus there are the read characters from the plate (Fig. 4.21).

Fig. 4.21. Recognized symbols from the plate

Sometimes the algorithm can work incorrectly and display more than 8

characters, so there is also a check for the number of characters found. And if their

number is greater, then the extra characters are removed.

There are also cases when pre-preparation of the image is not enough and

the program finds fewer characters than needed. Therefore, if the number of

characters found is less than 8, the algorithm described above is repeated again,

and so on until it is executed correctly.

4.2.7. Selecting the contour of the plate on the input image and output

the recognized characters

In order for the result of the program to be visible, the number plate must be

highlighted. To implement this, the rectangle() function will be used, which draws

a rectangle by the specified initial coordinates, width and height (Fig. 4.22).

To find these coordinates it is needed to perform inverse calculations, the

opposite of those done earlier. So, knowing the number of iterations of the cycle,

namely how many times the procedures for cropping the input image was executed,

you can easily calculate the coordinates of the number plate frame on the original

input image.

And after finding these coordinates, using the function text(), an inscription

that duplicates the text of the characters that are located on the license plate is

displayed (Fig. 4.22.).

Fig. 4.22. Input image with highlighted number frame and displayed

characters

In this way, the program works successfully, tracks license plates and

recognizes the symbols on them (The code of the working program is shown in

Appendix A).

It, of course, has its limitations, which are manifested in the magnitude of

the angle at which the video frame was taken for tracking the contour of the object.

Experimentally, it was found that the system finds the coordinates of the number

plate correctly until the angle of observation on the vertical and horizontal axes has

reached more than about 40 degrees, and the accuracy of detection of symbols on

the plate becomes less informative after an angle of 35 degrees.

4.3. Computational load analysis

To use the system effectively, understanding of what computing power it

needs is strongly required. After all, if the system loads the computer too much, it

will have a bad effect on its speed of work. And the less the system loads the

computer, the wider its scope of use can be.

In Table 4.2, how the computer system is loaded when running a single-

frame program can be seen. Using the tic and toc functions from Matlab, the

program execution time of the cycle for one frame was calculated. It also can be

seen how much RAM was needed for calculations and how much CPU it used.

Measurements are presented for 4 different images.

Table 4.2. The results of experiments

Image № Resolution,

pixels

Computing

time, sec

Used RAM,

Mb

CPU load,

%

1 1280×960 0.678983 22 18.5

2 1280×960 0.568815 18 16

3 1280×960 0.577579 19 12.3

4 1280×960 0.535034 19 15

Fig. 4.23. Images used for tests

The idle Matlab programming environment uses approximately 1000 MB of

RAM. When running the program, the use of RAM rises to the values specified in

the table, but not more than on 30 MB. And when processing the most complex

images, the computer's processor is not loaded by more than 20%.

It took from 0.5 to 0.7 seconds to process the image with a resolution of 1280

× 960, which is enough for the normal program work. If there is a need to increase

the speed of the program, this can be achieved by reducing the frame resolution.

Reducing the resolution by half the processing speed will increase accordingly.

However, such manipulations should be performed carefully, because when the

number of pixels in the image are reduced, its informativeness can be lost. Which

is not critical for outlining the object of observation, but can greatly affect on the

adequacy of the symbols definition on the plate.

So, judging by the experiments on the estimation of computing costs, we can

conclude that this system requires up to 2 GB of RAM for stable operation, and

does not require large amounts of CPU power. These features allow it to be used

in more mobile versions, no longer using a PC for computing, but a Raspberry Pi

microcontroller.

CONCLUSION

So, during the implementation of this work, an analysis of existing methods

of implementing the algorithm was performed. It was determined that each of them

individually cannot fully meet the requirements for the video surveillance system of

target contour:

 the correlation detection method is relatively simple, but it is characterized by

rather high probability of errors (false detection or missing objects), which is

explained by ignoring the properties of noise when synthesizing the image

processing algorithm;

 the method of recognizing an object in an image by its contour is not very fast,

and can sometimes find erroneous contours;

 the method of recognizing the object in the image by characteristic points does

not allow to determine the exact coordinates of the number plate, because the

characteristic points for the new license plate will change accordingly;

 Neural network object recognition is quite accurate, but requires relatively

large computing resources, the presence of a graphics accelerator and a large number

of training sample images.

Therefore, the system's own algorithm based on a combination of methods

was developed. There was also developed own algorithm for filtering characteristic

points, which always allows to correctly identify the location of the number plate on

the image. With the help of Template Matching method has been added function of

the character recognition on the license plate.

Compared to existing systems based on deep learning, the developed system

also accurately detects the object of tracking, works quickly, and has the ability to

be compact using casual webcam and Raspberry Pi microcontroller with installed on

MATLAB programming environment.

