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INTRODUCTION 

 

Independent work of the higher education applicant is the main 

way of mastering the educational material during the time free from the 

compulsory classroom classes. 

The purpose of independent work - deepening, generalization 

and consolidation of theoretical knowledge and practical skills of 

students in the "Higher Mathematics" subject by developing the ability 

to work independently with the academic literature. 

Independent work of higher education applicants is carried out 

in the form of preparation for lectures and practical classes, performance 

of individual homework and performance of module tests. Such training 

involves independent study of theoretical material on each topic 

presented in the recommended literature and lecture notes. It is 

important to pay attention to the need for a clear assimilation of basic 

terms and definitions, understanding of their content, obligatory analysis 

of the use of theoretical information for the proposed tasks. 

The guide for independent work of higher-education applicants 

is compiled in accordance with the curricula of the course "Higher 

mathematics" for students of technical specialties. The proposed 

methodical work presents tasks for independent and individual work. A 

significant number of tasks for independent work has an applied 

orientation. 

The leading teacher can adjust the number and content of the 

tasks, which a student must perform independently while studying the 

relevant material. 

The material of each topic corresponds to the working curricula 

of the "Higher mathematics" subject, in particular, to one of its sections 

"Number series". Each topic contains the basic methodical 

recommendations, recommended literature, typical examples of 

solutions and tasks for individual performance, and questions for self-

checking, which will contribute to better understanding, assimilation 

and possibility to apply the basic theoretical statements. 

This guide is compiled for independent work of higher 

education applicants of technical specialties and focused on the 

theoretical and methodological support of the training process.  
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Topic 1. NUMBER SERIES 

Plan 

1. The main concepts and definitions, convergence.  

2. Properties of number series. 

3. The necessary condition of convergence. The sufficient condition 

of divergence.     

Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 1 the student should know: 

definition of numerical series, partial sum of series, convergence of 

series, sum of series, examples of known convergent and divergent 

series, necessary condition of convergence and sufficient condition of 

divergence; be able to: calculate the sum of convergent number series of 

a certain types. 

Basic theoretical information 

Let 1 2{ } { , , , , }n nu u u u  be the sequence of real numbers. 

Expression  

1 2

1

... ...n n

n

u u u u




        (1.1)  

is called number series (or series)  

Here 1u  is the first, 2u is the second, ...,  un is n -th (general) term of 

series. The series (1.1) is given if the dependence of its general term on 

the number n is known: ( )nu f n . 

The sum 1 2n nS u u u     of the first n terms of the series is 

called п-th partial sum of series (1.1). 

If there exists the finite limit lim n
n

S S


  then series (1.1) is called  

convergent and number S  is called sum of this series. 

If limit lim n
n

S


 doesn’t exist or lim n
n

S


   then series (1.1) is called 

divergent. Divergent series has no sum.   

Expression 1 2 ...n n n nr S S u u       is called п-th remainder of 

series.  
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Properties of number series 

1. If the series 
1

n

n

u




 is convergent and its sum is equal to S  then the 

series  
1

n

n

Cu




  (where С is constant) is convergent as well. And its sum 

is equal to the product CS .  If the series 
1

n

n

u




 diverges and 0C  then 

series  
1

n

n

Cu




  also diverges. 

2. If number series 
1

n

n

u




  and 
1

n

n

v




 are convergent, moreover  uS  

and vS  are their sums correspondently then  series 
1

( )n n

n

u v




  and 

1

( )n n

n

u v




  are also convergent and their sums are equal u vS S and 

u vS S  respectively. 

Remark. The sum (difference) of convergent and divergent series is a 

divergent series. The sum (difference) of two divergent series can be 

either a convergent or a divergent series. 

3. The convergence of a series does not depend on the discard or 

addition of a finite number of terms. 

Theorem 1.1 (necessary condition for convergence of a series).  If 

series (1.1) converges then its general term nu  tends to zero, i.e. 

lim 0n
n

u


 . 

Conclusion. In order to a series converges its general term must tends 

to zero. However, it is not a guarantee of the convergence of the series. 

If lim 0n
n

u


  then it only means that the series  
1

n

n

u




 can be convergent. 

Corollary (sufficient condition of divergence of series). If lim 0n
n

u


  

or this limit does not exist, then series (1.1) diverges. 
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Examples of solution of typical problems  

Example 1. Write down the general, the first and the third terms of 

the series  
2

1

2

4n

n

n








 . 

Solution.  

General ( n th) term of series is 
2

2

4
n

n
u

n





. Then 

1

1 2 3

1 4 5
u


 


 is 

the first term of series; 3

3 2 5

9 4 13
u


 


 is the third term of series. 

Example 2. Investigate the series for convergence. If the series 

converges, calculate its sum:  

а) 
1

1 4 7 (3 2) (3 2)
n

n n




        ; 

b) 
1

1 1 1 1

1 2 2 3 ( 1) ( 1)nn n n n





    
     

 ; 

c) 2 1 1

1 1 1 1 1

1

n n

n

b b q b q b q b q


 



      ; 

d) 
1

1 1 1 1
1

2 3 nn n





      . 

Solution: 

а) let’s write n-th partial sum 

1 (3 2) (3 1)
1 4 7 (3 2)

2 2
n

n n n
S n n

  
         . Here the 

formula 1

2

n
n

a a
S n


  for the sum of the first n terms of arithmetic 

progression is used. Hence, 
(3 1)

lim lim
2

n
n n

n n
S

 


    and we can say 

that the given series is divergent; 

b) we write down and transform partial sum nS  of this series in 

following way: 

1 1 1 1 1 1
1

1 2 2 3 ( 1) 2 2 3
nS

n n

   
            

       
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1 1 1
1

1 1n n n

 
    

  
. Since 

1
lim lim 1 1,

1
n

n n
S

n 

 
   

 
 then the 

series is convergent and its sum 1S  . 

Remark. If 1 (1) (2),u f f   2 (2) (3), ,u f f   

( ) ( 1),nu f n f n    then 1 2 1 (1) ( 1).n nu u u u f f n        

c) the series 2 1 1

1 1 1 1 1

1

n n

n

b b q b q b q b q


 



      ,   1 0b   is 

called a series of geometric progression (or geometric series):  if 1q   

then this series is divergent; if 1q  : 

2 1 1 1 1
1 1 1 1

(1 )
.

1 1 1

n n
n

n

b q b b q
S b b q b q b q

q q q

 
       

  
 

Let’s find limit of this sum depending on value q : 

1) if | | 1q   then lim 0n

n
q


 , and then 1lim

1
n

n

b
S

q



. Hence, the series 

is convergent and its sum 1

1

b
S

q



; 

2) if | | 1q   then lim n

n
q


  , and then lim n

n
S


  . Hence. The series is 

divergent; 

3) if 1q    then the series acquires the form: 
1

1 1 1 1 1( 1)nb b b b b        and it is divergent. 

Conclusion. The geometric series 1

1

1

n

n

b q






 ( 0a  ) converges for 

| | 1q   and diverges for | | 1q  . 

d) the series  
1

1 1 1 1
1

2 3 nn n





       is called hаrmonic. This 

series is divergent. 

Example 3. Find the limit of general term nu  of series 
1

n

n

u




  and 

make a conclusion according to its convergence:  
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а)
1

2

11 1n

n

n



 
 ; b)

1

2 n

n






 ; c)
1

1
cos

n n





 ; d)
1

2
n

n

n

n





 
 
 

 . 

Solution: 

а) Since 
2 2

lim lim 0
11 1 11

n
n n

n
u

n 
  


 then given series is divergent; 

b) 
1 1

1
2

2

n

n

n n

 


 

 
  

 
   is convergent geometric series (

1
1

2
q   ). For 

this series 
1

lim lim 0
2

n

n
n n

u
 

 
  

 
;   

c)  
1

lim limcos cos0 1 0n
n n

u
n 

    . Hence, this series is divergent; 

d)   22 2
lim lim 1 lim 1 0

n n

n
n n n

n
u e

n n

 

  

   
        

   
. Hence, the 

series is divergent;  

Self-test questions  

1. What is called a numerical series? 

2. How to determine the first, sixth, tenth terms of the series? 

3. What is the n-th partial sum of a series? 

4. Formulate the definition of a convergent series and its sum. 

5. What can you say about the convergence of a series 
1

n

n

u




  if 

lim 0n
n

u


 ? 

6. Give examples of convergent and divergent series. 

7. Is the statement correct: if a series 
1

n

n

u




  converges, then the 

series 
1

1
n

n

u
n





 
 

 
  also converges? 

