
МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач випускової кафедри

“____” ____________ 2023р.

ДИПЛОМНА РОБОТА
(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬОГО СТУПЕНЯ МАГІСТРА

Тема: “Методологія вдосконалення програм на основі засобів генерації коду

штучним інтелектом”

Виконавець: ст. гр. 221МА Данилов Олексій Геннадійович

Керівник: к.ф.-м.н., доцент, Михайло Вікторович Оленін

Нормоконтролер: Михайло ОЛЕНІН

Київ 2023

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering

Software engineering department

ADMIT TO DEFENSE

Head of Department

“____” ____________ 2023

QUALIFICATION WORK
(EXPLANATORY NOTE)

GRADUATE OF EDUCATIONAL MASTER’S DEGREE

Theme: “Methodology for improving programs based on means of code

generation by artificial intelligence”

Performer: Danylov Oleksii Gennadijovich

Standard controller: Doctor of technical sciences, Associate Professor, Mykola

Fyodorovych Radishevskyi

Supervisor: Mykhailo OLENIN

Kyiv 2023

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет кібербезпеки і програмної інженерії

Кафедра інженерії програмного забезпечення

Освітній ступінь магістр

Спеціальність 121 Інженерія програмного забезпечення

Освітньо-професійна програма Інженерія програмного забезпечення

ЗАТВЕРДЖУЮ

Завідувач кафедри

"___" _________ 2023 р

ЗАВДАННЯ

на виконання дипломної роботи

Данилова Олексія Геннадійовича

1. Тема дипломної роботи: «Методологія вдосконалення програм на основі

засобів генерації коду штучним інтелектом»

затверджена наказом ректора від «29» жовтня 2023 р. № 1994/ст.

2. Термін виконання роботи: з 02.10.2023 р. до 31.12.2023 р.

3. Вихідні дані до роботи : Вдосконалений програмний продукт з

використанням VSCode та мов програмування Typescript та Javascript.

4. Зміст пояснювальної записки:

1) Аналіз методології вдосконалення програм на основі генерації коду

ШІ,

2) Дослідження технологій впровадження,

3) Архітектура вдосконалення програми,

4) Прототип розробленого програмного забезпечення.

5. Перелік обов'язкового ілюстративного матеріалу (слайдів презентації):

1) Тема, виконавець, керівник;

2) Існуючі методи, аналіз недоліків, постановка завдання;

3) Вимоги до програмного засобу;

4) Структура інструменту, діаграма класів;

5) Інтерфейс програмного засобу;

6) Демонстрація прототипу інструменту

6. Календарний план-графік

№

з/п

Завдання Термін виконання Відмітка

про

виконання

1. Розробка та затвердження графіка

роботи. Ознайомлення з

постановкою задачі та вивчення

літератури.

Написання розділів ПЗ,

представлення керівнику.

14.10.2023-31.10.2023

2. Написання першого та другого

розділу. Надання на перший нормо-

контроль ПЗ - (обов’язково -

титульної, завдання, графіка,

реферат, список скорочень, зміст,

вступ, список джерел, розділи ПЗ).

15.10.2023-22.10.2023

3. Редагування пояснювальної

записки, графічного матеріалу.

22.10.2023-01.11.2023

4. Проходження першого нормо-

контролю.

01.11.2023-14.11.2023

5. Написання третього та четвертого

розділу дипломної роботи.

14.11.2023-20.11.2023

6. Проходження контролю ПЗ на

плагіат.

20.11.2023-26.11.2023

7. Отримання відгуку керівника.

Підготовка презентації та тексту

доповіді. Попередній захист.

26.11.2023-27.11.2023

8. Проходження нормо-контролю,

перепліт пояснювальної записки.

Отримання рецензії.

27.11.2023-13.12.2023

9. Здати секретарю ДЕК: ПЗ, ГМ, CD-

R з електронними версіями ПЗ, ГМ,

презентацію, відгук керівника,

рецензію, довідку про успішність, 2

папки, 2 конверта.

13.12.2023-19.12.2023

10. Захист дипломної роботи перед ЕК. 19.12.2023-31.12.2023

Дата видачі завдання 02.10.2023р.