REFERENCES

1. Системи відеоспостереження та методи виділення контурів на

зображеннях / K. Гжешчик та ін. Управління проектами та розвиток

виробництва. 2018. № 3. С. 79–96.

2. Wang J., Qimei C., De Z., Houjie B. Embedded Wireless Video

Surveillance System for Vehicle / International Conference on Telecommunications,

Chengdu, China, 2006

3. Что такое компьютерное зрение и где его применяют | РБК

Тренды. РБК Тренды.

URL: https://trends.rbc.ru/trends/industry/5f1f007e9a794756fafbfa83 (дата

звернення: 01.06.2021).

4. Компьютерное зрение – Викиконспекты. Northern Eurasia Contests.

URL: http://neerc.ifmo.ru/wiki/index.php?title=Компьютерное_зрение (дата

звернення: 01.06.2021).

5. Сергеев В. В., Гашников М. В. Обнаружение объектов на

изображении. С. 10–20.

6. rampeer. Нахождение объектов на картинках. Все публикации подряд /

Хабр. URL: https://habr.com/ru/company/joom/blog/445354/ (дата звернення:

13.05.2021).

7. lightsource. Детекторы углов. Все публикации подряд / Хабр.

URL: https://habr.com/ru/post/244541/ (дата звернення: 07.05.2021).

8. Распознавание объектов: 3 вещи, которые необходимо

знать. Сообщество Экспонента.

URL: https://hub.exponenta.ru/post/raspoznavanie-obektov-3-veshchi-kotorye-

neobkhodimo-znat244 (дата звернення: 09.05.2021).

9. Фильтр Гаусса (gaussianblurring). Studbooks.

URL: https://studbooks.net/2016248/informatika/filtr_gaussa_gaussianblurring (да

та звернення: 04.05.2021).

https://trends.rbc.ru/trends/industry/5f1f007e9a794756fafbfa83
http://neerc.ifmo.ru/wiki/index.php?title=%D0%9A%D0%BE%D0%BC%D0%BF%D1%8C%D1%8E%D1%82%D0%B5%D1%80%D0%BD%D0%BE%D0%B5_%D0%B7%D1%80%D0%B5%D0%BD%D0%B8%D0%B5
https://habr.com/ru/company/joom/blog/445354/
https://habr.com/ru/post/244541/
https://hub.exponenta.ru/post/raspoznavanie-obektov-3-veshchi-kotorye-neobkhodimo-znat244
https://hub.exponenta.ru/post/raspoznavanie-obektov-3-veshchi-kotorye-neobkhodimo-znat244
https://studbooks.net/2016248/informatika/filtr_gaussa_gaussianblurring

10. Unlingator. Детекторы и дескрипторы особых точек FAST, BRIEF,

ORB. Все публикации подряд / Хабр.

URL: https://habr.com/ru/post/414459/ (дата звернення: 14.05.2021).

11. Gepard_vvk. Алгоритмы выделения контуров изображений. Все

публикации подряд / Хабр. URL: https://habr.com/ru/post/114452/ (дата

звернення: 12.05.2021).

12. Бинаризация методом Оцу в dlib – LightHouse Software. LightHouse

Software. URL: https://lhs-blog.info/programming/dlang/binarizatsiya-metodom-

otsu-v-dlib/ (дата звернення: 16.05.2021).

13. Contributors to Wikimedia projects. Метод Оцу –

Википедия. Википедия – свободная энциклопедия.

URL: https://ru.wikipedia.org/wiki/Метод_Оцу (дата звернення: 22.05.2021).

14. Vasylenko M. P., Haida M. V. Video Surveillance System of Target

Contour. Electronics and Control Systems.

15. Abderrahmane, Ezzahout. Conception and development of a video

surveillance system for detecting, tracking and profile analysis of a person /

Abderrahmane Ezzahout, Rachid Oulad Haj Thami // 3rd International Symposium

ISKO-Maghreb — 2013.

16. Jinsol Ha. Violence detection for video surveillance system using irregular

motion information / Jinsol Ha, Jinho Park, Heegwang Kim, Hasil Park, Joonki Paik

// 2018 International Conference on Electronics, Information, and Communication

(ICEIC) — 2018.

17. Wang J., Qimei C., De Z., Houjie B. Embedded Wireless Video Surveillance

System For Vehicle // International Conference on Telecommunications, Chengdu,

China, 2006.

18. Beymer, D., McLauchlan, P., Coifman, B., Malik, J. A Real-Time Computer

Vision System for Measuring Traffic Parameters // IEEE Computer Society

Conference on Computer Vision and Pattern Recognition, 1997.

https://habr.com/ru/post/414459/
https://habr.com/ru/post/114452/
https://lhs-blog.info/programming/dlang/binarizatsiya-metodom-otsu-v-dlib/
https://lhs-blog.info/programming/dlang/binarizatsiya-metodom-otsu-v-dlib/
https://ru.wikipedia.org/wiki/%D0%9C%D0%B5%D1%82%D0%BE%D0%B4_%D0%9E%D1%86%D1%83

19. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M. Wireless Sensor

Networks for Environmental Monitoring: The SensorScope experience // IEEE

International Zurich Seminar on Communications, Zurich, 2008.

