HAIIOHAJIBHUH ABIALIIMHUM YHIBEPCUTET
®AKYJBTET JIHIBICTUKHU TA COLIAJIbHUX KOMYHIKAILIN
KA®EJIPA AHTJIIACBKOI ®LIOJOII I MEPEKJIAJLY

3ATBEP/IKYIO

3aBinyBau kadpeapu
aHTIIICHKOT (1TI0JIOTIT 1 mepeKIany

JI. bynanosa

MoayabHa KOHTpPOJbHA podoTa Ne 1 (3pa3ok)
3 HaBYaJbHOI AucuniuIiHg « CAT-TexHoorii y nepexiaagi»

Variant 1.

Translate the following text in Word Fast Anywhere (CAT-tool) under the
university license. Create your own TM and Glossary. Make QA check (transcheck and
spellcheck) of your translation.

The global object provides variables and functions that are available anywhere. By default,
those that are built into the language or the environment.

In a browser it is named window, for Node.js it is global, for other environments it may have
another name.

Recently, globalThis was added to the language, as a standardized name for a global object, that
should be supported across all environments. It’s supported in all major browsers.

We’ll use window here, assuming that our environment is a browser. If your script may run in
other environments, it’s better to use globalThis instead.

In a browser, global functions and variables declared with var (not let/const!) become the
property of the global object:

var gVar = 5;

alert(window.gVar); // 5 (became a property of the global object)

Function declarations have the same effect (statements with function keyword in the main code
flow, not function expressions).

Please don’t rely on that! This behavior exists for compatibility reasons. Modern scripts
use JavaScript modules where such a thing doesn’t happen.

That said, using global variables is generally discouraged. There should be as few global
variables as possible. The code design where a function gets “input” variables and produces certain
“outcome” is clearer, less prone to errors and easier to test than if it uses outer or global variables.