Керівник дипломної роботи: ________ Михайло ОЛЕНІН

Завдання прийняв до виконання: _________ Олексій ДАНИЛОВ

NATIONAL AVIATION UNIVERSITY

Faculty cybersecurity and software engineering
Department Software Engineering

Degree of education master

Specialty 121 Software engineering

Education-professional program Software engineering

APPROVED

Head of department

 “____” ____________ 2023

Task

on executing the graduation work

Danylov Oleksii Gennadijovich

1. Topic of the graduation work: “Methodology for improving programs based on

means of code generation by artificial intelligence”

 Approved by the rector's order from «29» october 2023 № 1994/st.

2. Terms of work execution: from 02.10.2023. to 31.12.2023.

3. Source data of the work: improved software product using VS Code and

programming languages Typescript and Javascript

4. The content of the explanatory note:

1. Analysis of methodology for improving programs based on AI code

generation

2. Research of the implementation technologies

3. Architecture of improved program

4. Prototype of developed software

5. List of mandatory presentation slides:

 1. Topic, performer, leader.

 2. Existing methods, analysis of shortcomings, setting of the task.

 3. Requirements for the software tool.

 4. Tool structure, class diagram.

 5. Software tool interface.

 6. Demonstration of the tool prototype.

6. Calendar plan-schedule

№ Task Deadline
Performanc

e note

1. Familiarization with the statement of the

problem and the study of literature

Writing 1 section, presentation to the

supervisor

14.10.2023-

31.10.2023

2. Preprint of section 1 and auxiliary pages

(draft) - title, task, schedule, abstract, list

of abbreviations, content, introduction,

source list. First standard control.

15.10.2023-

22.10.2023

3. Writing 2 section, presentation to the

supervisor

22.10.2023-

01.11.2023

4. Writing 3 section, presentation to the

supervisor

01.11.2023-

14.11.2023

5. General editing and printing of an

explanatory note, graphic material

14.11.2023-

20.11.2023

6. Passing standard control 20.11.2023-

26.11.2023

7. Development of the text of the report.

Creating of graphic material for

presentation

26.11.2023-

27.11.2023

8. Get feedback from the supervisor,

reviews.

27.11.2023-

13.12.2023

9. Preparation of materials for transmission

to the secretary of the DEC (software,

GM, CD-R with electronic copies of

software, GM, presentations,

supervisors review, review, certificate of

progress, 2 folders, 2 envelopes)

13.12.2023-

19.12.2023

10. Graduation project presentation 19.12.2023-

31.12.2023

Date of issue of the assignment 02.10.2023.

Supervisor: Mykhailo OLENIN

Task accepted for execution: Oleksiy DANYLOV

РЕФЕРАТ

Пояснювальна записка до дипломної роботи “Методологія

удосконалення програм на основі засобів генерації коду штучним

інтелектом”: 93 с., 31 мал., 1 табл., 2 графіки, 7 діаграмм, 10 використаних

джерел, 1 додаток.

Об’єкт дослідження – методологія вдосконалення програм на основі

засобів генерації коду штучним інтелектом.

Мета роботи – запропонувати методологію вдосконалення програм на

основі засобів генерації коду штучним інтелектом та продемонструвати ії

застосування на практичних прикладах.

Методи дослідження – використання методів реверсивної інженерії

програмного забезпечення та методів штучного інтелекту.

Тип розробки: об'єктно-орієнтований підхід.

Апаратне та програмне забезпечення – ПК з операційною системою

Windows 11 або Windows 10, середовище для об'єктно-орієнтованого

програмування – VS Code. Використання методології штучного інтелекту

неможливо без підключення до Інтернету.

Розробка програми виконувалася в середовищі Node.js Передбачене

припущення щодо розробки інструментів – розроблене програмне

забезпечення можна покращити шляхом поєднання генерації штучного

інтелектуального коду та перевірки вразливостей штучного інтелекту.

Результати роботи – можуть бути використані при розробці

програмних засобів або створенні та вдосконаленні програмних модулів

існуючої програми, призначених для різних галузей промисловості.

ВДОСКОНАЛЕННЯ ПРОГРАМИ, ГЕНЕРУВАННЯ КОДУ, СТВОРЕННЯ

ДОКУМЕНТАЦІЇ, ПОШУК ВРАЗЛИВОСТЕЙ, РЕВЕРСНА ІНЖЕНЕРІЯ,

ДОДАВАННЯ ПРОГРАМНИХ МОДУЛІВ.

