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INTRODUCTION

Independent work of the higher education applicant is the main
way of mastering the educational material during the time free from the
compulsory classroom classes.

The purpose of independent work - deepening, generalization
and consolidation of theoretical knowledge and practical skills of
students in the "Higher Mathematics" subject by developing the ability
to work independently with the academic literature.

Independent work of higher education applicants is carried out
in the form of preparation for lectures and practical classes, performance
of individual homework and performance of module tests. Such training
involves independent study of theoretical material on each topic
presented in the recommended literature and lecture notes. It is
important to pay attention to the need for a clear assimilation of basic
terms and definitions, understanding of their content, obligatory analysis
of the use of theoretical information for the proposed tasks.

The guide for independent work of higher-education applicants
is compiled in accordance with the curricula of the course "Higher
mathematics" for students of technical specialties. The proposed
methodical work presents tasks for independent and individual work. A
significant number of tasks for independent work has an applied
orientation.

The leading teacher can adjust the number and content of the
tasks, which a student must perform independently while studying the
relevant material.

The material of each topic corresponds to the working curricula
of the "Higher mathematics" subject, in particular, to one of its sections
"Number series”. Each topic contains the basic methodical
recommendations, recommended literature, typical examples of
solutions and tasks for individual performance, and questions for self-
checking, which will contribute to better understanding, assimilation
and possibility to apply the basic theoretical statements.

This guide is compiled for independent work of higher
education applicants of technical specialties and focused on the
theoretical and methodological support of the training process.



Topic 1. NUMBER SERIES
Plan

1. The main concepts and definitions, convergence.

2. Properties of number series.

3. The necessary condition of convergence. The sufficient condition
of divergence.

Literature: [1]; [2]; [3]; [4]; [5]-
Methodical guidelines

After studying the material of topic 1 the student should know:
definition of numerical series, partial sum of series, convergence of
series, sum of series, examples of known convergent and divergent
series, necessary condition of convergence and sufficient condition of
divergence; be able to: calculate the sum of convergent number series of
a certain types.

Basic theoretical information

Let {u.}={u,, u,,...,u,, ...} be the sequence of real numbers.
Expression

Uy + Uy +ot Uy o= DU (1.1)
n=1

is called number series (or series)

Here u, is the first, u, is the second, ..., u,is n-th (general) term of
series. The series (1.1) is given if the dependence of its general term on
the number n is known: u, = f(n).

The sum S, =u, +u, +...+u, of the first n terms of the series is

called n-th partial sum of series (1.1).
If there exists the finite limit limS, =S then series (1.1) is called

n—o

convergent and number S is called sum of this series.
If limit limS, doesn’t exist or limS_ =oo then series (1.1) is called

n—oo n—w

divergent. Divergent series has no sum.
Expression r,=S-S =u.,, +U,,,+.. is called n-th remainder of

series.

n+l



Properties of number series

1. If the series Zun is convergent and its sum is equal to S then the

n=1

series Y (Cu, ) (where C is constant) is convergent as well. And its sum

n=1

is equal to the product CS. If the series Zun diverges and C = 0then

n=1

series i(Cun) also diverges.
n=1

u

2. If number series Zun and Zvn are convergent, moreover S
n=1 n=1

and S, are their sums correspondently then series Z(un +v,) and

n=1

Z(un —v,) are also convergent and their sums are equal S, +S,and
=1

. — S, respectively.

Remark. The sum (difference) of convergent and divergent series is a
divergent series. The sum (difference) of two divergent series can be
either a convergent or a divergent series.

3. The convergence of a series does not depend on the discard or
addition of a finite number of terms.

Theorem 1.1 (necessary condition for convergence of a series). If
series (1.1) converges then its general term u, tends to zero, i.e.
limu, =0.

n—o

Conclusion. In order to a series converges its general term must tends
to zero. However, it is not a guarantee of the convergence of the series.

If limu, =0 then it only means that the series Zun can be convergent.

n—oo
n=1

Corollary (sufficient condition of divergence of series). If limu, =0

n—w

or this limit does not exist, then series (1.1) diverges.



Examples of solution of typical problems
Example 1. Write down the general, the first and the third terms of

n=1
Solution.
Then 1+2_3

. Uu=——=—1s
2 4 1

General (nth) term of series is u, =
n°+ 1+4 5

the first term of series; u, = 3+2_5 is the third term of series.
9+4 13

Example 2. Investigate the series for convergence. If the series
converges, calculate its sum:

a) 1+4+7+...+(3n—2)+...=i(3n—2);

1 1 1 = 1
by —+—+...+—+..= ) ———
1.2 2.3 n-(n+1) =n- (n+1)
¢) b +bg+bg® +...+bg"™ Zblq“

1 1 1 =1
DI+=4+=+...+=+...= ) —.
) 2 3 n z

Solution:
a) let’s write n-th partial sum
1+(3n-2) e (3n—1n

S,=1+4+7+...+(@n-2)+...= 5 B Here the
formula S, = el Za n for the sum of the first n terms of arithmetic
progression is used. Hence, limS = Iimwzoo and we can say

that the given series is divergent;
b) we write down and transform partial sum S of this series in
following way:

1 1 1 1) (1 1
S, =—+—+...+A————=|1-Z |+| =—= |+...+
1.2 2.3 n-(n+1) 2) 2 3



+ E—i =1—i. Since limS, =Ilim 1—i =1, then the
n n+l n+1 n—® n—® n+1

series is convergent and its sum S =1.
Remark. If u, =f@)-f(2), u,=f(2)-f(@3)...,
u,=f(n)—f(n+1, then u, +u, +...+u,, +u, = f Q) - f(n+1).

c) the series b1+b1q+b1q2+...+b1q"’1+...=ib1q”’1, (b, #0) is

called a series of geometric progression (or geometric series): if q=1
then this series is divergent; if q=1:

. 1-9") _ b bq"

S, = 24l 1:b1( = - .

I e e s
Let’s find limit of this sum depending on value q:

1) if |q|<1 then limg" =0, and then limS, =%. Hence, the series
by

is convergent and its sum S = Ta ;
—q
2) if |q[>1 then limq" =0, and then limS, =co. Hence. The series is
nN—o0

divergent;
3) if g =-1 then the series acquires the form:

b —b +b —b +...+(-1)""b, +... and it is divergent.

Conclusion. The geometric series Zblq”‘l(ath) converges for

n=1
|gl<1 and diverges for |q[>1.
. 11 1 1 o
d) the series 1+E+§+'"+_+'"=Z_ is called harmonic. This
n n=1 n

series is divergent.