20. Barrenetxea, G., Ingelrest, F., Schaefer, G., Vetterli, M. Wireless Sensor

Networks for Environmental Monitoring: The SensorScope experience // IEEE

International Zurich Seminar on Communications, Zurich, 2008.

APPENDIXES

Appendix A. Code of the program for highlighting the number plate contour

and displaying the characters.

close all;

clear all;

tic

im =

imread('C:\Users\Admin\Desktop\РГБ1\макс\РГБ\gg3.jpg');

 im3 = im; % save variable with input image

imgray = rgb2gray(im); % conversion of the image to gray

halftones

imgray = imcrop(imgray, [400 300 500 500]); % crop image

pixels

G = fspecial('gaussian',[4 4],2); % Blur image with

Gaussian filter

 %# Filter it

imgray = imfilter(imgray,G,'same');

corners = detectFASTFeatures(imgray); % determination of

characteristic points by the FAST detector

% imshow(imgray); hold on;

% plot(corners.selectStrongest(200)); % Display points with

selected mass

% pause(2);

for i=1:length(corners.Location) % Record the coordinates

of x, at each characteristic point

 x(i)= corners.Location(i);

 y(i)= corners.Location(i,2);

end

for i=1:length(corners.Location) % Calculation of the mass

of each characteristic point for the distance between them

 mass(i)=0;

 for j=1:length(corners.Location)

 dist(i,j)=sqrt((x(i)-x(j))^2+(y(i)-y(j))^2); % equation

for determining the distance

 if dist(i,j)<=60 % comparison of the distance between

points with a certain threshold

 mass(i)= mass(i)+1;

 end

 end

end

masso=6; % Record the initial threshold of the mass of

points

num_of_iter=1; % initialization of the cycle iteration

count variable

while(1) % Start of the number plate definition cycle and

the symbols on it

for i=1:length(corners.Location) % Cycle of elimination of

characteristic points with too little mass

 if mass(i)<=masso

 mass(i)=0;

 else

 x_1(i)=x(i); % coordinates of points that have been

checked

 y_1(i)=y(i);

 end

end

x_1=nonzeros(x_1)'; % screening points with 0 coordinates

y_1=nonzeros(y_1)';

% imshow(imgray); hold on;

% plot(x_1,y_1,'c*'); % Display of characteristic points

that have passed all checks

Mleft = min(x_1)-0;%left crop edge point

Mright = max(x_1)+20;%right crop edge point

Mupper = min(y_1)-10;%upper crop edge point

Mlower = max(y_1)+10;%lower crop edge point

X=400+Mleft*(num_of_iter); % calculation of the trimming

edge after each iteration

Y=300+Mupper*(num_of_iter);

num_of_iter=num_of_iter+1; % cycle iteration counter

imgray = imcrop(imgray, [Mleft Mupper Mright-Mleft Mlower-

Mupper]); % Crop image at extreme characteristic points

imbin = imbinarize(imgray); % image binarization

im = edge(imgray, 'prewitt'); % Select contours on the

cropped image using the Prewitt method

% figure, imshow(im);

% figure, imshow(imbin); % binary cropped image

%Below steps are to find location of number plate

Iprops=regionprops(imbin,'BoundingBox','Area', 'Image'); %

finding image properties: coordinates and dimensions of the

smallest rectangle, actual number of pixels in the region,

binary image of the same size as BoundingBox returned as a

binary array

area = Iprops.Area; % actual number of pixels in the region

count = numel(Iprops); % number of elements of the array

maxa= area;

boundingBox = Iprops.BoundingBox;

for i=1:count % Frame definition

 if maxa<Iprops(i).Area

 maxa=Iprops(i).Area;

 boundingBox=Iprops(i).BoundingBox;

 end

end

im = imcrop(imbin, boundingBox);%crop the number plate area

%figure, imshow(im);

im = bwareaopen(~im, 50); %remove some object if it width

is too long or too small than 50

%figure, imshow(im);

 [h, w] = size(im);%get width and height

%imshow(im);

Iprops=regionprops(im,'BoundingBox','Area', 'Image');

%reading the letter

count = numel(Iprops);

noPlate=[]; % Initializing the variable of number plate

string.

for i=1:count

 ow = length(Iprops(i).Image(1,:)); % image height

 oh = length(Iprops(i).Image(:,1)); % image width

 if ow<(h/2) && oh>(h/3)

 letter=Letter_detection(Iprops(i).Image); % Reading

the letter corresponding the binary image.