ABSTRACT

Explanatory note to the thesis "Methodology of program improvement based

on means of code generation by artificial intelligence": 93 pp., 31 figures, 1 tables,

2 graphs, 7 diagrams, 10 used sources, 1 appendices.

The object of the research – the methodology of improving programs based

on means of code generation by artificial intelligence.

The goal of the work is to propose a methodology for improving programs

based on means of code generation by artificial intelligence and to demonstrate its

application on practical examples.

Research methods – use of software reverse engineering methods and

artificial intelligence methods.

Type of development: object-oriented approach.

Hardware and software – PC with Windows 11 or Windows 10 operating

system, an environment for object-oriented programming –VS Code. The use of

artificial intelligence methodology is impossible without an Internet connection.

Application development was done in Node.js runtime environment

Intended tool development assumption – developed software can be improved by

combining artificial intelligence code generation and AI vulnerability testing.

The results of the work can be used in the development of software tools or

the creation and improvement of software modules of an existing program intended

for various industries.

SOFTWARE IMPROVEMENT, CODE GENERATION,

DOCUMENTATION CREATION, VULNERABILITY FINDING, REVERSE

ENGINEERING, ADDING SOFTWARE MODULES.

TABLE OF CONTENT

LIST ACRONYMS AND ABBREVIATIONS ... 8

INTRODUCTION ... 9

CHAPTER I ... 10

RESEARCH OF THE METHODOLOGY FOR IMPROVING PROGRAMS CODE ... 10

1.1. Background .. 10

1.2. Research Objectives ... 10

1.3. Methodology ... 10

1.3.1. Overview of AI Techniques ... 10

1.3.2. Technologie Integration ... 14

1.4. Practical studies of use. ... 15

1.4.1. Overview ... 15

1.4.2. Describing of existing project .. 16

1.4.3. ChatGPT request generation .. 17

1.4.4. Github Copilot code generation .. 23

1.4.5. IntelliSense reference autocomplition .. 26

1.4.6. Code formatter manual preferences and work ... 27

1.4.7. Bug fixing .. 27

1.5. Signs of methodology ... 28

1.6. Analysis of literary sources and existing analogues of AI code generators and AI code

analyzers .. 29

1.6.1. Analysis of analog programs ... 29

1.6.2. Found software analogs to artificial intelligence Github Copilot. ... 30

1.6.3. Comparison of existing analogue programs .. 32

1.7. Source understanding .. 33

1.8. Relevance of the improving programs by ai code generation .. 33

1.8.1. Benefits and Challenges of AI-Driven code generation .. 33

1.8.2. Future Directions ... 33

1.8.3. Formulation of the problem of using these technologies and possible solutions .. 34

1.9. Challenges ... 34

Conclusion .. 34

CHAPTER 2 .. 35

REQUIREMENTS FOR THE IMPROVEMENT OF THE CODE GENERATION SYSTEM ... 35

2.1. Requirements for the designing of software .. 35

2.2. Description of the diagram ... 36

2.3. Functional requirements ... 37

2.3.1. Capabilities for backend part of web app applications ... 37

2.3.2. Capabilities for frontend part of web app applications .. 38

2.4. Non-functional project requirements... 39

2.4.1. Requirements for backend part of web app applications ... 40

2.4.2. Requirements for frontend part of web app applications .. 40

2.5. Detailed Description .. 41

2.5.1. Capabilities for backend part of web app applications .. 41

2.5.2. Capabilities for frontend part of web app applications: ... 43

2.5.3. Requirements for backend part of web app applications ... 46

2.5.4. Requirements for frontend part of web app applications .. 47

Conclusion .. 49

CHAPTER 3 .. 50

PROPOSED ARCHITECTURE OF THE SOFTWARE APPLICATION ... 50

3.1. Software architecture .. 50

3.2. Diagram of the deployment of the link shortening web application ... 52

3.3. Component diagram of the link shortening web application... 54

3.4. Class diagram ... 55

3.5. Construction of connections of physical equipment ... 58

Conclusion ... 61

CHAPTER 4 .. 62

PROTOTYPE IMPLEMENTATION USING THE CODE GENERATION METHODOLOGY ... 62

4.1. Development of a prototype of a web service for shortening links using the methodology of

using artificial intelligence ... 62

4.2. Prototype of the developed system ... 63

4.3. User interface development. .. 82

4.4. Results of web link reduction system testing. .. 88

Conclusion ... 90

CONCLUSIONS ... 91

LIST OF REFERENCES ... 93

APPENDIX A. ... 94

8

LIST ACRONYMS AND ABBREVIATIONS

IDE – Integrated development environment;