Example 3. Find the limit of general term u, of series Zun and

n=1

make a conclusion according to its convergence:



SO o L (-2
a)nzzlllln+1’b)22 ’C);Cosn’d)ng‘( n j '

n=1
Solution:
. . . 2n 2 . L
a) Since limu, =lim =— =0 then given series is divergent;
n—o elin+l 1

b) > 2" :Z[%] is convergent geometric series (q =%<1). For

n=1 n=1

this series limu, ﬂim(l) =0;

n—w n—w

. . 1 . C
) limu, =limcos—=cos0=1=0.Hence, this series is divergent;

n—oo n—oo n
d) Iimun:Iim(n;Zj :(1‘”)=Iim(1—3j —e?#0. Hence, the
n—oo n—oo n nN—o0 n

series is divergent;
Self-test questions

1. What is called a numerical series?

2. How to determine the first, sixth, tenth terms of the series?
3. What is the n-th partial sum of a series?

4. Formulate the definition of a convergent series and its sum.

5. What can you say about the convergence of a series Zun if
n=1

limu =0?

n—w

6. Give examples of convergent and divergent series.

7. Is the statement correct: if a series Zun converges, then the
n=1

L 1
series Z(un += | also converges?
n=1 n

Self-test assignments

Task 1. Prove the convergence of the series by the definition and
find its sum:



0

)Z(Zn 1)(2n+1) )Zn(n 2) Z

n=1

S 2n+1 ) 371
) Zn (n+1)2 ! ) Z(n+1)| f) ZSIn 2n+2 2n+2 '

n=1

Task 2. Prove the divergence of the series using sufficient condition
of divergence of series:

2) i(m_n); b)i don 1 )Z(n+3j,

1000n+1
S = . 7h
e cos—; f sin
Z;‘ n(n+1) ) ,,Z:;‘ n’ ) nZ:; 2n+1
Answers: 1. a) Snzl_ 1 , szl; b)Sn:§_i_i,
2 4n+2 2 2 n+l n+2
S==: C) n—§_i_i’ :E, d) =1 1 =, —
2 2" 2.3 2 (n+1)
Instruction. 22n+12 (n+1)* —n" iz_ ! - €)S —1-—
n“(n+1) n“(n+1)*> n* (n+)) (n+1)!
S =1. Instruction n =i—i; f) S, —sint —sin—— -, S=1.
(n+)! n! (n+1)! 2 2"+

Instruction. Use the formula 2sinacosB =sin(o+B) +sin(a—p) .

Topic 2. TESTS FOR CONVERGENCE OF POSITIVE TERMS
SERIES
Plan

1. Definition of positive terms series, examples of reference series.
2. Tests for convergence of positive terms series.

Literature: [1]; [2]; [3]; [4]; [5]-
Methodical guidelines

After studying the material of topic 2 the student should know:
definition of positive terms numerical series, examples of known
reference series, comparison tests, D’Alembert’s test, Cauchy’s test,
integral test; be able to: examine the positive terms series for

10



convergence by the corresponding tests.
The basic theoretical information

Series with non-negative terms are called positive terms series. We
will use comparison tests, D’Alembert's test, Cauchy's test and an
integral test to examine the convergence of such series.

The convergence or divergence of positive terms series is sometimes
established by comparing it with a series whose behavior is known.
Such series are called reference series.

The following reference series are most often used:
a) geometric series;
b) harmonic series;
c) generalized harmonic series (or Dirichlet-Riemann series):
Zip =1+i+i+...+i+... , which is convergence for p>1
“~n 2° 3° nP
and divergent for p <1.
Theorem 2.1 (Comparison test). Let

DUy =U U LU (2.1)
n=1
DV =V Y, oV (2.2)
n=1

be two series of positive terms, so that: 0<u, <v, (n=12,...). (2.3)
Then:
a) if series (2.2) converges, (2.1) converges as well;
b) if series (2.1) diverges, (2.2) diverges as well.
Remark. Theorem 2.1 is also valid in the case when inequalities
(2.3) hold, starting with some number n> N, .

In practice, the limit comparison test is more effective.

Theorem 2.2 (limit comparison test). Let Zun and Zvn be positive

n=1 n=1
. . - . u
terms series. If there exists a finite nonzero lim—=k (0<k <o),
n—oo Vn
then these series converge or diverge simultaneously.
Remark 1. The main disadvantage of using comparison test is the
choosing of the reference series.

11



, where

Note 2. Examining the convergence of the series Z B ()
n=1 Wk n

P.(n), Q.(n) are polynomials of degree m and k, accordingly,

m<Kk, it is effective to apply the limit comparison test. The Dirichlet-
Riemann series ( p=k —m> 0) should be taken as the reference series.

Theorem 2.3 (D ’Alembert’s test). Let Zun be the positive terms

n=1

. .. .u . .
series and there exists lim—=L =1. Then given series converges for | <1
n

n—w u

and diverges for | >1.

If 1=1, then then the D’Alembert’s test gives no answer as to
whether a series converges or not. In this case, you need to use another
test (for example, a comparison).

Remark. The D'Alembert’s test should be used primarily for
investigation of the convergence of positive terms series, the terms of
which contain factorial or exponential functions.

Theorem 2.4 (Cauchy’s test). Let Zun be the positive terms series
n=1

and there exists finite or infinite limit Iimg/qzl. Then given series

n—oo
converges for | <1 and diverges for | >1.
If 1=1 then the question of the convergence of the series remains
open, i.e., requires additional research.
Remark 1. It is rationally to use Cauchy’s test if you have to examine

the convergence of positive terms series Zun, which general term can
n=1
be represented in the form u, = (f(n))".
Remark 2. Investigating the series on convergence by the Cauchy's
test, the following limits may be useful: lim¥a =1 (a>0), lim¥n =1.
Theorem 2.5 (integral test). Let the terms of the positive terms
series ZUn be the values of some continuous function f(x) which is

n=1

monotonically decreasing on the interval [1;00) for natural values of the

12



argument x,, ie. u="f@), u,=f(2),..., u,=f(n),... Then the

series Zu and the improper integral J'f(x)dx are simultaneously
n=1

convergent or divergent.
Examples of solution of typical problems

Example 1. Use the comparison test to examine the following series
for convergence:

>3 &1
a)nZ;‘nJr )Z o ZW d)Zarcsm2n e > —.

“~Inn
Solution:
a) we use the limit comparison test taking divergent harmonic series
. & =1 . u . 3 n . 3n
for comparison D v, =Y =: k=lim—= =lim—— = =lim— =3,
P =N ooy moen4+4 1 noen44

Since k =3¢e(0;00) and harmonic series is divergent then given series
is divergent;

b) the general term u, = of given positive terms series is ratio

n°+3
of polynomials of the first and the fifth degree. The degree of
denominator is 4 greater than the degree of the numerator. Therefore,

. . . R T A
for comparison, we choose a generalized harmonic series 2—4 with
n=1

1 , . .
general term v =—. Let’s apply limit comparison test:

n n4
n
. u, 3 . n . -
k=lim— —I|mn +9 _ [im =1. Since the calculated Ilimit
n—o V n—ow 1 n—o0 n5 + 3
n*
. S .
O<k <o and the series 2—4 is convergent, then according to a
n=1

comparison test the given series is convergent as well;

13



1

on+s’

Let’s use a limit comparison test taking for comparison of divergent

series Zv —Z T (p——<1)

n=1 n4

1 4n 1

u . o
k= rl]mv !mm 1% Since the calculated limit is
positive number and chosen for comparison generalized harmonic series
is divergent then according to a limit comparison test the given series is
divergent as well;

d) we compare the given series with a divergent harmonic series

c) we have the positive terms series with general term u,, =

Z% by the limit comparison test:

n=1

) 3
arcsin— 3 =
T 2n_n—>oo,(x=——>0_. 2n_§
=lim—g 2= " e im A=,
= arcsina, ~ o =
n n

Since O<k <o and the series for comparison is divergent than
according to the limit comparison test given series is divergent as well;
e) let’s use the comparison test (theorem 2.1), taking for comparison

0

. . . = 1
divergent harmonic series »'v, => =. For n=2;3;...: Inn<n and
n=1 n=1

1 1 . . .
correspondently u, = >—=V_. Since the terms of the given series
nn n

. . . oGl
greater than the respective terms of the divergent harmonic series Z—,
n=1
then the given series is divergent.