 noPlate=[noPlate letter] % Appending every

subsequent character in noPlate variable.

 end

end

masso=masso+1; % increase in the threshold mass of the

points with each cycle

if masso > 13 % Limit the value of the mass of points

 masso_err = 0;

 break

end

if length(noPlate)==9 % Corrects the incorrect definition

of the first character

 if isnumeric(noPlate(3))==0

 noPlate(1)='';

end

end

if length(noPlate)==8 % output of characters read from the

plate

 masso_err = 1;

 noPlate

 break

end

close all

end

toc

% Frame the area of the number and display the read

characters on

% to the original image

if masso_err == 1

imshow(im3); hold on;

rectangle('Position',[X+boundingBox(1) Y+boundingBox(2)

boundingBox(3)

boundingBox(4)],'EdgeColor','r','LineWidth',3);

text(X+boundingBox(1),Y+boundingBox(2)+2*boundingBox(4),noP

late,'Color','red','FontSize',16);

 end

Appendix B. Program code that creates templates of alphabets and numbers.

%CREATE TEMPLATES

%Alphabets

A=imread('alpha/A.bmp');B=imread('alpha/B.bmp');C=imread('a

lpha/C.bmp');

D=imread('alpha/D.bmp');E=imread('alpha/E.bmp');F=imread('a

lpha/F.bmp');

G=imread('alpha/G.bmp');H=imread('alpha/H.bmp');I=imread('a

lpha/I.bmp');

J=imread('alpha/J.bmp');K=imread('alpha/K.bmp');L=imread('a

lpha/L.bmp');

M=imread('alpha/M.bmp');N=imread('alpha/N.bmp');O=imread('a

lpha/O.bmp');

P=imread('alpha/P.bmp');Q=imread('alpha/Q.bmp');R=imread('a

lpha/R.bmp');

S=imread('alpha/S.bmp');T=imread('alpha/T.bmp');U=imread('a

lpha/U.bmp');

V=imread('alpha/V.bmp');W=imread('alpha/W.bmp');X=imread('a

lpha/X.bmp');

Y=imread('alpha/Y.bmp');Z=imread('alpha/Z.bmp');

%Natural Numbers

one=imread('alpha/1.bmp');two=imread('alpha/2.bmp');

three=imread('alpha/3.bmp');four=imread('alpha/4.bmp');

five=imread('alpha/5.bmp'); six=imread('alpha/6.bmp');

seven=imread('alpha/7.bmp');eight=imread('alpha/8.bmp');

nine=imread('alpha/9.bmp'); zero=imread('alpha/0.bmp');

%Creating Array for Alphabets

letter=[A B C D E F G H I J K L M N O P Q R S T U V W X Y

Z];

%Creating Array for Numbers

number=[one two three four five six seven eight nine zero];

NewTemplates=[letter number];

save ('NewTemplates','NewTemplates')

clear all

Appendix C. Code for comparison of input image with templates.

function letter=readLetter(snap)

load NewTemplates

snap=imresize(snap,[42 24]);

rec=[];

for n=1:length(NewTemplates)

 cor=corr2(NewTemplates{1,n},snap);

 rec=[rec cor];

end

ind=find(rec==max(rec));

display(ind);

% Alphabets listings.

if ind==1 || ind==2

 letter='A';

elseif ind==3 || ind==4

 letter='B';

elseif ind==5

 letter='C';

elseif ind==6 || ind==7

 letter='D';

elseif ind==8

 letter='E';

elseif ind==9

 letter='F';

elseif ind==10

 letter='G';

elseif ind==11

 letter='H';

elseif ind==12

 letter='I';

elseif ind==13

 letter='J';

elseif ind==14

 letter='K';

elseif ind==15

 letter='L';

elseif ind==16

 letter='M';

elseif ind==17

 letter='N';

elseif ind==18 || ind==19

 letter='O';

elseif ind==20 || ind==21

 letter='P';

elseif ind==22 || ind==23

 letter='Q';

elseif ind==24 || ind==25

 letter='R';

elseif ind==26

 letter='S';

elseif ind==27

 letter='T';

elseif ind==28

 letter='U';

elseif ind==29

 letter='V';

elseif ind==30

 letter='W';

elseif ind==31

 letter='X';

elseif ind==32

 letter='Y';

elseif ind==33

 letter='Z';

 %*-*-*-*-*

% Numerals listings.

elseif ind==34

 letter='1';

elseif ind==35

 letter='2';

elseif ind==36

 letter='3';

elseif ind==37 || ind==38

 letter='4';

elseif ind==39

 letter='5';

elseif ind==40 || ind==41 || ind==42

 letter='6';

elseif ind==43

 letter='7';

elseif ind==44 || ind==45

 letter='8';

elseif ind==46 || ind==47 || ind==48

 letter='9';

else

 letter='0';

end

end