Self-test assignments  

Task 1. Prove the convergence of the series by the definition and 

find its sum:  
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а) 
1

1

(2 1)(2 1)n n n



  
 ;   b) 

1

2

( 2)n n n



 
 ;   c) 

1

2 3

6

n n

n
n






 ;    

d) 
2 2

1

2 1

( 1)n

n

n n








 ;          e) 

1 ( 1)!n

n

n



 
 ;    f) 

2 2
1

3
sin cos

2 2n n
n



 


 
 .   

Task 2. Prove the divergence of the series using sufficient condition 

of divergence of series: 

a)  2

1

4
n

n n n




  ;   b) 
1

5 1

1000 1n

n

n








 ; c) 

1

2

3

n

n

n

n





 
 

 
 ; 

d) 
1 ln( 1)n

n

n



 
 ;       e) 

2
1

1
cos

n n





 ;     f) 
1

sin
2 1n

n

n








 .   

 Answers: 1. а) 
1 1

,
2 4 2

nS
n

 


 
1

2
S  ; b)

3 1 1

2 1 2
nS

n n
  

 
, 

3

2
S  ; c)

3 1 1
,

2 2 2 3
n n n

S   


 
3

2
S  ; d)

2

1
1 ,

( 1)
nS

n
 


 1S  . 

Instruction.
2 2

2 2 2 2 2 2

2 1 ( 1) 1 1

( 1) ( 1) ( 1)

n n n

n n n n n n

  
  

  
; e)

1
1

( 1)!
nS

n
 


, 

1S  . Instruction 
1 1

( 1)! ! ( 1)!

n

n n n
 

 
;  f) 

1
sin sin ,

2 2
n n

S


 
   1S  . 

Instruction. Use the formula 2sin cos sin( ) sin( )       .  

 

Тopic 2. TESTS FOR CONVERGENCE OF POSITIVE TERMS 

SERIES 

Plan 

1. Definition of positive terms series, examples of reference series.   

2. Tests for convergence of positive terms series.  

Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 2 the student should know: 

definition of positive terms numerical series, examples of known 

reference series, comparison tests, D’Alembert’s test, Cauchy’s test, 

integral test;  be able to: examine the positive terms series for 
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convergence by the corresponding tests. 

The basic theoretical information  

Series with non-negative terms are called positive terms series. We 

will use comparison tests, D’Alembert's test, Cauchy's test and an 

integral test to examine the convergence of such series. 

The convergence or divergence of positive terms series is sometimes 

established by comparing it with a series whose behavior is known. 

Such series are called reference series.  

The following reference series are most often used: 

a) geometric series; 

b) harmonic series; 

c) generalized harmonic series (or Dirichlet-Riemann series): 

1

1 1 1 1
1 ... ...

2 3p p p p
n n n





      , which is convergence for 1p   

and divergent for 1p  . 

Theorem 2.1 (Comparison test). Let  

1 2

1

n n

n

u u u u




     ,                                                        (2.1) 

1 2

1

n n

n

v v v v




     ,                                                            (2.2) 

be two series of positive terms, so that:   0 n nu v   ( 1,2,n  ).   (2.3) 

Then:  

а) if series (2.2) converges, (2.1) converges as well; 

b) if series (2.1) diverges, (2.2) diverges as well. 

Remark. Theorem 2.1 is also valid in the case when inequalities 

(2.3) hold, starting with some number 0n N . 

 In practice, the limit comparison test is more effective. 

Theorem 2.2 (limit comparison test). Let 
1

n

n

u




 and  
1

n

n

v




  be positive 

terms series. If there exists a finite nonzero lim n

n
n

u
k

v
  ( 0 k  ),  

then these series converge or diverge simultaneously. 
Remark 1. The main disadvantage of using comparison test is the 

choosing of the reference series. 
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Note 2. Examining the convergence of the series 
1

( )

( )

m

n k

P n

Q n





 , where 

( )mP n , ( )kQ n  are polynomials of degree m  and k , accordingly, 

m k , it is effective to apply the limit comparison test. The Dirichlet-

Riemann series ( 0p k m   ) should be taken as the reference series. 

Theorem 2.3 (D’Alembert’s test). Let 
1

n

n

u




  be the positive terms 

series and there exists 1lim .n

n
n

u
l

u




  Then given series converges for 1l   

and diverges for 1l  . 

If 1l  , then then the D’Alembert’s test gives no answer as to 

whether a series converges or not. In this case, you need to use another 

test (for example, a comparison). 

Remark. The D'Alembert’s test should be used primarily for 

investigation of the convergence of positive terms series, the terms of 

which contain factorial or exponential functions. 

Theorem 2.4 (Cauchy’s test). Let 
1

n

n

u




 be the positive terms series 

and there exists finite or infinite limit lim .n
n

n
u l


  Then given series 

converges for 1l   and diverges for 1l  . 

If 1l   then the question of the convergence of the series remains 

open, i.e., requires additional research. 

Remark 1. It is rationally to use Cauchy’s test if you have to examine 

the convergence of positive terms series 
1

,n

n

u




  which general term can 

be represented in the form ( ( ))n

nu f n . 

Remark 2. Investigating the series on convergence by the Cauchy's 

test, the following limits may be useful: lim 1n

n
a


  ( 0a  ), lim 1n

n
n


 . 

Theorem 2.5 (integral test). Let the terms of the positive terms 

series 
1

n

n

u




 be the values of some continuous function ( )f x  which is 

monotonically decreasing on the interval [1; )  for natural values of the 
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argument ,x , i.e. 1 (1)u f , 2 (2), ,u f  ( ),nu f n  Then the 

series 
1

n

n

u




  and the improper integral 
1

( )f x dx



  are simultaneously 

convergent or divergent. 

Examples of solution of typical problems  

Example 1. Use the comparison test to examine the following series 

for convergence: 

а) 
1

3

4n n



 
 ; b) 

5
1 3n

n

n



 
 ; c) 

4
1

1

2 5n n



 
 ; d)

1

3
arcsin

2n n





 ; e) 
2

1
.

lnn n





  

Solution: 

а) we use the limit comparison test taking divergent harmonic series 

for comparison  
1 1

1
n

n n

v
n

 

 

  : 
3 3

lim lim lim 3
4 1 4

n

n n n
n

u n n
k

v n n  
    

 
. 

Since 3 (0; )k      and harmonic series is divergent then given series 

is divergent;  

b) the general term 
5 3

n

n
u

n



 of given positive terms series is ratio 

of polynomials of the first and the fifth degree. The degree of 

denominator is 4 greater than the degree of the numerator. Therefore, 

for comparison, we choose a generalized harmonic series 
4

1

1

n n





  with 

general term 
4

1
nv

n
 . Let’s apply limit comparison test: 

55

5

4

3lim lim lim 1
1 3

n

n n n
n

n
u nnk
v n

n

  

   


. Since the calculated limit  

0 k   and the series 
4

1

1

n n





  is convergent, then according to a 

comparison test the given series is convergent as well;  
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c) we have the positive terms series with general term 
4

1

2 5
nu

n



. 

Let’s use a limit comparison test taking for comparison of divergent 

series 
1

1 1 4

1
n

n n

v

n

 

 

   (
1

1
4

p   ): 

4

44

1 1
lim lim .

12 5 2

n

n n
n

u n
k

v n 
   


 Since the calculated limit is 

positive number and chosen for comparison generalized harmonic series 

is divergent then according to a limit comparison test the given series is 

divergent as well;  

d) we compare the given series with a divergent harmonic series 

1

1

n n





  by the limit comparison test:  

3 33arcsin
, 0 32 2lim lim2

~
1 1 2

arcsin
n n

nn nk n

n n

 

   
   

 

.  

Since 0 k   and the series for comparison is divergent than 

according to the limit comparison test given series is divergent as well;  

e) let’s use the comparison test (theorem 2.1), taking for comparison 

divergent harmonic series 
1 1

1
n

n n

v
n

 

 

  . For 2;3;n  : lnn n  and 

correspondently 
1 1

ln
n nu v

n n
   . Since the terms of the given series 

greater than the respective terms of the divergent harmonic series 
1

1

n n





 , 

then the given series is divergent. 