Example 2. Examine the series for convergence using D’ Alembert’s
test either Cauchy’s test or an integral test:

= n+1 °° " (n+5
a)nZ;,n tgzn,b)z 2n+1 nzj;( j ( j

n=1

14



Solution:
a) we have the positive terms series which general term contains

exponent function. Therefore, we use D’Alembert’s test: u, = n-tgzin,

un+1=(n+1)'tg :il’
2
. a—0 -
tg n+l ~ n
I = limYet — jim n_ﬂ% _[go~of 1.2-712 1
n—e u n—w n TT n—oo
" 9o ——0 o
2 2” 2

and correspondently the series is convergent;
b) if the general term of the series contains a factorial, it is

3 n
recommended to use the D’Alembert’s test: U, = M
2n+1)!
3 oan+l 3 . n+1 |
M:M; :"mh:"m (n+2)°-3 ) (2n+31). _
Cn+n+n!r" eu, el (2043 (0413

_((n+2Y 3-(2n+1)! . 3
=lim . =lim =0<1
e\ n+1) ((2n+D)Y)-(2n+2)(2n+3) | = (2n+2)(2n+3)
Hence, the series is convergent;
c) the general term of the given positive terms’ series can be

represented in the form u,=(f(n))" then we use Cauchy’s test:

Y n+2Y . 1(n+5) 1. 5\ ¢
I=limp|=|| ——| =lim=] —| ==lim|1+—=| =—>1,
n—w 2 n n—ow 2 n 2 N> n 2

hence, the series is divergent;

Self-test questions

1. What series are called positive terms series?

2. How to investigate the positive terms series for convergence?

3. Give examples of reference series. How are reference series used
in the investigation of positive terms series for convergence?

15



4. How is it recommended to investigate a series Z ( )fo
n:l
convergence if P, (n), Q,(n) are polynomials of m and k
correspondently, m<k ?

5. Formulate the D’ Alemfert’s test. Which positive terms series is it
applied to?

6. Formulate the Cauchy’s test. Which positive terms series is it
applied to?
7. Formulate the Integral test.

Self-test assignments
Task 1. Investigate the series on convergence using comparison test:

)22n+1 )Zn +n+1 )Z ——

“3n? -1’

d)nz;‘tg3n ZIn(n+4) Z:3”+2

Task 2. Investigate the series on convergence using D’Alembert’s
test:

a)ZJﬁarctgzn, Z )21 3.5....(2n-1)

“~(n+2)!" "42.5.8-..(3n-1)°
2n+1!. ng 4n+1 (n1)?
)Z 3 7n+1’ )22 f)Z(zn)|

Task 3. Investlgate the series on convergence using Cauchy’s test:

D NS RINHICSE

d)Zarccos[ J z(n+1) f)Z( n+1] :

2n* +1
Task 4. Investlgate the series on convergence using Integral test:

I
)Zn(1+ln Zn)’ Z n” Z(2n+1)|n(2n+1)

Answers: 1. a) dlvergent, b) convergent; c) divergent; d) divergent; e)
divergent; f) convergent. 2. a) convergent; b) convergent; c) convergent;

16



d) divergent; e) convergent; f) convergent. 3. a) convergent; b)
convergent; c) convergent; d) divergent; e) divergent; f) convergent 4. a)
convergent; b) convergent; c) divergent.

Topic 3. ALTERNATING SERIES
Plan

1. Types of number series.

2.Alternating series. Sufficient condition of convergence of
alternating series.

3. Alternating Series. Leibniz’ Test.

4. Absolute and Conditional Convergence.

5. Properties of the absolute convergent series.

6.Investigation of alternating series for absolute and conditional

convergence.

Literature: [1]; [2]; [3]; [4]; [5].
Methodical guidelines

After studying the material of topic 3 the student should know:
classification of numerical series, definition of alternating series,
absolute and conditional convergence of alternating series, sufficient
conditions of convergence of alternating series (Leibniz’ test), basic
properties of absolutely convergent series; be able to: investigate the
convergence of alternating series by the Leibniz test, to investigate
alternating series for absolute and conditional convergence.

The basic theoretical information

Number series is called alternating series if it contains infinite
number both positive and negative terms. The alternation of the sign
can be both regular and chaotic. Examples of alternating series:
Z, sinn
nzi‘n (n+2)' Z( )

According to property 3 of a number series, the following statement is
true: the convergence of a series does not depend on the rejection or
addition of a finite number of terms.

Therefore, the investigation of number series containing both a finite
number of positive (negative) and an infinite number of negative

17



(positive) terms simultaneously is reduced to investigation respective
positive term number series. Remark: the study of the convergence of
numerical series, all members of which are negative, is reduced to the
examining of the corresponding positive terms series, which is formed
after taking out the “minus” sign of all terms in brackets.

Thus, the investigation of number series for convergence is reduced
to the investigation of either positive terms or alternating series.

Theorem 3.1 (sufficient condition for convergence of alternating

series). Let the number series > u, =U, +U,+U;+..+U +.. be

n=1

alternating. If constructed from the modules of the terms of the given

series the positive term series i|un|=|ul|+|u2|+...+|un|+... converges

n=1
then given alternating series converges as well.
Remark. Sufficient condition of convergence of alternating series is

0
not necessary. That is, an alternating series Zun can be convergent
n=1

even when the series with the absolute values of its terms Z|un| is
n=1
divergent.

Let Zun be the alternating number series. Then the following
n=1

statement are true:

1) i|un| is convergent = iun is convergent;

n=1 n=1

2) Z|un| is divergent = Zun is convergent or divergent;
n=1 n=1

3) Zun is convergent = Z|un| is convergent or divergent;
n=1 n=1

4) iun is divergent = i|un| is divergent.
n=1 n=1

Series, the signs of whose terms are strictly alternating:

18



Uy — U, +Uy =t (D)™, +.= D (1)U, (3.1)
n=1

where u, >0 for neN .

Let’s formulate sufficient condition of convergence for the series
(3.1).

Theorem 3.2 (Leibniz’ Test). Series (3.1) is convergent if:

u>u,>u,>..>u, >...;

2) general term of the series approaches to zero: limu, =0.

n—w

Remark 1. First condition of the Leibniz’ test can be fulfilled not
from the first, but from some other term.

Remark 2. The series Z(—l)"un =—U +U, —...+(-1)"u, +..., where
n=1
u, >0 for ne N , is alternating too.
Remark 3. If alternating series (3.1) is convergent then the sum of
the series S satisfies the condition 0< S <u, .
Remark 4. From the Leibniz test it follows that for the convergent
alternating series (3.1) the condition |S—S |<u,, is satisfied or

n+1
Ir,|<u,,,, where r,=(-1)"-(u,,—U,,+U,,—..). This property is
used for approximate calculation of the sum of the alternating series
with a given accuracy.

The alternating series 2un is called absolutely convergent if the
n=1

series constructed from modules of its terms " |u, | is convergent.
n=1

The alternating series iun is called conditionally convergent if the
n=1
series constructed from modules of its terms

o0 o0
> "|u,| is divergent and given alternating series »_u,, is convergent.
n=1 n=1

19



Properties of absolute convergent series

1. If the alternating series Zun is absolutely convergent, then its
n=1

terms can be grouped and rearranged in any way. The series remains
the same and its sum will not be changed.

2. Absolutely convergent series with sums S, and S, can be added
and subtracted. The resulted series will also be absolutely convergent
and its sum is equal to S, +S, accordingly.