JS – JavaScript programming language;

TS – Typescript object oriented programming language;

NE (Node.js) – Environment system for javascript and typescript;

EX (Express.js) – Framework that working with Node.js and webapps

SQ (Sequelize) – Typescript and Node.js ORM for different databases;

RD (Redis) – in memory data structure store, used as database (cache);

DB – database;

OOP – object oriented programming;

OS – operational system;

DBMS – database management systems;

DAO (Data Access Object) – a module that consists of one or more files in the

program, which is responsible for communication with the database;

GPT (Chat GPT) – Multifunctional AI that works in text solution that can create

some ideas, problem solves, code understanding;

CF (Code Formatter) – API or Integrated software that works with endup code to

convert it to more understandable and readable for developer view;

IS (IntelliSense) – Autocomplete technology that provide a developer mostly view

interface of different variants of references autocompletion that will automatically

generate code;

GC (Github Copilot – AI tool that can generate module/function code and give

variants of realization of some task, as well as bug fixing;

CW (Amazon CodeWhisperer)– AI tool for searching security vulnerabilities and

code stable analyzer;

CM (Codeium) – Free AI tool alternative to Copilot;

TE (Tabnine) – Free AI tool alternative to Copilot;

FP (Faux Pilot) – Open source self hosted copy of old version of Copilot;

AI – Artificial intelligence;

9

INTRODUCTION

The methodology of designing software modules using artificial intelligence

plays a crucial role in understanding and analyzing existing software systems. This

paper examines the integration of artificial intelligence (AI) techniques, including

IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot and similar programs

to GitHub Copilot for code generation of software systems.

The goal is to use AI capabilities to improve various software modules,

including code understanding, refactoring, and creating step-by-step

documentation for performing specific software improvement actions. We review

each AI method, discuss their potential contribution to improved part design, and

present a framework for their integration. In addition, we discuss the benefits,

challenges, and future directions for AI-driven improvement and exploration of

critical security challenges code generation model.

The relevance of the creation of program modules by artificial intelligence

as a scientific topic at the moment is difficult to overestimate, since in our time

there is a rapid development of artificial intelligence, its use can add an increase in

speed and create opportunities for the integration of AI in projects to obtain better

software. The use of artificial intelligence does not mean a complete rejection of

developers, they still need to develop and have the necessary level of knowledge to

create software, and the involvement of artificial intelligence in the development

process can contribute to positive changes in the design process, since artificial

intelligence cannot create a quality product that consists of from many modules

itself, but only to copy already existing software analogs and functions that this

analog has.

The methodology of creating software modules is strictly connected to

meaning of reverse engineering since this methodology involves viewing an

existing software, therefore, it is appropriate to use this concept as compatible with

this type of work

10

CHAPTER I

RESEARCH OF THE METHODOLOGY FOR IMPROVING PROGRAMS

CODE

1.1. Background

 AI code generation involves analyzing and understanding existing software

systems to gain valuable insights, improve maintainability, and support future

development efforts. Traditional approaches to code generation rely on manual

analysis, which can be time-consuming and error-prone in inferences to existing

code. The problem statement in this area is that the manual nature of project

support and improvement creates challenges in terms of efficiency, accuracy and

scalability. Therefore, there is a growing need to use AI methods to automate and

improve various aspects of the design process.

1.2. Research Objectives

The main objectives of AI integration:

● To explore the integration of IntelliSense, Code Formatter, ChatGPT, and

GitHub Copilot for AI-driven code generation.

● To evaluate the effectiveness of the combined AI approach in improving code

comprehension, refactoring, and documentation generation during developing

software module.

● To identify the benefits, challenges, and ethical considerations associated with

AI-driven module development.

● To propose future directions and recommendations for advancing AI techniques

in time of development.

1.3. Methodology

1.3.1. Overview of AI Techniques

This section provides a brief explanation of the AI techniques used in the

integrated approach: IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot.

It describes their functionalities.

11

 IntelliSense: Improving Code Comprehension IntelliSense goes beyond

traditional code completion by leveraging AI algorithms to provide context-aware

suggestions and documentation (Fig. 1.1.). In the context of developing,

IntelliSense can assist in understanding complex code structures by offering

relevant suggestions based on the current code context. For example, it can help

identify the parameters and return types of functions, provide documentation for

libraries or APIs, and suggest possible code fixes to improve the comprehension of

legacy codebases.