 

Example 2. Examine the series for convergence using D’Alembert’s 

test either Cauchy’s test or an integral test: 

а)
1

tg
2n

n

n





 ; b)

 

 

3

1

1 3

2 1 !

n

n

n

n





 


 ; c)

2

1

1 5

2

n n

n

n

n





   
   

   
 . 
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Solution:  

а) we have the positive terms series which general term contains 

exponent function. Therefore, we use D’Alembert’s test:  tg ,
2

n n
u n


   

1 1
( 1) tg ,

2
n n

u n 


    

1
1

0
tg

1 1tg2 2 2lim lim lim 1 1
2

tg

~

0
2 22

n n
n

n n n
n

n n
n

u n
l

u n




  

    
                

    
   

 

and correspondently the series is convergent;  

b) if the general term of the series contains a factorial, it is 

recommended to use the D’Alembert’s test: 
3( 1) 3

(2 1)!

n

n

n
u

n

 



, 

3 1

1

( 2) 3

(2( 1) 1)!

n

n

n
u

n





 


 
; 

3 1

1

3

( 2) 3 (2 1)!
lim lim

(2 3)! ( 1) 3

n

n

nn n
n

u n n
l

u n n





 

   
    

   
 

3
2 3 (2 1)! 3

lim lim 0 1.
1 ((2 1)!) (2 2)(2 3) (2 2)(2 3)n n

n n

n n n n n n 

    
               

Hence, the series is convergent; 

c) the general term of the given positive terms’ series can be 

represented in the form ( ( ))n

nu f n  then we use Cauchy’s test: 

2
51 2 1 5 1 5

lim lim lim 1 1
2 2 2 2

n n n n

n

n n n

n n e
l

n n n  

        
            

       
, 

hence, the series is divergent; 

 

Self-test questions 

1. What series are called positive terms series? 

2. How to investigate the positive terms series for convergence? 

3. Give examples of reference series. How are reference series used 

in the investigation of positive terms series for convergence? 
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4. How is it recommended to investigate a series 
1

( )

( )

m

n k

P n

Q n





 for 

convergence if ( )mP n , ( )kQ n  are polynomials of m  and k  

correspondently, m k ? 

5. Formulate the D’Alemfert’s test. Which positive terms series is it 

applied to? 

6. Formulate the Cauchy’s test. Which positive terms series is it 

applied to? 

7. Formulate the Integral test. 

Self-test assignments    

Task 1. Investigate the series on convergence using comparison test: 

а)
2

1

2 1

3 1n

n

n








 ;   b)

2

5
1

1

4 3n

n n

n





 


 ;  c)

2
1

1

1n n



 
 ;    

d)
1

tg
3 2n n








 ;  e)

1

1

ln( 4)n n



 
 ;  f)

1

2

3 2

n

n
n



 
 .   

Task 2. Investigate the series on convergence using D’Alembert’s 

test: 

а)
1

1
arctg

2n
n

n




 ; b)
1

4

( 2)!

n

n n



 
 ; c)

1

1 3 5 (2 1)

2 5 8 (3 1)n

n

n





   

   
 ; 

d)
3 1

1

(2 1)!

7n
n

n

n









 ; e)

1

4 1
2 sin

3

n

n
n

n




 ; f)

2

1

( !)

(2 )!n

n

n





 .   

Task 3. Investigate the series on convergence using Cauchy’s test: 

а)
1

2 1

5 3

n

n

n

n





 
 

 
 ; b)

2 3

1

1

3 2

n

n

n

n





 
 

 
 ; c)

2

1

1 2

9

n n

n

n

n





   
   
   

 ; 

d)
1

arccos
2 1

n

n

n

n





 
 

 
 ; e)

1

( 1)

2

n

n
n

n




 ; f)

2
1

1

2 1

n

n

n

n





 
 

 
 .  

Task 4. Investigate the series on convergence using Integral test: 

 а)
2

1

1

(1 ln )n n n



 
 ; b)

2
1

ln

n

n

n





 ; c)
1

1
.

(2 1)ln(2 1)n n n



  
  

 Answers: 1. а) divergent; b) convergent; c) divergent; d) divergent; e) 

divergent; f) convergent. 2. а) convergent; b) convergent; c) convergent; 
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d) divergent; e) convergent; f) convergent. 3. а) convergent; b) 

convergent; c) convergent; d) divergent; e) divergent; f) convergent 4. а) 

convergent; b) convergent; c) divergent. 

 

Topic 3. ALTERNATING SERIES 

Plan 

1. Types of number series.  

2.Alternating series. Sufficient condition of convergence of 

alternating series.  
     3. Alternating Series. Leibniz’ Test. 

4. Absolute and Conditional Convergence.  

5. Properties of the absolute convergent series. 

6.Investigation of alternating series for absolute and conditional 

convergence.  

Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 3 the student should know: 

classification of numerical series, definition of alternating series, 

absolute and conditional convergence of alternating series, sufficient 

conditions of convergence of alternating series (Leibniz’ test), basic 

properties of absolutely convergent series; be able to: investigate the 

convergence of alternating series by the Leibniz test, to investigate 

alternating series for absolute and conditional convergence. 

The basic theoretical information  

Number series is called alternating series if it contains infinite 

number both positive and negative terms.   The alternation of the sign 

can be both regular and chaotic. Examples of alternating series: 

1 1

sin 1
; ( 1) .

( 2)

n

n n

n

n n n

 

 


 

    

According to property 3 of a number series, the following statement is 

true: the convergence of a series does not depend on the rejection or 

addition of a finite number of terms. 

Therefore, the investigation of number series containing both a finite 

number of positive (negative) and an infinite number of negative 
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(positive) terms simultaneously is reduced to investigation respective 

positive term number series. Remark: the study of the convergence of 

numerical series, all members of which are negative, is reduced to the 

examining of the corresponding positive terms series, which is formed 

after taking out the ―minus‖ sign of all terms in brackets. 

 Thus, the investigation of number series for convergence is reduced 

to the investigation of either positive terms or alternating series. 

Theorem 3.1 (sufficient condition for convergence of alternating 

series). Let the number series 1 2 3

1

... ...n n

n

u u u u u




       be 

alternating. If constructed from the modules of the terms of the given 

series the positive term series 1 2

1

... ...n n

n

u u u u




      converges 

then given alternating series converges as well. 

Remark. Sufficient condition of convergence of alternating series is 

not necessary. That is, an alternating series 
1

n
n

u



  can be convergent 

even when the series with the absolute values of its terms 
1

n
n

u



  is 

divergent.    

Let 
1

n

n

u




  be the alternating number series. Then the following 

statement are true: 

1) 
1

n

n

u




  is convergent   
1

n

n

u




  is convergent; 

2) 
1

n

n

u




  is divergent   
1

n

n

u




 is convergent or divergent;  

3) 
1

n

n

u




 is convergent  
1

 n

n

u




 is convergent or divergent; 

 

4) 
1

n

n

u




  is divergent    
1

n

n

u




  is divergent. 

Series, the signs of whose terms are strictly alternating:  
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1 1

1 2 3

1

... ( 1) ... ( 1) ,n n

n n

n

u u u u u


 



                        (3.1) 

where 0nu   for Nn . 

Let’s formulate sufficient condition of convergence for the series 

(3.1). 

Theorem 3.2 (Leibniz’ Test). Series (3.1) is convergent if: 

1) 1 2 3 ... ...nu u u u     ;  

2) general term of the series approaches to zero: lim 0n
n

u


 . 

Remark 1. First condition of the Leibniz’ test can be fulfilled not 

from the first, but from some other term. 

Remark 2. The series 1 2

1

( 1) ... ( 1) ...,n n

n n

n

u u u u




         where 

0nu   for Nn  , is alternating too. 

Remark 3. If alternating series (3.1) is convergent then the sum of 

the series S  satisfies the condition 10 S u  . 

Remark 4. From the Leibniz test it follows that for the convergent 

alternating series (3.1) the condition 
1n nS S u    is satisfied or 

1,n nr u   where 1 2 3( 1) ( ...).n

n n n nr u u u         This property is 

used for approximate calculation of the sum of the alternating series 

with a given accuracy. 

The alternating series 
1

n
n

u



  is called absolutely convergent if the 

series constructed from modules of its terms 
1

n

n

u



  is convergent.  

The alternating series 
1

n
n

u



  is called conditionally convergent if the 

series constructed from modules of its terms  

1
n

n

u



  is divergent and given alternating series 

1
n

n

u



  is convergent.  
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Properties of absolute convergent series  

1. If the alternating series 
1

n

n

u




  is absolutely convergent, then its 

 terms can be grouped and rearranged in any way. The series remains 

the same and its sum will not be changed.  

2. Absolutely convergent series with sums 1S  and 2S  can be added 

and subtracted. The resulted series will also be absolutely convergent 

and its sum is equal to 1 2S S accordingly. 