3. The product of two absolutely convergent series with sums S, and
S, is an absolutely convergent series which sum is equal to S, - S, .

Investigation for absolute and conditional convergence of
the alternating series

All alternating number series can be classified according to the
scheme represented in Figure 3.1.

ABSOLUTLY CONDITIONALLY

‘ CONVERGENT
Figure. 3.1

To prove the absolute convergence of the alternating series Zun it
n=1
is sufficient to represent the convergence of the positive terms series

00

> "|u,|. formed from the modules of its terms.
n=1

20



To prove the conditional convergence of the alternating series ZUn ,
n=1

it is sufficient;

1) to represent the divergence of positive terms series Z|un| ;
n=1
2) to substantiate the convergence of the given alternating series

Zun , which is not always possible. If the alternating series has the
n=1

form (3.1), then its convergence should be checked by the Leibniz’ test.

Note. In practice, we advise you to start investigation for the
conditional and absolute convergence of any alternating series by
considering the corresponding positive terms series constructed
from the modules of its terms.

Examples of solution of typical problems
Example 1. Examine for the absolute and conditional convergence

sinn
the alternating series » ————
g Z_l: n-(n+2)
Solution.
Let’s consider series constructed from modules of terms of given

series: Z|”|—Z sinn|

an-(n+2)
mvestlgated for convergence by the comparison test. For comparison

. Obtained positive terms series can be

0

R 1 .. . .
convergent series Zvn = ) — (Dirichlet-Riemann series for p=2>1)
n=1 n=1 n

sinn| 1
n-(n+2) n’

IN

can be taken. Since 0<|u |= =v, for neN, then from

convergence of the series Zvn follows convergence of the series
n=1

00 00

D "|u, | Since the series > |u,|, constructed from modules of its terms,

n=1 n=1
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2, sinn .
is convergent then the alternating series Z— is absolutely
~n-(n+2)
convergent.
Example 2. Examine for the absolute and conditional convergence

. . > 1 1 1 1
the alternating series B ) Ry [ I
g é( ) n 2 3 4

Solution.

We have the alternative series Z(—l)n+1 -u

n=1
ne N, which is called Leibnitz’ series.
Let’s consider the series constructed from modules of the terms of
. & 1
the given > |(- 1)“*1

n=1

n?

where u, = 1 >0 for
n

Zl The last series is harmonic which is
n=1 n
divergent.

Hence, the given series can be only conditionally convergent. We
investigate this alternating series by the Leibnitz’ test:

1) uy, >u, >u, >...>u, >..., since 1>%>%>...>1>... forneN.
n

. 1 . . .
2) limu, =lim==0. Then the given series is convergent according

nN—oo n—oo n
to the Leibnitz’ test.

Hence, the Leibnitz’ series is conditionally convergent because it is
convergent by the Leibniz’ test and the series formed from the modules
of its terms is divergent.

Example 3. Examine for the absolute and conditional convergence

. . = n N
the alternating series » (-1 =
n=1
Solution.
Let’s consider the series constructed from the modules of terms of
. . <N . .
the given series: Z ()™ — 5n = This series should be
n=1 n=1

investigated by the D’ Alembert’s:
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.u . . .
lim—2 = lim——-.—==lim——==<1.  Therefore, the series
n—o un n—oo GN* n Bnoo n 5

constructed from terms modules converges. And initial series converges
absolutely according to the definition of absolute convergence.

Example 4. Calculate the sum of the series Z% approximately
n=1 .

with accuracy € =0,001.

Solution.

We have convergent series (make sure of it yourself)
Z(_nl) - L, 21 - 31 tot (_nl) +..., whose terms are
“~10"n! 10 10°-2! 10°-3! 10" - n!

strictly alternated. According to the corollary of the Leibniz's theorem
the absolute error of replacing the sum of a convergent series (3.1) by its
partial sum does not exceed the modulus of the first of the rejected
terms of the series, i.e. |r,|=|S—S,|<u,,.
Let’s find the smallest n starting from which the inequality holds
1 1 1
=——>g ——=——-<¢
10%-2! 200 10°-6 6000
Hence, |r,|<u, <&, therefore to achieve this accuracy it is enough to
take the sum of the first two terms of the series for:
1 1

S~-——+—=-0,1+0,005=-0,095.
10 200

Uy, <& then |r|<e:

n+l

Self-test questions

1. Name the basic types of number series.

2. What series are called alternating?

3. How to investigate number series with arbitrary terms for
convergence?

4. What series are called alternating? Formulate the Leibniz test.

5. Formulate the definition of absolute and conditional convergence
of alternating series.

6. Formulate the basic properties of absolutely convergent series.
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7. According to which algorithm alternating series are investigated
for absolute and conditional convergence?
8. Justify whether the statements are correct for the alternating series

D u, : a) from convergence Y |u,| = > u, is convergent; b) from
n=1 n=1 n=1

divergence Y |u,| = D u, is divergent; c) from divergence > u, =
n=1

n=1 n=1
i|un| is divergent.
n=1

Self-test assignments
Task 1. Examine the series for absolute and conditional
convergence:

2) Z:cosm b) Z:smz .

Task 2. Examine the alternating series for absolute and conditional
convergence:

) Z( 1),”1 2n+9 b) Z( gy (2n+3j Z( 1)"™n

1 N +n+1
0 0 1 1

n=1 . =1 n=2 N

Task 3. Calculate the sum of series approxmately with accuracy ¢ ,
noting the least sufficient number of terms of the series:

n+1 n+1
Z( 1) ,£=0,001; b) Z(—%) ,£=0,001.

=1
Answers. 1. a) conditionally convergent; b) absolutely convergent;
2. a) divergent; b) absolutely convergent; c) conditionally convergent;
d) absolutely convergent; e) absolutely convergent; f) conditionally
convergent. 3.a) S~=0,944, n=3; b) S~0,134, n=3.

Topic 4. FUNCTIONAL SERIES
Plan

1. Functional series. Basic concepts and definitions.
2. Uniform convergence. Weierstrass’ test.
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3. Properties of uniformly convergent series.
Literature: [1]; [2]; [3]; [4]; [5].
Methodical guidelines

After studying the material of topic 4 the student should know:
definition of functional series, absolute and uniform convergence of
functional series, sufficient condition of uniform convergence of
functional series (Weierstrass' test), properties of uniformly convergent
series; be able to: recognize the functional series, find the domain of
absolute convergence of functional series, investigate the functional
series for absolute and uniform the convergence by the Weierstrass' test.

The basic theoretical information
Expression of the form

Uy (%) Uy (%) o Uy (X) = S0, (9) (4.1)

where (u,(x)) is sequence of functions, is called a functional series.

If you fix x=X,e€D in series (4.1) then the functional series
becomes numerical. This series can converge or diverge. If a number
series converges at a point x,, then the point x, is called the point of

convergence of the functional series.

The set of all values x for which the functional series is convergent
is called the domain of its convergence.

The sum S, (x) =u,(X) +u,(x)+...+u,(x) is called n-th partial sum

of the series (4.1). At each point x belonging to the domain of
convergence, there exists the finite limit rI]i_r>10108n(x)=8(x) which is
called the sum of the series (4.1).

If the functional series (4.1) converges to function S(x), then
difference r (x)=S(x)—-S,(x) is called n-th remainder of series:
r(x)=u,,(x)+u.,,(x)+... At the points of convergence the remainder
of series tends to zero for N — oo : rl]m r (x)=0.

n+2
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The functional series (4.1) is called absolutely convergent if series

Juy (X)] + Ju ()] + ...+ Ju, ()] + ... = Z|un(x)| is convergent.
n=1
Sufficient tests of convergence of numerical series are used to find
the domain of absolute convergence of a functional series. For example,

un+1(x)

Uy (X)

be found and then the inequality I(x) <1 should be solved.
Additionally, a series is investigated at points for which 1(x)=1.