Fig. 1.1. “IntelliSense software logo”

IntelliSense is currently supported in Visual Studio for languages such as

Java, C++, C#, Javascript, Typescript J#, Visual Basic, Visual FoxPro, XML,

HTML, XSLT, and others.

 Code Formatter: Automating Refactoring Code Formatter utilizes AI

algorithms to automatically analyze and refactor existing code, making it more

readable, maintainable, and aligned with coding best practices (Fig. 1.2.). In the

context of developing, Code Formatter can aid in refactoring legacy codebases by

identifying and applying improvements to the code structure, naming conventions,

indentation, and other formatting aspects. This automated refactoring not only

enhances code readability but also facilitates the identification of code patterns and

structures during the developing process.

12

Fig. 1.2. “Example of code formatter Prettier”

 We have different code formatters, they all have some benefits and

disadvantages so we will not not draw attention to their different options and

methods of adjustment. In addition, their installation and connection have the same

structure, in which it is easy to install the extension and create a file with the

setting.

 ChatGPT: Assisting in Documentation Generation ChatGPT, a powerful

language model trained on a vast corpus of text data, can play a significant role in

developing by assisting in the generation of documentation (Fig. 1.3.). During the

development process, ChatGPT can be used to automatically generate

explanations, comments, and summaries that describe the functionality, purpose,

and relationships between code components. This documentation can serve as a

valuable resource for understanding the system's architecture, dependencies, and

behavior, particularly in cases where comprehensive documentation may be

lacking.

Fig. 1.3. “ChatGPT software logo”

13

ChatGPT can be integrated with Visual Studio, VS Code, jetBrains IDE,

IntellijIDEA, etc.

 GitHub Copilot: Intelligent Code Generation GitHub Copilot leverages AI

models trained on vast code repositories to suggest code snippets, functions, and

even entire code blocks based on the observed context (Fig. 1.4.). In development,

GitHub Copilot can expedite the understanding of complex code structures by

generating relevant code segments that align with the observed behavior or patterns

within the software system. These intelligent code suggestions can assist in

identifying crucial functionality, understanding system interactions, and

accelerating the main process.

Fig. 1.4. “Github Copilot software logo”

GitHub Copilot is trained on all languages that appear in public repositories.

For each language, the quality of suggestions you receive may depend on the

volume and diversity of training data for that language. For example, JavaScript is

well-represented in public repositories and is one of GitHub Copilot's best

supported languages. Languages with less representation in public repositories may

produce fewer or less robust suggestions.

Codeium, Tabnine and FauxPilot work in the same way, the main difference

between them is that they are free to use, the Copilot unlucky have a paid

subscription.

14

1.3.2. Technologie Integration

The main structure of AI work will be the code generation by the request of

our Developer (Fig. 1.5.). Our engineer creates an idea of the software view, next

by existing problems he needs to solve, write to the ChatGPT what he wants to fix

or create and take some information on how to do that. By the answer he can create

code by writing comments in code lines of projects we improving and generate

some working code.

Fig. 1.5. “Artificial intelligence work structure”

We will use the creation of code by ChatGPT named ChatGPT as well as

Gihub Copilot to take the best variants of AI code answers.

If the answer from ChatGPT and Github Copilot don’t work, developers at

the same time can write to Copilot to fix the problems with code or regenerate the

request.

To integrate our technologies we need to perform several steps.

We will use two types of Chat GPT:

1. Browser version for code ideas and solutions.

2. CodeGPT to create some code.

Installation steps:

15

1. Install the IDE and open the already created project.

2. On the top left of the panel, select the "extensions" tab.

3. Enter "chat gpt" in the search panel and open the tab.

4. Press the installation button.

5. Make the same steps for “Github Copilot” та “Prettier”.

Usage steps Chat GPT(Code GPT):

1. After installing the extension, you need to create a Chat GPT Account on the

OpenAI website.

2. Next you need to open your profile in OpenAI and create your API Key.

3. Open command palette in Visual Studios and choose “CodeGPT set api key”.

4. Now you can choose.

Usage steps Github Copilot:

1. After installing the extension, you can already open any file of your project

and start writing some requests.

2. In writing time you will see auto completion of Copilot because it start

working and gives you some output even on the start. You can push the “Tab”

button to autocomplete requests.