3. The product of two absolutely convergent series with sums 1S  and 

2S  is an absolutely convergent series which sum is equal to 1 2S S .  

Investigation for absolute and conditional convergence of 

the alternating series 

All alternating number series can be classified according to the 

scheme represented in Figure 3.1. 

 

 

 

 

 

 

 

 

 

 

 
Figure. 3.1 

To prove the absolute convergence of the alternating series 
1

n

n

u




 , it 

is sufficient to represent the convergence of the positive terms series 

1

,n
n

u



  formed from the modules of its terms. 

   ALTERNATING 

S: 

CONVERGENT 

ABSOLUTLY 

CONVERGENT 

  DIVERGENT 

CONDITIONALLY 

CONVERGENT 
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To prove the conditional convergence of the alternating series 
1

n

n

u




 , 

it is sufficient: 

1) to represent the divergence of positive terms series
1

n
n

u



 ;   

2) to substantiate the convergence of the given alternating series 

1

n

n

u




 , which is not always possible. If the alternating series has the 

form (3.1), then its convergence should be checked by the Leibniz’ test. 

 

Note. In practice, we advise you to start investigation for the 

conditional and absolute convergence of any alternating series by 

considering the corresponding positive terms series constructed 

from the modules of its terms.  

 

Examples of solution of typical problems 

Example 1. Examine for the absolute and conditional convergence 

the alternating series 
1

sin

( 2)n

n

n n



  
 . 

Solution. 

Let’s consider series constructed from modules of terms of given 

series: 
1 1

sin
.

( 2)
n

n n

n
u

n n

 

 


 

   Obtained positive terms series can be 

investigated for convergence by the comparison test. For comparison 

convergent series 
2

1 1

1
n

n n

v
n

 

 

   (Dirichlet-Riemann series for 2 1p   ) 

can be taken.  Since 
2

sin 1
0

( 2)
n n

n
u v

n n n
   

 
 for ,n N  then from 

convergence of the series 
1

n

n

v




  follows convergence of the series 

1

.n
n

u



  Since the series 

1

,n
n

u



  constructed from modules of its terms, 
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is convergent then the alternating series 
1

sin

( 2)n

n

n n



  
  is absolutely 

convergent.   

Example 2. Examine for the absolute and conditional convergence 

the alternating series 1

1

1 1 1 1
( 1) 1 ... .

2 3 4

n

n n






       

Solution.  

We have the alternative series 1

1

( 1) ,n

n

n

u






   where 
1

0nu
n

   for 

,n N  which is called Leibnitz’ series. 

Let’s consider the series constructed from modules of the terms of 

the given  
1

1 1

1 1
( 1) .n

n nn n

 


 

    The last series is harmonic which is 

divergent.     

Hence, the given series can be only conditionally convergent. We 

investigate this alternating series by the Leibnitz’ test: 

1) 1 2 3 ... ...,nu u u u      since 
1 1 1

1 ... ...
2 3 n

      for Nn . 

2) 
1

lim lim 0.n
n n

u
n 

   Then the given series is convergent according 

to the Leibnitz’ test. 

Hence, the Leibnitz’ series is conditionally convergent because it is 

convergent by the Leibniz’ test and the series formed from the modules 

of its terms is divergent. 

Example 3. Examine for the absolute and conditional convergence 

the alternating series  
1

1
5

n

n
n

n



 . 

Solution. 

Let’s consider the series constructed from the modules of terms of 

the given series: 
1

1 1

( 1) .
5 5

n

n n
n n

n n 


 

    This series should be 

investigated by the D’Alembert’s: 
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 1

1

1 5 1 1 1
lim lim lim 1.

5 5 5

n

n

nn n n
n

u n n

u n n



  

 
      Therefore, the series 

constructed from terms modules converges. And initial series converges 

absolutely according to the definition of absolute convergence.  

  

Example 4. Calculate the sum of the series 
1

( 1)

10 !

n

n
n n






  approximately 

with accuracy 0,001.    

Solution. 

We have convergent series (make sure of it yourself) 

2 3
1

( 1) 1 1 1 ( 1)

10 ! 10 10 2! 10 3! 10 !

n n

n n
n n n





 
      

  
 , whose terms are 

strictly alternated. According to the corollary of the Leibniz's theorem 

the absolute error of replacing the sum of a convergent series (3.1) by its 

partial sum does not exceed the modulus of the first of the rejected 

terms of the series, i.e. 
1n n nr S S u    . 

Let’s find the smallest n  starting from which the inequality holds 

1 ,nu     then 
nr   : 

2

1 1
,

10 2! 200
  


 

3

1 1
.

10 6 6000
  


  

Hence, 
2 3r u   , therefore to achieve this accuracy it is enough to 

take the sum of the first two terms of the series for: 

1 1
0,1 0,005 0,095.

10 200
S          

 

Self-test questions 

1. Name the basic types of number series. 

2. What series are called alternating? 

3. How to investigate number series with arbitrary terms for 

convergence? 

4. What series are called alternating? Formulate the Leibniz test. 

5. Formulate the definition of absolute and conditional convergence 

of alternating series. 

6. Formulate the basic properties of absolutely convergent series. 
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     7. According to which algorithm alternating series are investigated 

for absolute and conditional convergence? 

8. Justify whether the statements are correct for the alternating series 

1

n

n

u




 : a) from convergence 
1

n

n

u




    
1

n

n

u




 is convergent; b) from 

divergence 
1

n

n

u




    
1

n

n

u




  is divergent; c) from divergence 
1

n

n

u




    

1

n

n

u




  is divergent. 

Self-test assignments 

Task 1. Examine the series for absolute and conditional  

convergence: 

 а) 
1

cos

1n

n

n








 ; b) 

1

sin 2
.

2

n

n
n





  

Task 2. Examine the alternating series for absolute and conditional  

convergence:  

а) 1

1

2 9
( 1)

11 3

n

n

n

n










 ; b) 

1

2 3
( 1)

3 2

n

n

n

n

n





 
  

 
 ; c) 

1

2
1

( 1)

1

n

n

n

n n







 
 ; 

d) 
1

( 3)

!

n

n n






 ; e) 

1

( 1)
2 tg

5

n
n

n
n






 ; f) 

2

( 1)
.

ln

n

n n n






   

Task 3. Calculate  the sum of series approximately with accuracy  , 
noting the least sufficient number of terms of the series: 

а) 
1

3
1

( 1)
, 0,001

!

n

n n n






 


 ; b) 

1

1

2
, 0,001.

13

n

n





 
   
 

  

Answers: 1. а) conditionally convergent; b) absolutely convergent;    

2. а) divergent; b) absolutely convergent; c) conditionally convergent;    

d) absolutely convergent; e) absolutely convergent; f) conditionally 

convergent. 3. а) 0,944,S  3;n   b) 0,134,S  3n  .  

Topic 4. FUNCTIONAL SERIES 

Plan 

1. Functional series. Basic concepts and definitions. 

2. Uniform convergence. Weierstrass’ test. 
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3. Properties of uniformly convergent series. 

Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 4 the student should know: 

definition of functional series, absolute and uniform convergence of 

functional series, sufficient condition of uniform convergence of 

functional series (Weierstrass' test), properties of uniformly convergent 

series; be able to: recognize the functional series, find the domain of 

absolute convergence of functional series, investigate the functional 

series for absolute and uniform the convergence by the Weierstrass' test. 

The basic theoretical information  

Expression of the form  

1 2

1

( ) ( ) ... ( ) ... ( )n n

n

u x u x u x u x




     ,                                      (4.1) 

where  ( )nu x  is sequence of functions, is called a functional series.   

If you fix Dxx  0  in series (4.1) then the functional series 

becomes numerical. This series can converge or diverge. If a number 

series converges at a point 0x , then the point 0x  is called the point of 

convergence of the functional series. 

The set of all values x  for which the functional series is convergent 

is called the domain of its convergence. 

The sum 1 2( ) ( ) ( ) ( )n nS x u x u x u x     is called п-th partial sum 

of the series (4.1).  At each point x  belonging to the domain of 

convergence, there exists the finite limit lim ( ) ( )n
n

S x S x


  which is 

called the sum of the series (4.1). 

If the functional series (4.1) converges to function ( ),S x  then 

difference ( ) ( ) ( )n nr x S x S x   is called п-th remainder of series: 

1 2( ) ( ) ( )n n nr x u x u x    At the points of convergence the remainder 

of series tends to zero for n : lim ( ) 0n
n

r x


 .  
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The functional series (4.1) is called absolutely convergent if series  







1

21 )(...)(...)()(
n

nn xuxuxuxu  is convergent. 