Similarly, the functional series can be also investigated by the radical
Cauchy’s test.

according to the D’Alembert’s test the limit lim

N—0

=1(x) should

Uniform convergence of the functional series

The functional series (4.1) is called a uniformly convergent series on
the set D if for any number &>0 there exists such number N = N(¢)

which depends on ¢ and doesn’t depend on X, that for all n> N and for
all xe D the following inequality |r, (x)|<¢ is true.

Sufficient Weierstrass® test is often used to examine the functional
series for uniform convergence.
Theorem 4.1 (Weierstrass’ test) A functional series (4.1) is
absolutely and uniformly convergent on a set D, if there exists a

00
convergent numerical series Y a, with such positive terms that for all
n=1

x e D the following inequalities are true |u, (x)|<a, (n=12,...).

In this case, the series Zan is called dominated for the series (4.1),

n=1

and the series (4.1) is called correctly convergent on the set D.

Properties of uniformly convergent series
1. If the functional series (4.1) is uniformly convergent on some
interval | and the terms of this series are continuous functions on I, then
the sum of this series is a continuous function on this interval.
2. If the functional series (4.1) is convergent on the interval I, its
terms have continuous derivatives u/(x) (n=1 2,...) in this interval,
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and the series Zu(,(x) is uniformly convergent on the interval I, then
n=1

the given series can be differentiated term-by-term, i.e.

(iun (X)J =iu;(x), xel.

3. If the functional series (4.1) is uniformly convergent on the
interval 7 and the terms of the series are continuous functions on 7 then
this series can be integrated term-by-term, i.e. on the interval [o;B] e

the equality is fulfilled

T(iun (x)jdx = ij'un (x)dx.

n=1 n=1 ¢

The represented properties of uniformly convergent series can be
used in approximate calculations.

Examples of solution of typical problems
Example 1. Find the domain of convergence of functional series

0

> e
Solution.

The given series is defined for any real x, and regardless of the x
terms of this series are positive. Let's use the D'Alembert's test :

n+1( )| 1 2nxn_ 1. n _ 1

I(x) =lim m —.
(x)=Jim u,(x) | nmo2<“+1>X(n+1) 1 2 nosn4l 2F

Since series converges for I(x) <1 then the following inequality

must be solved 2—1X <1, 2*>1, x>0.

The condition I(x)=1 is fulfilled for x=0 then we should

investigate this series for convergence at this point: Zzno —Z—
n=1 n

divergent series.
Hence, the domain of convergence of given series is x € (0; ).
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Example 2. Find the domain of convergence of functional series
i 1
14 x"

Solution.

The series is defined for all values except the point x =—1.

Consider the cases:

1) x=1, then limu, = Iim1 = % # 0, therefore the series at this point

n—o n~>002
is divergent;
2) —1<x<1, then limx"=0, limu, =lim ! ~-=1+0, therefore

n—m n—o 1+ X
nN—o0

the series is divergent;
3) x e (—0;—1) U (L) . At this case the series is convergent.

. R - o
Really, since the series Z—n is convergent for x satisfying the
n=1 X
|1 . . . 1
condition | =<1, ie. [x>1 and lim|——-x"|=lim|——|=1, then
n—oll 4+ X n—o | X 1

according to the limit comparison test this series is convergent for
x| >1.

Hence, domain of convergence of the original series is
X € (—o0;—1) U (L, 0).

Self-test questions

1. What series are called functional?

2. Formulate the definition of the domain of convergence of the
functional series.

3. Formulate the definition of absolute convergence of a functional
series.

4. What functional series are called uniformly convergent?

5. How to find the domain of convergence of the functional series?

6. How to investigate the functional series for uniform convergence?

7. Formulate the basic properties of uniformly convergent series.
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Self-test assignments
Task 1. Find the domain of convergence of functional series:

a)nizl“*’ ); , );n2+ 4,d)Zel‘”)x e)ZnIn .

Task 2. Investigate the functional series for uniform convergence on
the interval'

)Z v X € (—o0; ) ; b) Ze ™ xe(0; x).

n=1
Answers: 1. a) (0;00);b) Xx#=+1;¢) (—o0; ) ;d) (0;0); €) (7; ).
2. a) converges uniformly; 6) converges ununiformly.
Topic 5. POWER SERIES
Plan

1. Power series. The basic concepts and definitions.

2. Abel’s Theorem. Interval and radius of convergence of power
series.

3. Properties of power series.

4. Taylor’s and Maclaurin’s Series.

5. An expansion of Elementary Functions into Maclaurin’s Series.

Literature: [1]; [2]; [3]; [4]; [5].
Methodical guidelines

After studying the material of topic 5 the student should know:
definition of power series, definition of radius and interval of
convergence of power series, formulas of radius of convergence for
complete power series, properties of power series, definition of Taylor’s
and Maclaurin’s series; be able to: recognize complete and incomplete
power series, find the radius, interval and domain of convergence of
power series, apply the properties of power series, decompose functions
into the Maclaurin’s series.

The basic theoretical information
The functional series of the form

a, +ax+ax: +..+a X" +..=> ax" (5.1)
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where a,, a,,..., a,, ... are real numbers is called power series.
Functional series of the form

8y + 8 (X=Xp) +1o+ 8, (X=%,)" .= D8, (X=%,)", (5.2)

where a,, a,,..., a,, ... are real numbers, x, is some constant number,
is a power series in powers of (X —Xx;).

Domain of convergence of power series contains at least one point
x=0 for series (5.1) and x = x, for series (5.2).

Theorem 5.1 (4bel’s). If a power series (5.1) converges for some
value x=x, =0, then it converges absolutely for any value x satisfying
the inequality | x|<|x, | (Fig 5.1,a)

Corollary. If a power series (5.1) diverges for some value x=x,,
then it diverges for any value x satisfying the inequality | x|>|x,|. (Fig
5.1, b)

Series Series
m is divergent is divergent

—|xa 0 [xi| x —|x2l 0 |x2

a b
Fig.5.1

There are three possible cases for series (5.1):
1) series is convergent only at one point x=0;
2) series is convergent for any x e (—oo; ) ;

3) there exists such positive number R that for |x|<R series is
absolutely convergent and for | x|> R series is divergent (Fig. 5.2).

Series Series
is divergent Series is convergent is divergent
-R 0 R X
Fig.5.2

Number R is called radius of convergence of power series.
Connection between radius and interval of convergence of power series
(5.1) and (5.2) is represented in the table 5.1.
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Radius of convergence of power series (5.1) and (5.2) are defined by
the formulas:

R = lim|-2]; (5.3)
e an+1
- (5.4)
limy/|a, |
Table 5.1
. Interval of Interval of
Radius of ; :
convergence R convergence of power convergence of power
series (5.1) series (5.2)
R=0 x=0 X=X,
R=o (—00; ) (—o0; )
O<R<oo (-RiR) (=R+Xy; R+X))

Remark 1. If the power series does not contain all degrees x, i.e. itis
incomplete, then the radius of convergence cannot be found directly by
the formulas (5.3) and (5.4).