Sufficient tests of convergence of numerical series are used to find 

the domain of absolute convergence of a functional series. For example, 

according to the D’Alembert’s test the limit )(
)(

)(
lim 1 xl

xu

xu

n

n

n



 should 

be found and then the inequality 1)( xl  should be solved.  

Additionally, a series is investigated at points for which ( ) 1.l x    

Similarly, the functional series can be also investigated by the radical 

Cauchy’s test.  

Uniform convergence of the functional series 

The functional series (4.1) is called a  uniformly convergent series on 

the set D if for any number 0   there exists such number )(NN   

which depends on   and doesn’t depend on ,x that for all n N  and for 

all x D  the following inequality  )(xrn   is true. 

Sufficient Weierstrass’ test is often used to examine the functional 

series for uniform convergence. 
Theorem 4.1 (Weierstrass’ test) A functional series (4.1) is 
absolutely and uniformly convergent on a set D, if there exists a 

convergent numerical series
1

n
n

a




  with such positive terms that for all 

x D  the following inequalities are true | ( ) |n nu x a  ( 1, 2,n  ). 

In this case, the series 
1

n

n

a




  is called dominated for the series (4.1), 

and the series (4.1)  is called correctly convergent on the set D. 

 

Properties of uniformly convergent series 

1. If the functional series (4.1) is uniformly convergent on some 

interval I and the terms of this series are continuous functions on I, then 

the sum of this series is a continuous function on this interval. 

2.  If the functional series (4.1) is convergent on the interval I, its 

terms have continuous derivatives ( )nu x  ( 1, 2,n  ) in this interval, 
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and the series 
1

( )n

n

u x




  is uniformly convergent on the interval I, then 

the given series can be differentiated term-by-term, i.e. 

1 1

( ) ( ),n n

n n

u x u x
 

 

 
 

 
  .x I  

3.  If the functional series (4.1) is uniformly convergent on the 

interval І  and the terms of the series are continuous functions on І then 

this series can be integrated term-by-term, i.e. on the interval [ ; ] I    

the equality is fulfilled 

1 1

( ) ( ) .n n

n n

u x dx u x dx

  

  

 
 

 
    

The represented properties of uniformly convergent series can be 

used in approximate calculations. 

Examples of solution of typical problems 

Example 1. Find the domain of convergence of functional series 

1

1

2nx
n n



 
 . 

Solution. 

The given series is defined for any real x , and regardless of the x  

terms of this series are positive. Let's use the D'Alembert's test : 

1

( 1)

( ) 1 2 1 1
( ) lim lim lim

( ) 2 ( 1) 1 2 1 2

nx

n

n x x xn n n
n

u x n n
l x

u x n n



  
    

 
. 

Since series converges for ( ) 1l x   then the following inequality 

must be solved 
1

1, 2 1, 0.
2

x

x
x    

The condition ( ) 1l x   is fulfilled for 0x   then we should 

investigate this series for convergence at this point: 
0

1 1

1 1

2n
n nn n

 


 

   is 

divergent series.  

Hence, the domain of convergence of given series is (0; )x  .  



 28 

Example 2. Find the domain of convergence of functional series 

1

1

1 n
n x



 
 . 

Solution. 

The series is defined for all values except the point 1.x     

Consider the cases: 

1) 1x  , then 
1 1

lim lim 0
2 2

n
n n

u
 

   , therefore the series at this point 

is divergent; 

2) 1 1x   , then lim 0n

n
x


 , 

1
lim lim 1 0

1
n nn

n

u
x



  


, therefore 

the series is divergent; 

3) ( ; 1) (1; )x     . At this case the series is convergent.  

Really, since the series 
1

1
n

n x





  is convergent for x satisfying the 

condition 
1

1,
nx
  i.e.  1x   and 

1 1
lim lim 1,

1 1

n

n nn n
x

x x 
  

 
then 

according to the limit comparison test this series is convergent for 

1x  .   

Hence, domain of convergence of the original series is 

( ; 1) (1; ).x      

 

Self-test questions 

1. What series are called functional? 

2. Formulate the definition of the domain of convergence of the 

functional series. 

3. Formulate the definition of absolute convergence of a functional 

series. 

4. What functional series are called uniformly convergent? 

5. How to find the domain of convergence of the functional series? 

6. How to investigate the functional series for uniform convergence? 

7. Formulate the basic properties of uniformly convergent series. 
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Self-test assignments    

Task 1. Find the domain of convergence of functional series: 

а)
1

1

2nx
n





 ; b)
2

1 1

n

n
n

x

x



 
 ; c)

2 4
1

1

n n x



 
 ; d) (1 )

1

n x

n

e






 ; e)
1

ln .n

n

n x




  

Task 2. Investigate the functional series for uniform convergence on 

the interval:  

а) 
2

1

1
,

5n
n x



 
 ( ; )x   ; b) 

1

,nx

n

e






  (0; ).x    

Answers: 1. а) (0; ) ; b) 1x   ; c) ( ; )  ; d) (0; ) ;  e) 
1( ; ).e e   

2. а) converges uniformly; б) converges ununiformly. 

Topic 5. POWER SERIES 

Plan 

1. Power series. The basic concepts and definitions.   

2. Abel’s Theorem. Interval and radius of convergence of power 

series.  

3. Properties of power series. 

4. Taylor’s and Maclaurin’s series. 
     5. An expansion of Elementary Functions into Maclaurin’s Series. 

     Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 5 the student should know: 

definition of power series, definition of radius and interval of 

convergence of power series, formulas of radius of convergence for 

complete power series, properties of power series, definition of Taylor’s 

and Maclaurin’s series;  be able to: recognize complete and incomplete 

power series, find the radius, interval and domain of convergence of 

power series, apply the properties of power series, decompose functions 

into the Maclaurin’s series. 

The basic theoretical information  

The functional series of the form 

2

0 1 2

0

... ... ,n n

n n

n

a a x a x a x a x




                                             (5.1) 
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where 0 1, , , ,na a a  are real numbers is called power series.  

Functional series of the form 

0 1 0 0 0

0

( ) ... ( ) ... ( ) ,n n

n n

n

a a x x a x x a x x




                           (5.2) 

where 0 1, , , ,na a a  are real numbers, 0x  is some constant number, 

is a power series in powers of ( 0x x ). 

Domain of convergence of power series contains at least one point 

0x   for series (5.1) and  0x x  for series (5.2). 

Theorem 5.1 (Abel’s). If a power series (5.1) converges for some 
value 1 0,x x   then it converges absolutely for any value x satisfying 

the inequality 1| | | |x x  (Fig 5.1,a) 

Corollary. If a power series (5.1) diverges for some value 2 ,x x  

then it diverges for any value x satisfying the inequality 2| |>| | .x x  (Fig 

5.1, b) 

 

 

– | х1| | х1| 0 

Convergent series 
збіжний 

– | х2| | х2| 0 

Series 
is divergent 

Series 
 is divergent 

х х 

а b 

 Fig. 5.1 
 

There are three possible cases for series (5.1): 

1) series is convergent only at one point 0x  ;   

2) series is convergent for any ( ; )x   ; 

3) there exists such positive number R that for | |x R  series is 

absolutely convergent and for | |x R series is divergent (Fig. 5.2). 

 

0 R 

Series is convergent 
convergent 

збіжний 
х 

Series  
is divergent 

Series 
is divergent 

–R  

Fig.5.2 

Number R is called radius of convergence of power series. 

Connection between radius and interval of convergence of power series 

(5.1) and (5.2) is represented in the table 5.1.  
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Radius of convergence of power series (5.1) and (5.2) are defined by 

the formulas:     

             
1

lim ;n

n
n

a
R

a


                                            (5.3) 

                           
1

.
lim | |n

n
n

R
a



                                           (5.4) 

Table 5.1 

Radius of 

convergence R 

Interval of 

convergence of power 

series (5.1) 

Interval of 

convergence of power 

series (5.2) 

0R   0x   0x x  

R    ( ; )   ( ; )   

0 R   ( ; )R R  
0 0( ; )R x R x    

Remark 1. If the power series does not contain all degrees x , i.e. it is 

incomplete, then the radius of convergence cannot be found directly by 

the formulas (5.3) and (5.4). 

It is important to recognize incomplete power series and rationally 

choose the next steps investigating for their convergence. We should 

either define the interval of convergence by the D’Alembert’s test or 

Cauchy’s test as for a  functional series or reduce the incomplete power 

series to complete series using the corresponding  sabstitution (if it is 

possible). 

    Remark 2. If 0 R   then in this case the power series can be 

convergent or divergent at the points that are the ends of the interval of 

convergence. Substituting points ;x R R   to the series (5.1) or points 

0 0;x R x R x     to the series (5.2) we investigate the formed number 

series for convergence. 

       Properties of power series 

1. Power series (5.1) absolutely and uniformly converges on any 
segment [ ; ]a a  which lies completely within convergence interval 

( ; ).R R  
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2. The sum ( )S x  of power series (5.1) is continuous function on the 

interval ( ; ).R R  

3. (Differentiation of power series.) A power series can be 

differentiated term-by-term within the interval of convergence. The 

series constructed by the differentiation has the same interval of 

convergence, moreover if  
1

( ) n

n

n

S x a x




 , then 1

1

( ) .n

n

n

S x na x






   

4. (Integration of power series.) The power series can be integrated 
term-by-term on any segment which lies within convergence interval 
( ; ).R R  In particular, if the segment of integration [0; ] ( ; )x R R   and 

1

( ) n

n

n

S x a x




 , then  

1

1 1 10 0 0

( ) ,
1

x x x n
n n

n n n

n n n

x
S x dx a x dx a x dx a

n

  

  

 
   

 
       

moreover the series constructed after integration has the same convergence 
interval. 

5. The power series 
0

n

n

n

a x




  and  
0

n

n

n

b x




 with radii of convergence  

1R  and 2R  respectively can be added, subtracted, multiplied. The radius 

of convergence of the formed series is not less than the smaller among 

numbers 1R  and 2R . 

 

Taylor’s and Maclaurin’s series 
Suppose the function ( )f x  is defined at some neighborhood of a 

point 0x  and has derivatives of all orders.  

The series of the form 
( )

0 0
0 0 0

( ) ( )
( ) ( ) ... ( ) ...

1! !

n
nf x f x

f x x x x x
n


       (5.5) 

is called Taylor’s series of function ( )f x . 

Theorem 5.2. Taylor’s series (5.5) converges to the function ( )f x  in an 

interval 0 0( ; )x R x R  , i.e. 
( )

0 0
0 0 0

( ) ( )
( ) ( ) ( ) ... ( ) ...

1! !

n
nf x f x

f x f x x x x x
n


       ,               (5.6) 
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  if and only if a function ( )f x  has derivatives of all orders and 

expression 
( 1)

1

0

( )
( ) ( )

( 1)!

n
n

n

f c
r x x x

n


 


, where 0 0( )c x x x    , 

0 1 , tends to zero if n   for all x  from this interval: 

 lim ( ) 0n
n

r x


 , 0 0( ; ).x x R x R    

Particular case of Taylor’s series for 0 0x   is called Maclaurin’s 

series, which is expansion of function into power series in powers x : 
( )

2(0) (0) (0)
( ) (0) ... ...

1! 2! !

n
nf f f

f x f x x x
n

 
       .                (5.7) 

Let’s represent an expansion of some elementary functions 
into Maclaurin’s series in table 5.2. 

Table 5.2 

№ Maclaurin’s series of function ( )f x  Domain of 
convergence 

1 
2 3

1
1! 2! 3! !

n
x x x x x

e
n

        x    

2 
3 5 2 1

sin ( 1)
3! 5! (2 1)!

n
nx x x

x x
n



      


 x    

3 
2 4 2

cos 1 ( 1)
2! 4! (2 )!

n
nx x x

x
n

        x    

4 
2 3

1ln(1 ) ( 1)
2 3

n
nx x x

x x
n

         1 1x    

5 2 31
1 ( 1)

1

n nx x x x
x
       


 1 1x    

6 2 31
1

1

nx x x x
x
      


 1 1x    

7 

2( 1)
(1 ) 1

1! 2!

m m m m
x x x


      

( 1)( 2) ( ( 1))

!

nm m m m n
x

n

   
  

 

1 1, 0;

1 1,

( 1;0);

1 1, 1.

x m

x

m

x m

   

  

 

    
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In practice, expansions of elementary functions represented in table 5.2 

combined with the rules of addition, subtraction, multiplication of series 

and theorems on the integration and differentiation of power series are 

used to expand the functions into the Taylor’s (Maclaurin’s) series. 

Examples of solution of typical problems 

Example 1.  Find the domain of convergence of power series 

 
1

1

( 2)
1

3

n
n

n
n

x

n










 . 

Solution. 

We have complete power series then radius of convergence R can be 

calculated according to the formula (5.3): 
1 2

1 1

( 1) ( 1)
,

3 ( 1) 3

n n

n nn n
a a

n n

 

 

 
 

  
; 

1 1

2

1

( 1) ( 1) 3 1
lim lim 3lim 3.

3 ( 1)

n n

n

n nn n n
n

a n n
R

a n n

 

  


   
    

 
 

The interval of convergence is following: 3 2 3x    , 5 1x   . 

Then the series is absolutely convergent at internal points of the interval 

( 5; 1) . 

Let’s investigate the behavior of a series at the ends of the 

convergence interval:  

for 5x    the initial series transforms to divergent series:  

1 1 2 1

1 1 1 1

( 5 2) ( 1) 3 1 1
( 1) ( 1) ( 1)

3 3

n n n
n n n

n n
n n n nn n n n

   
  

   

   
      

 
    ; 

for 1x   the series acquires the form: 
1

1

1 1

3 ( 1)
( 1)

3

n n
n

n
n nn n

 


 


 


  , 

which is conditionally convergent as Leibniz’ series. 

Hence, the domain of convergence of given series is interval ( 5; 1] . 

Example 2. Find the domain of convergence of power series 

2

1 2 1

n

n

n

n
x

n





 
 

 
 . 

Solution. 

We have incomplete power series because it contains only even 

powers of x . 
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Denoting 02  tx  we obtain complete power series 

1 2 1

n

n

n

n
t

n





 
 

 
 . Its radius of convergence is defined by the formula 

(5.4): 
1 1 2 1

lim lim 2.
lim | |

2 1

nn nn
n

n n

n
R

na n

n

 




   

 
 

 

 

Constructed after substitution series converges for ( 2; 2).t   

Taking into account the limitations 0t   we get [0; 2),t  that is, at 

the point 0t   this series is convergent. Let's examine it at the right 

end of the convergence interval. 

If 2t  then we obtain the number series 
1

2
.

2 1

n

n

n

n





 
 

 
  Since 

2 1 1
lim lim 1 0,

2 1 2 1

n n

n n

n

n n e 

   
      

    
 then series diverges for 

2t  . Hence, the series constructed after substitution is convergent  at 

the interval [0; 2).t  

Returning to the substitution  tx 2  we determine the domain of 

convergence of the initial series: 2 [0; 2), | | 2, 2 2.x x x      

Example 4. Expand the function into Maclaurin’s series 

( ) ln(2 )f x x x  . 

Solution. 

Let’s transform the function in following way: 

( ) ln(2 ) ln 2 1 ln 2 ln 1
2 2

x x
f x x x x x x

   
         

   
 

Using the expansion 4 from the table 5.2 for the function  ln 1
2

x 
 

 
 

we get: 
2 3

1

2 3
( ) ln 2 ... ( 1) ...

2 2 3 2 2

n
n

n

x x x
f x x x x

n

 
         

   
 

3 4 1
2 1

2 3
ln 2 ... ( 1) ...

2 2 3 2 2

n
n

n

x x x
x x

n


       

  
 . 
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The domain of convergence of obtained series coincides to the 

domain of convergence of the Maclaurin’s series for the function  

ln 1
2

x 
 

 
: 1 1

2

x
   , i.e. 2 2x   . 

Self-test questions 

1. What series are called power series? 

2. Formulate the definition of the radius and interval of convergence 

of the power series. 

3. How to find the radius of convergence of power series? 

4. Demonstrate the connection between the radius, interval, and 

convergence domain of a power series. 

5. How to find the domain of convergence of power series? 

6. Formulate the basic properties of power series. 

7. Formulate the definition of the Taylor’s and Maclaurin’s series. 

8. How to expand functions into Maclaurin’s series? 

9. Is it correct to say that not every power series is functional? Justify 

the answer. 