It is important to recognize incomplete power series and rationally
choose the next steps investigating for their convergence. We should
either define the interval of convergence by the D’Alembert’s test or
Cauchy’s test as for a functional series or reduce the incomplete power
series to complete series using the corresponding sabstitution (if it is
possible).

Remark 2. If 0<R<oo then in this case the power series can be
convergent or divergent at the points that are the ends of the interval of
convergence. Substituting points x=—R;R to the series (5.1) or points

X=—R+X,; R+Xx, to the series (5.2) we investigate the formed number
series for convergence.
Properties of power series

1. Power series (5.1) absolutely and uniformly converges on any
segment [—a; a] which lies completely within convergence interval

(-R; R).
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2. The sum S(x) of power series (5.1) is continuous function on the
interval (—R; R).
3. (Differentiation of power series.) A power series can be

differentiated term-by-term within the interval of convergence. The
series constructed by the differentiation has the same interval of

convergence, moreover if S(x) =Zanx" , then S’(x):Znanx"‘l
n=1 n=1
4. (Integration of power series.) The power series can be integrated
term-by-term on any segment which lies within convergence interval
(=R; R). In particular, if the segment of integration [0;x] e (-R; R) and

S(X) =Zanx” , then

:[S(x)dx J(Za X de Zja X"dx = Za

= = "n+1

n=l g n=1
moreover the series constructed after mtegratlon has the same convergence
interval.

n+1

5. The power series » a x" and > b x" with radii of convergence
n=0 n=0

R, and R, respectively can be added, subtracted, multiplied. The radius
of convergence of the formed series is not less than the smaller among
numbers R, and R, .

Taylor’s and Maclaurin’s series
Suppose the function f(x) is defined at some neighborhood of a

point X, and has derivatives of all orders.
The series of the form

( %) (”)( %o)

FO6)+ (x=%)" + (5.5)

is called Taylor s series of functlon f(x).
Theorem 5.2. Taylor’s series (5.5) converges to the function f(x) inan
interval (x, —R; x, +R) , i.e.

F(0) = 1 (1) + 100 ( %)

(X=%)) +...+

(X=%y) +.. +

™ O)(x X)" + .. (5.6)
n!
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if and only if a function f(x) has derivatives of all orders and
f (n+1) (C)
(D) (X=%)
0<0<1, tends to zero if n —> o« for all x from this interval:
limr, (x)=0, xe(X, —R;%, +R).

Particular case of Taylor’s series for x, =0 is called Maclaurin’s
series, which is expansion of function into power series in powers X :

" (n)

f(x)=f(0)+ f(O) % X2+ % "L (6.7

~ Let’s represent an expansion of some elementary functions
into Maclaurin’s series in table 5.2.

n+1

expression ., (X)=

where  c=X,+0(X—-X,),

Table 5.2
Ne Maclaurin’s series of function f(x) Domain of
convergence
2 3 n
1 P IR S R S —0 <X <
1 21 3l n!
3 5 X2n+1
2 | sinX=X——+—— (-D" —0< X <00
31 5l (2n+1)!
2 4 2n
3 cosx=1—x—+x——...+(—1)”x + —00 < X < 00
21 4 (2n)!
XX X3 X"
4 | InQ+x)=X——+——...+(-D)""—+... -1<x<1
2 3 n
1 2 3 nyn
S | —=1-X+X" =X +...+(-D)"x"+... -l<x<1
1+x
6 %=l+x+x2+x3+...+x”+... -1<x<1
—X
(1+x)m=1+mx+m(m_1)x2+ -1<x<1, m>0;
1 2! -1<x<1,
7 - —2Y.--(m=(n—-
+m+m(m b(m Z)I (m-=(n 1))x"+...m€(—1:0);
" ~1<x<lm<-1.
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In practice, expansions of elementary functions represented in table 5.2
combined with the rules of addition, subtraction, multiplication of series
and theorems on the integration and differentiation of power series are
used to expand the functions into the Taylor’s (Maclaurin’s) series.

Examples of solution of typical problems

Example 1. Find the domain of convergence of power series
n+1 (X + 2)n

S
Solution.
We have complete power series then radius of convergence R can be
calculated according to the formula (5.3):
B (_1)n+1 B (_1)n+2

a, = P8y = o
" n.3" ' (n+1)-3"

R = lim| 2| = jim|CY (+D-3 g
n—»lg naoc| n-3" ( ]_)"*2 | n—ow
The interval of convergence is following: —3<x+2<3, -5<x<1.
Then the series is absolutely convergent at internal points of the interval
(-51).
Let’s investigate the behavior of a series at the ends of the
convergence interval:
for x =-5 the initial series transforms to divergent series:

Z( 1)n+1( 5+2) _Z( )n+1( 1) 3n _i( 1)2n+11 S 1

n=1 n

n+1
n

=3.

n+1

n o (_1\n+l
for x=1 the series acquires the form: Z(—l)n+l n33" :Z( lr? :
n=1 : =

which is conditionally convergent as Leibniz’ series.
Hence, the domain of convergence of given series is interval (-5; 1].
Example 2. Find the domain of convergence of power series

= n " 2n
;(2n+1j o

Solution.
We have incomplete power series because it contains only even
powers of x.
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Denoting x*=t>0 we obtain complete power series

Z( n jt”. Its radius of convergence is defined by the formula
—=\2n+1

. 1 . 2n+1
=lim =lim -

B 1
limno |an| n—m n n nsx N
n—o0 n
2n+1

Constructed after substitution series converges for te(-2;2).
Taking into account the limitations t>0 we get t<][0; 2), that is, at

the point t=0 this series is convergent. Let's examine it at the right
end of the convergence interval.

2.

(5.4): R

If t=2 then we obtain the number series Z(%) . Since
+

n=1

lim 2n =lim|1- 1 =i¢0, then series diverges for
e\ 2n+1) =" 2n+1) e

t=2. Hence, the series constructed after substitution is convergent at
the interval t €[0; 2).

Returning to the substitution x?>=t we determine the domain of
convergence of the initial series: X2 €[0; 2), |x|<v/2, —v2 <x<+/2.

Example 4. Expand the function into Maclaurin’s series
f(X)=xIn(2+X) .

Solution.

Let’s transform the function in following way:

f(X)=X|n(2+X)=X|n2(l+§j=xln2+xln(1+§j

Using the expansion 4 from the table 5.2 for the function In(l+ gj

2 3 n
we get: f(x):xln2+x(x— X X e (=D X2n+..}=

222 3.2 n
3 X4 Xn+l
=xIn2+x% - +—— (=D o
2.2 3.28 1) n-2"
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The domain of convergence of obtained series coincides to the
domain of convergence of the Maclaurin’s series for the function

|n(1+5j 1< X<1 e —2<x<2.
2 2

Self-test questions

1. What series are called power series?

2. Formulate the definition of the radius and interval of convergence
of the power series.

3. How to find the radius of convergence of power series?

4. Demonstrate the connection between the radius, interval, and
convergence domain of a power series.

5. How to find the domain of convergence of power series?

6. Formulate the basic properties of power series.

7. Formulate the definition of the Taylor’s and Maclaurin’s series.

8. How to expand functions into Maclaurin’s series?

9. Is it correct to say that not every power series is functional? Justify
the answer.

Self-test assignments
Task 1. Find the domain of convergence of power series:

a)g%; Z(X 2n+1 , )an();:_le)) ' d)Zti—;

n=0

e)ZSnX—;l : f)nZ:l:(Zn+3)-5"(x—1)”.