Self-test assignments    

Task 1. Find the domain of convergence of power series: 

а)
3

1

n

n

x

n





 ; b)
1

1

( 3)

2

n

n
n

x

n









 ; c)

1

1
0

! ( 3)

7

n

n
n

n x 




 
 ; d)

4
1 1

n

n

x

n



 
 ; 

e)
3

0 8 1

n

n
n

x

 
 ; f)

1

(2 3) 5 ( 1) .n n

n

n x




    

Task 2. Expand the function into Maclaurin’s series:  

а) 
1

2 3x 
; b) 

31

x

x
; c) 22 cosx x ; d) ln(3 6 ).x    

Answers: 1. а) [ 1; 1] ; b) [1; 5) ; c) {–3}; d) [ 1; 1) ;  e) ( 2; 2) ;           

f) ( 0,2; 0,2).  2. а) 
1

0

(2 )
,

3

n

n
n

x




  
3

2
x  ; b) 3 1

0

,n

n

x






 ( 1;1)x  ; 

c)
2 3 4 5 2 2 12 2 2

2 ... ( 1) ...,
2! 4! (2 )!

n n
nx x x

x
n



       ;x R   d) 1

1

2
ln 3 ( 1) ,

n n
n

n

x

n






   

( 0,5; 0,5].x   
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Topic 6. APPLICATION OF POWER SERIES  

Plan 

1. Approximate calculation of function values. 

2. Approximate calculation of definite integrals. 

3. Approximate solution of differential equations. 

Literature: [1]; [2]; [3]; [4]; [5]; [6]. 

Methodical guidelines 

After studying the material of topic 6 the student should know: 

definition of Taylor’s and Maclaurin’s series; be able to: use power 

series to approximate the values of functions, definite integrals, and 

approximate the solution of differential equations satisfying the initial 

conditions. 

The basic theoretical information  

Power series are used to approximate the values of functions, 

definite integrals, approximate solution of differential equations 

satisfying the initial conditions, and so on. 
 

Examples of solution of typical problems 

Example 1. Calculate e  with accuracy 0,005.   

Solution. 

Using expansion of the function xe  into Maclaurin’s series we 

receive  
1

2
2 3

1 1 1 1
1

2 1! 2 2! 2 3! 2 !n
e e

n
       

  
 . 

Let’s define such n  at which an error of the approximate equality  

2 3

1 1 1 1
1

2 1! 2 2! 2 3! 2 !n
e

n
     

  
 

doesn’t exceed the given accuracy. For this purpose, we’ll estimate the 
remainder 

1 2 3

1 1 1

2 ( 1)! 2 ( 2)! 2 ( 3)!
n n n n

R
n n n  

    
  

 

1 2

1 1 1
1

2 ( 1)! 2( 2) 2 ( 2)( 3)n n n n n

 
     

    
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1 2 2 3 3

1 1 1 1
1

2 ( 1)! 2( 2) 2 ( 2) 2 ( 2)n n n n n

 
      

    
 

1

1 1 2
.

12 ( 1)! 2 (2 3)( 1)!
1

2( 2)

n n

n

n n n

n




  

  




 

We establish by means selection that inequality 

2
0,005

2 (2 3)( 1)!
n n

n
R

n n


 

 
 is fulfilled starting with 3n  . 

Hence, 
2 3

1 1 1
1 1 0,5 0,125 0,0208 1,646.

2 1! 2 2! 2 3!
e         

  
 

Example 2. Calculate 
2

1

2

0

xe dx

  with accuracy 0,001.   

Solution. 

Note that the indefinite integral 
2xe dx

  is not expressed through 

elementary functions. For calculation of integral we expand the 
integrand in power series and use the property of term-by-term 
integration of power series.  

We receive 

2

1 1

4 6 22 2
2

0 0

1 ( 1)
2! 3! !

n
x nx x x

e dx x dx
n

  
         

 
   

1
3 5 7 2 1

2

0

( 1)
3 5 2! 7 3! (2 1) !

n
nx x x x

x
n n

 
         

    
 

3 5 7 2 1

1 1 1 1 1
( 1)

2 2 3 2 5 2! 2 7 3! 2 (2 1) !

n

n n n
       

      
  

Since obtained series is alternating and satisfies conditions of 

Leibniz’ theorem then according to the corollary of this theorem the 

following inequality is true: 1n nr u  .  Let’s determine the least number 

n for which the inequality 1 0,001nu    is true, i.e. 

2 1

1
0,001

2 (2 1) !n n n


 
. This inequality is fulfilled starting from 3n  : 
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7

1 1
0,001

2 7 3! 5376
 

 
. Therefore, we take the first three terms of the 

series and obtain 

2

1

2

3 5

0

1 1 1
0,5 0,0417 0,0031 0,461.

2 2 3 2 5 2!

xe dx       
    

Example 3. Find the approximate solution of the Cauchy’s 

problem 2 3 , (0) 1y x y y     using the first four nonzero terms of 

expansion of this solution in power series. 

Solution. 

We’ll find the solution in the form of Maclaurin’s series 
( )

2 3(0) (0) (0) (0)
(0) ... ...

1! 2! 3! !

n
ny y y y

y y x x x x
n

  
       . 

From the condition of the task we can find the first two coefficients 

(0) 1,y   2 3(0) 0 1 1.y     

We differentiate the initial equation 22 3y x y y   . 

Then we substitute 0,x  (0) 1y   and (0) 1,y   into this equation 

and get the factor (0) 0 3 3y     Now we pass to the equation 
2 22 3(2 ( ) ).y y y y y      Then (0) 2 3(2 3) 17.y      So, the 

approximate solution of Cauchy’s problem is defined by the formula 

2 33 17
1 .

2 6
y x x x     

This formula is more precise if x  tends to zero. 

 

Self-test questions 

1. Formulate the definition of the Taylor’s and Maclaurin’s series. 

2. How to decompose functions to the Maclaurin’s series? 

3. How to use power series for approximate calculation of the values 

of functions? 

4. How to use power series for approximate calculation of definite 

integrals? 

5. How to use power series for approximate solution of differential 

equations that satisfy the initial conditions?  
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Self-test assignments    

Task 1. Calculate the value of function with accuracy  : 

а) 3 130,  0,0001  ; b) 
3

1
,

e
 0,001  ; c) cos10 ,  0,0001  .       

Task 2. Calculate the definite integrals with accuracy  :  

а) 

1

2

0

sin x
dx

x , 0,0001  ; b) 
1

2

0

cos ,x dx  0,0001  ; c) 

1

2

4

0

,
1

dx

x
 

0,001  ;  d) 

1

3

4
0

,
1

dx

x
  0,001.   

Task 3. Find the approximate solution of the Cauchy’s problem 

using the first four nonzero terms of expansion of this solution in power 

series: 

а) , (0) 0yy xy e y    ; b) 2 , (0) 1, (0) 1y yy x y y      .  

Answers: 1. а) 5,0658; b) 0,716; c) 0,9948.  2. а) 0,4931; b) 0,9045;  

c) 0,494; d) 0,333. 3.  а) 
2

3 42 11
1

2 3 24

x
y x x    ; b)

2 3

1
2 3

x x
y x    . 

 Topic 7. FOURIER SERIES  

Plan 

1. Trigonometric Fourier series. Fourier coefficients. 

2. Sufficient conditions for representation of the function by Fourier 

series.  

4. Fourier series for even and odd functions. 

5. Fourier series for 2 and 2l - periodic functions. 

Literature: [1]; [2]; [3]; [4]; [5]. 

Methodical guidelines 

After studying the material of topic 7 the student should know: 

definition of trigonometric Fourier series and Fourier coefficients of the 

function ( )f x , sufficient conditions for representation of the function 

( )f x  by Fourier series, complex form of Fourier series and complex 
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coefficients of Fourier series;  be able to: recognize Fourier series, 

calculate Fourier coefficients and decompose 2  and 2l -periodic 

functions into Fourier series. 

The basic theoretical information 

Functional series of the form 

0
1 1cos sin cos sin

2
n n

a
a x b x a nx b nx        

0

1

( cos sin )
2

n n

n

a
a nx b nx





                                                             (7.1) 

is called trigonometric series. Constant numbers 0 1 1, , , , , ,...n na a b a b  

are called coefficients of trigonometric series. Absolute term is written 

in the form 0

2

a
. 

Suppose the periodic function ( )f x  with period 2  may be 

represented as a trigonometric series convergent to the given function 

within interval [ ; ],   i.e.  

0

1

( ) ( cos sin )
2

n n

n

a
f x a nx b nx





   . (7.2) 

Numbers 0 , , ,n na a b  defined by the formulas 

0

1
( ) ,a f x dx






 

 
1

( )cos ,na f x nxdx






 

 
1

( )sin ,nb f x nxdx






 

 

are called Fourier coefficients of function ( )f x .  