Task 2. Expand the function into Maclaurin’s series:
1 X
b ; €) 2xcos® x ; d) In(3+6x).
2) 5 ib) i 0) ) In(3+6x)
Answers: 1. a) [-11]; b) [L5); ¢) {-3}; d) [-LD; e) (-22);

f) (-0,20,2). 2. a) —i@ |x|<§; b) ix““,XG(—l;l);

n=0 3n+1 7 2 n=0
22X3 24X5 22nX2n+1 2n n
c) 2X — + — 4 (-D)" +.., XeR; d) In3+ -t
) 21 4l Y R d) Z( )
x e (-0,5; 0,5].
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Topic 6. APPLICATION OF POWER SERIES
Plan

1. Approximate calculation of function values.
2. Approximate calculation of definite integrals.
3. Approximate solution of differential equations.

Literature: [1]; [2]; [3]; [4]; [5]; [6].
Methodical guidelines

After studying the material of topic 6 the student should know:
definition of Taylor’s and Maclaurin’s series; be able to: use power
series to approximate the values of functions, definite integrals, and
approximate the solution of differential equations satisfying the initial
conditions.

The basic theoretical information

Power series are used to approximate the values of functions,
definite integrals, approximate solution of differential equations
satisfying the initial conditions, and so on.

Examples of solution of typical problems
Example 1. Calculate Je with accuracy &=0,005.
Solution.
Using expansion of the function e* into Maclaurin’s series we

1
. > 1 1 1 1
receive e=e?=1+ + + ot ——+
2.1 22.21 2°.31 2"n!

Let’s define such n at which an error of the approximate equality
1 1 1 1
e~=1+ + + +.oo+
Ve 2.11 22.21 2°.31 2"n!

doesn’t exceed the given accuracy. For this purpose, we’ll estimate the
remainder

1 1 1
n = Anil t 53 + e +...
2"+ 272+ 2)! 273 (n+3)!

1 ( 1 1 ]
= 1+ + +...]<
2"+ 2(n+2) 2°(n+2)(n+3)
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1 1 1 1
<=3 1+ + >+ 3 st |=
2 (n+1)!( 2(n+2) 2°(n+2)° 2°(n+2) J

1 1 n+2
T2+t 1 2 @n+3(n+ny
2(n+2)
We  establish by means selection that inequality
R<— "2 0005 is fulfilled starting with n=3.
2"(2n+3)(n+1)!

1 1 1
+ +
2.1 22.21 2°.3

1

Hence, e ~1+

~1+0,5+0,125+0,0208 ~ 1, 646.

2
Example 2. Calculate je‘xzdx with accuracy & =0,001.
0

Solution.

Note that the indefinite integral | edx is not expressed through

elementary functions. For calculation of integral we expand the
integrand in power series and use the property of term-by-term
integration of power series.

We receive

6 X2n
e dx= j[l G +——— +...+(=D" +...de=
3! n!

X3 X5 X7 X2n+l
=| X——+ - Foot (D) ——— ...

3 521 7.3 (2n+1)-n! 0
1 1

1 1 1
=5 3 + 5 |_ 7 |+
2 2°-3 2°-5.2t 2°.7.3!

o'—;mha

n
T oy
Since obtained series is alternating and satisfies conditions of
Leibniz’ theorem then according to the corollary of this theorem the
following inequality is true: |r,|<u,.,. Let’s determine the least number
n for which the inequality u
1
2" (2n+1)-n!

0 <0,001  is  true, i.e.

<0,001. This inequality is fulfilled starting from n=3:
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57 17 3 :?176 <0,001. Therefore, we take the first three terms of the

series and obtain

1

= +———~0,5-0,0417+0,003L~ 0,461.
2 2 3 2°.5.2

E

f e dx~

0
Example 3. Find the approximate solution of the Cauchy’s

problem y'=x*+y? y(0)=1 using the first four nonzero terms of

expansion of this solution in power series.
Solution.
We’ll find the solution in the form of Maclaurin’s series

y=y©0)+ YO, YO 2 YO s YO0,
1! 21 3! n!

From the condition of the task we can find the first two coefficients
y(0)=1, y'(0)=0*+21=1

We differentiate the initial equation y” =2x+3y®y’.

Then we substitute x=0, y(0)=1 and y'(0)=1, into this equation
and get the factor y"(0)=0+3=3 Now we pass to the equation
y"=2+32y(y)* +y*y"). Then y"(0)=2+3(2+3)=17. So, the
approximate solution of Cauchy’s problem is defined by the formula

yz1+x+§x2+£x3.
2 6

This formula is more precise if x tends to zero.

Self-test questions

1. Formulate the definition of the Taylor’s and Maclaurin’s series.

2. How to decompose functions to the Maclaurin’s series?

3. How to use power series for approximate calculation of the values
of functions?

4. How to use power series for approximate calculation of definite
integrals?

5. How to use power series for approximate solution of differential
equations that satisfy the initial conditions?
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Self-test assignments

Task 1. Calculate the value of function with accuracy ¢ :

a) /130, £=0,0001; b) si £=0,001; c) cos10° &=0,0001.
e

3fe
Task 2. Calculate the definite integrals with accuracy ¢ :
1 1
2 x 1 2
a) dex, £=0,0001; b) Icosxzdx, £=0,0001; c) I dx4,
0 X 5 o1+ X

dx
V14 x4 ’

Task 3. Find the approximate solution of the Cauchy’s problem
using the first four nonzero terms of expansion of this solution in power
series:

a)y'=xy+e’, y(0)=0;b)y"=yy'-x* y(0)=1 y'(0)=1.

Answers: 1. a) 5,0658; b) 0,716; ¢) 0,9948. 2. a) 0,4931: b) 0,9045;

2 2 3
c) 0,494; d) 0,333. 3. a) yz1+x—+gx3+Ex4; byy~1+ X+ 4 X
2 3 24 2 3

£=0,001; d) £=0,001.

O ey 0 |

Topic 7. FOURIER SERIES
Plan

1. Trigonometric Fourier series. Fourier coefficients.

2. Sufficient conditions for representation of the function by Fourier
series.

4. Fourier series for even and odd functions.

5. Fourier series for 2rtand 2l - periodic functions.

Literature: [1]; [2]; [3]; [4]; [5].
Methodical guidelines

After studying the material of topic 7 the student should know:
definition of trigonometric Fourier series and Fourier coefficients of the
function f(x), sufficient conditions for representation of the function

f(x) by Fourier series, complex form of Fourier series and complex
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coefficients of Fourier series; be able to: recognize Fourier series,
calculate Fourier coefficients and decompose 2n and 2l -periodic
functions into Fourier series.

The basic theoretical information
Functional series of the form

ﬁ+a1cosx+blsinx+...+ancosnx+bnsinnx+...:

=%+Z(an cosnx + b, sinnx) (7.1)
n=1

is called trigonometric series. Constant numbers a,, a,, b,,..., a,, b,,...

are called coefficients of trigonometric series. Absolute term is written

in the form a—2°.

Suppose the periodic function f(x) with period 2t may be
represented as a trigonometric series convergent to the given function
within interval [-=; =], i.e.

f(x)=%+§:(an cosnx-+b, sinnx). (7.2)
n=1

Numbers a,, a,, b,, defined by the formulas
a0=1 [ F00dx, a, 1 [ f(x)cosnxdx, b, 1 [ £ ()sinnxdx,
T T T,

are called Fourier coefficients of function f(x).

Trigonometric series (7.2) which coefficients are Fourier coefficients
of function f(x) is called Fourier series of function f(x).