Trigonometric series (7.2) which coefficients are Fourier coefficients 

of function ( )f x  is called Fourier series of function ( )f x . 

For integrable function ( )f x  on a segment [ ; ]   we write: 

( )f x ~ 0

1

( cos sin )
2

n n

n

a
a nx b nx





  .  The sign (~) denotes that 

Fourier series corresponds the function ( )f x  integrable on a segment 

[ ; ]  . 

The following theorem gives sufficient conditions for representation 

of a function ( )f x  by Fourier series 
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Theorem 7.1 (Dirichlet’s). Suppose the following conditions are 

fulfilled for 2 - periodic function ( )f x  on segment [ ; ]  : 

1) ( )f x  is a piecewise continuous (continuous or has finite number 

of finite discontinuities),  

2) ( )f x  is monotone on segment [ ; ]   or this segment can be 

divided into a finite number of intervals so that on each of them the 

function is monotonic.  

Then Fourier series of a function ( )f x  is convergent everywhere 

and its sum ( )S x has the following properties: 

1) ( ) ( ),S x f x at points of continuity ( )f x , that is 

0

1

( ) ( cos sin )
2

n n

n

a
f x a nx b nx





   ; 

2) if 0x  is a point of discontinuity of the first type of a function 

( )f x , then 

0 0
0

( 0) ( 0)
( )

2

f x f x
S x

  
 , 

3) 
( 0) ( 0)

( ) ( )
2

f f
S S

  
    . 

Remark 1. For any integrable 2-periodic function the Fourier 
coefficients can be calculated by the formulas: 

2

0

1
( )

a

a

a f x dx

 


  , 

2
1

( )cos

a

n

a

a f x nxdx

 


  , 

2
1

( )sin ,

a

n

a

b f x nxdx

 


   

where a  is arbitrary real number. 

Remark 2.  To calculate the Fourier coefficients the following 

equalities are used: sin 0n  ,  cos 1
n

n   , 0, 1, 2, ...n  . 

Fourier series for odd and even functions 

If ( )f x  is either odd or even function then the calculation of the 

Fourier coefficients is simplified. At the same time, the form of the 

Fourier series is also simplified, it becomes incomplete (Table 7.1). 
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Table 7.1 

Property of a 
function ( )f x  Fourier series Fourier coefficients 

( )f x  is even 

function 
0

1

cos
2

n

n

a
a nx





  

0,nb   
0

0

2
( )a f x dx




 

, 

0

2
( )cosna f x nxdx




 

 

( )f x is odd 

function 
1

sinn

n

b nx




  

0 0, 0,na a   

0

2
( )sinnb f x nxdx




 

 

Fourier series for 2l-periodic functions 

Suppose the function ( )f x  is defined on the segment [ ; ],l l  and 

has the period 2l  ( 0l  ). Suppose this function obeys all conditions of 

Dirichlet’s theorem. Therefore, the Fourier series for ( )f x  looks like 

( )f x ~ 0

1

cos sin ,
2

n n

n

a nx nx
a b

l l





  
  

 
                                         (7.3) 

Where Fourier coefficients are defined by the formulas:  

 
0

1 1 1
( ) , ( )cos , ( )sin .

l l l

n n

l l l

nx nx
a f x dx a f x dx b f x dx

l l l l l
  

 
            (7.4) 

Table 7.2 

Property of a 
function ( )f x  Fourier series Fourier coefficients 

( )f x  is even 

function  
0

1

cos
2

n

n

a nx
a

l






  

0,nb   
0

0

2
( ) ,

l

a f x dx
l

   

0

2
( )cos

l

n

nx
a f x dx

l l


   

( )f x is odd 

function  
1

sinn

n

nx
b

l






  

0 0, 0,na a   

0

2
( )sin

l

n

nx
b f x dx

l l


   
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Fourier series and Fourier coefficients for even and odd functions 
defined on segment [ ; ]l l  are given in Table 7.2.  

Examples of solution of typical problems 

Example 1. Expand 2-periodic function in Fourier series 

( ) | |,f x x  ( 2 ) ( )f x f x    (Fig. 7.2). 

 

–π π  0 

π 

–2π х 

у 

2π –π π  0 

π 

–2π х 

у 

2π  
Fig. 7.2 

 
Solution.  
The given function satisfies to all conditions of Dirichlet’s 

theorem. It is even function. Then Fourier series for this function looks 

like 0

1

( ) cos
2

n

n

a
f x a nx





  .  

Let’s define Fourier coefficients 0a  and na  (Table 7.1): 

2

0

00

2 2
;

2

x
a xdx

 

   
   

00

2 2 sin
cosn

nx
a x nxdx x

n

  
       
  

2 2

00

2 sin 2 cos 2
(( 1) 1).nnx nx

dx
n n n

  
     
   
  

That is Fourier series for the given function is 

2 2 2 2
1

2 ( 1) 1 4 cos cos3 cos5
( ) cos .

2 2 1 3 5

n

n

x x x
f x nx

n





     
       

   


 The given function ( )f x  is continuous everywhere. Therefore obtained 

representation is true for all x R . 

Example 2. Expand function 
2( )f x x , ];0[ x  in Fourier series 

in sines.  
Solution. 
Let’s extend ( )f x  in odd way on [ ;0) , and then extend it 

periodically with period 2  on all numerical axis (Fig. 7.3). Function 
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( )f x  is odd on a segment  ;  . Therefore 0 0na a  . Let’s find a 

coefficient nb  using formula  
0

2
sinnb f x nxdx




 

. 

We get 

 y 
 π

2 

 –π
 

 0  2π
  π 

 x
 

– π
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 –2π
 

–1 1 0
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2 –2 
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2 2

00 0

2 2 cos 2
sin cosn

nx
b x nxdx x x nxdx

n n

  
         
   

2

0 0

2 cos 2 sin 1
sin

n nx
x nxdx

n n n n

  
             

  

    
2

11

3 3

0

2 2 2 4
( 1) cos 1 1 1

n nn nx
n n n n




  
           

. 

Hence,    1

3
1 1

2 4
( 1) sin ( 1) 1 sinn n

n n

f x nx nx
n n

 


 


     


   

3 3 3

sin sin 2 sin3 8 sin sin3 sin5
2 ... ... .

1 2 3 1 3 5

x x x x x x   
           

   
 

This equality is fulfilled for  0; ,x   except point ,x    in which 

the sum of series equals 0, but 2( ) .f     

Self-test questions 

1. Formulate the definition of a trigonometric Fourier series. 

2. Write down the formulas of the Fourier coefficients of the periodic 

function ( )f x  with the period 2 . 

3. Formulate sufficient conditions for the representation of a function 

( )f x by Fourier series. 
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4. Write down the complex form of the Fourier series and the 

complex coefficients of the Fourier series. 

5. Write down the formulas of Fourier coefficients and Fourier series 

for even and odd functions. 

6. Write down the formulas of Fourier coefficients and Fourier series 

for 2  and 2l -periodic functions. 

Self-test assignments    

Task 1. Expand 2 -periodic functions given in the interval ( ; )    

in the Fourier series. 

а) ( )f x x ; b) 









);;0[,1

),0;(,3
)(





xif

xif
xf   c) ( ) 1

2

x
f x   .  

Task 2. Expand functions given in the interval (0; )  in a Fourier 

series by cosines:  

а) 2( )f x x ;  b) 









).;2/[,0

),2/;0(,1
)(





xif

xif
xf  

Task 3. Expand functions in Fourier series: 

а) 









);1;0[,1

),0;1(,1
)(

xif

xif
xf  b) 










).3;1[,

),1;3(,0
)(

xifx

xif
xf  

Answers: 1. а) 1

1

sin
2 ( 1)k

k

kx

k






 ; b) 
1

4 sin(2 1)
1

2 1k

k x

k







 
 ; c) 1 sin x   

sin 2 sin3 sin 4

2 3 4

x x x
    .2.а)

2

2
1

cos
4 ( 1)

3

k

k

kx

k






  ; 

b) 1

1

1 2 cos(2 1)
( 1)

2 2 1

k

k

k x

k







 
 
 . 3.а)

1

4 sin(2 1)

2 1k

k x

k





 

 
 ; 

б)
2 2

1

2 1 3 9
sin ( 1) cos cos

3 3 3 3 3

n

n

n n nx

n n





     
      

    


1

2 2
1

1 3 9
3( 1) cos sin sin

3 3 3 3

n

n

n n nx

n n






     
    

   
 . 
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