For integrable function f(x) on asegment [—=; ] we write:

f(x)~%+2(an cosnx-+b,sinnx). The sign (~) denotes that
n=1
Fourier series corresponds the function f(x) integrable on a segment

[-m; ] .
The following theorem gives sufficient conditions for representation
of a function f(x) by Fourier series
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Theorem 7.1 (Dirichlet’s). Suppose the following conditions are
fulfilled for 2r - periodic function f(x) on segment [-m; 7] :

1) f(x) is a piecewise continuous (continuous or has finite number

of finite discontinuities),
2) f(x) is monotone on segment [—m; t] or this segment can be

divided into a finite number of intervals so that on each of them the
function is monotonic.

Then Fourier series of a function f(x) is convergent everywhere
and its sum S(x) has the following properties:

1) S(x) = f(x),at points of continuity f(x), thatis

f(x)=%+2(an cosnx +b, sinnx);

n=1
2) if x, is a point of discontinuity of the first type of a function
f(x), then

f (x,—0)+ f(x, +0)
2 )
f(~n+0)+ f(n—0)

2
Remark 1. For any integrable 2r-periodic function the Fourier
coefficients can be calculated by the formulas:

S(X,) =

3) S(—n)=S(n) =

a+2m a+2m a+2m

a0=1j f (x)dx an=1j f () cosnxdx , bn=1j f (x)sin nxdx,
T a T a T a

where a is arbitrary real number.
Remark 2. To calculate the Fourier coefficients the following

equalities are used: sinnt =0, cosmrz(—l)", n=0,12,...

Fourier series for odd and even functions

If f(x) is either odd or even function then the calculation of the

Fourier coefficients is simplified. At the same time, the form of the
Fourier series is also simplified, it becomes incomplete (Table 7.1).
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Table 7.1

Property of a

function f (X) Fourier series Fourier coefficients

b, =0, ao=%jf(x)dx,
0

f(x) iseven 8, S

function 2 Z; cosnx 2%
a, = —j f (X) cos nxdx

T

a,=0,a, =0,

f(x) is odd S .
function nZ:;bnsmnx b, :gjf(x)sin nxdx

o

Fourier series for 2l-periodic functions

Suppose the function f(x) is defined on the segment [-I; ], and

has the period 21 (1>0). Suppose this function obeys all conditions of
Dirichlet’s theorem. Therefore, the Fourier series for f (x) looks like

f(x)~— Z(a cos—+b sin nTnX) (7.3)

Where Fourier coefﬁuents are defined by the formulas:
|

a, :%j, £ (x)dx, an:%jl f(x)cos”T”de, bn:%j f(x)sin“Tm‘dx. (7.4)

Table 7.2
fﬁﬁgﬂf)rrfyf {)?) Fourier series Fourier coefficients
2 |
b, =0, a =—j f (x)dx,
f(x) iseven &+ia COSn_nx
function 2 & | X
=—If(x)cos—dx
f (x) is odd 8, =0, a, =0,
X)Is 0 = . TNX

. b, sin— !
function nzzl: n | b, =T2_[f(x)sinnTm(dx

0
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Fourier series and Fourier coefficients for even and odd functions
defined on segment [-I; I] are given in Table 7.2.

Examples of solution of typical problems

Example 1. Expand 2=-periodic function in Fourier series
f(x)=|x|, f(x+2m)="f(x) (Fig.7.2).

Solution.
The given function satisfies to all conditions of Dirichlet’s
theorem. It is even function. Then Fourier series for this function looks
2 n
| == ()" -).
iy N T on° |, mn

like f(x) =%+ > a, cosnx.
0]
That is Fourier series for the given function is

n=1
Let’s define Fourier coefficients a, and a, (Table 7.1):
T 2&(-D)"-1 n 4({CcosX C€0S3X COS5X
f(X)==+—) ~————cosnx=——— + + +.
(9 2 né n’ 2 n( 1? 3 52 j

T 2 T
aozgjxdx:gx— =T, anzngCOSHXdX=E X
Ty 2 Ty T
The given function f(x) is continuous everywhere. Therefore obtained
representation is true for all xeR.
Example 2. Expand function f(x)=x*, x<[0;x] in Fourier series

in sines.
Solution.
Let’s extend f(x) in odd way on [-m;0), and then extend it

periodically with period 27 on all numerical axis (Fig. 7.3). Function

g

sin nx
n

0

K

_gU-sin nx dxj_gcosnx
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f(x) is odd on a segment [—m; 7t|. Therefore a, =a, =0. Let’s find a

coefficient b, using formula b, :EI f (x)sinnxdx.

n 0
We get
y
' o
! ,, l’ / / 21 ] /
! 1 ! ! i 1
N 2 | | H !
2 -ni 0| ®,/2n X ! | [ A
H / / g 21 —1 L2 3 X
i I I b b bl 60—
: |
-7
Fig. 7.3 Fig. 7.4
27 5, . 2 —cosnx|™ 27
bnz—.[xzsmnxdx:— X2 +—J'xcosnxdx =
Ty n n |, ng
2 cosnt 2 sinnx|®™ 1F.
==| -n®. T x ——jsmnxdx =
n n n n [, ng

2
= g(n— )™+ %cos nx
n{ n n

J 2 gy +i((—1)“ -1).

3
,) n mn

0

Hence, f(x)= ZE(—l)”*lsin nX+Zi3((—1)n —~1)sinnx =
n ~
(sinx sin2x  sin3x j 8[sinx sin3x  sin5x j
=27 - + - + + +.on

n=1

1 2 3 Tl F
This equality is fulfilled for x €[0; ], except point x =, in which
the sum of series equals 0, but f () = n°.

Self-test questions

1. Formulate the definition of a trigonometric Fourier series.
2. Write down the formulas of the Fourier coefficients of the periodic
function f(x) with the period 27 .
3. Formulate sufficient conditions for the representation of a function
f (x) by Fourier series.
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4. Write down the complex form of the Fourier series and the
complex coefficients of the Fourier series.

5. Write down the formulas of Fourier coefficients and Fourier series
for even and odd functions.

6. Write down the formulas of Fourier coefficients and Fourier series
for 2t and 2l -periodic functions.

Self-test assignments

Task 1. Expand 27 -periodic functions given in the interval (—x; )
in the Fourier series.
3, if xe(-x;0), X
f(x)=x;b) f(x)= c) f(xX)=1+=.
a) £(x)=x;b) f(x) {—1, it xeny @ 100713
Task 2. Expand functions given in the interval (O; =) in a Fourier

series by cosines:
1 if xe(0;z/2),

f(x)=x%; b) f(x)=
2 109 ) 1) {o, it xel[r/27).
Task 3. Expand functions in Fourier series:

2 (0= {1 if xi( 1,0), ) f(x):{o, if xe(=31),

[0:D); X, if xe[L3).
Answers: 1. a) 2?:(_1)“1 ik, py g A5 SIR=DX 0y g 4 inx
k T k=1 2k 1
sin2x  sin3x sin4x kcoskx
- — 2.a)—+4) (-1
2 " 3 4 a) " Z( )
» 2k —1)x 4 &sin(2k —1)mx
b 1“—(:05( . 3a)——)y —>
)2 +nkzll( A i
2 1 3 . mn 7N TTNX
§) —sin— 1" —cos— | |cos—
)3+3Z_;( 3+rc [( 4 BD 3 N

—Z —(3(—1)”*1+cosn—nj+%sinn—n sin ™™
3=\ mn 3 n°n 3 3
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