3. To start generating code, push “Enter” button.

Other AIs have similar steps to install.

1.4. Practical studies of use.

1.4.1. Overview

As we see, the listed opportunities provided by tools for project

improvement inherit the logic of reverse engineering, since this methodology

involves viewing an existing software solution, its research and the creation of

additional software modules.

In this section we will see examples of usage of these technologies with each

other. As well as describing the model of reverse engineering. Here we can already

simply understand why it is so progressive and helpful in developing models.

Let’s look at different practical usage of our technologies and artificial

intelligence. We will start by each stage of development:

16

1.4.2. Describing of existing project

Firstly, we defined the existing project points which need to be added. In our

case we have already created a project for customers but we need to improve this

product and check the vulnerability in it. Thir project makes any link the user sends

to it shorter. According to experimental project name “Link shortening API” which

has already been created we have next structure of the project

Fig. 1.6. “ChatGPT documentation request”

Main technology stack of the project:

- Environment Node.js;

- Programming language TS and JS;

- Back-end connection to DB is Sequelize;

- Back-end database MySQL;

- “Link” model for DB;

- Fast requests provided by Redis db as application (cache);

- Containerization for starting project with Docker;

- Env file for collection of config credentials;

- Basic CRUD architecture;

- API folders and files to connect link shortening feature;

17

According to that technology stack our task is to develop several improvements in

a project:

(Back end part)

- Change database type due to customer’s wishes;

(Front end part)

- Develop the front end part of application to make full-stack app;

(Revision part)

- Audit the project as a whole for security issues and check architecture of app for

further scale the project;

Based on the received data, it will be advisable to proceed the operations with

artificial intelligence.

1.4.3. ChatGPT request generation

“Change the db type of backend project part by Sequelize from MySQL to

PostgresSQL” (Fig. 1.7.) and code input (addition 2.1.).

Fig. 1.7. “ChatGPT documentation first part of response”

Now we can see that artificial intelligence is starting to write an algorithm

for the developer with steps that must be performed to get the desired result. First

of all, in his opinion, it is necessary to copy the data of the old database so as not to

lose important information. Next, the development stages begin. He offers to

install the necessary components that we already have, so we will skip this step.

Next, it is necessary to install the database we need and change the corresponding

18

model for the database, because before that we had a model for the another

database.

Fig. 1.8. “ChatGPT documentation second response”

Now he provided information in which specific files need to change code in

order for the application to create a connection with the database we need.

It is necessary to generate the model with the following command suggested

by artificial intelligence, correct it a little, and also change the configuration file,

which contains confidential data necessary for the work of the database.

19

Fig. 1.9. “ChatGPT documentation third response”

 Next, he offers to check different aspects of the program for possible

problems that may appear after changing the data. Let's take these requirements

into account and check the entire application for relevant problems.

1) The request and response about developing the front end part of the

application to make a full-stack app (Fig. 1.10.)

20

Fig. 1.10. “ChatGPT documentation request”

In the image above, artificial intelligence offers an option on how to create a

front-end part of the application. As usual, first of all, creating a file, then installing

all the necessary software modules, libraries and frameworks that will be needed

during development. After that, with the help of the command in terminal, a

starting front-end application is created, and the developer begins to modify it and

supplement it with the necessary functions

21

Fig. 1.11. “ChatGPT code change request”

Here it offers manual installation and in-app routing setup. Since the

framework with the help of which the front-end part of the application is developed

is created as a single-page application (an application in which actions take place

on one link that does not change, during these actions, program modules are

dynamically interchanged and everything is displayed without changing the link of

the web page), it is necessary to add additional technology that will react to the

user's actions and replace the web page link so that the user can conveniently

understand that he is already on the another page. Next, he creates an example of

22

connecting requests to the back-end part of the application to send the necessary

data

2) Request and response about vulnerability in our project with AWS

CodeWhisperer

Fig. 1.12. “ChatGPT documentation first response”

In the image above, the answer from the artificial intelligence makes it

possible to understand how the check for possible problems with the security of the

application works, and how it is necessary to connect the artificial intelligence

CodeWhisperer so that it can check the project for possible problems.

23

Fig. 1.13. “ChatGPT documentation second response”

Continuation of the previous answer from AI, here he describes all

additional necessary information, the developer can quickly read it and easily start

performing this work.

Indeed, we can use that documentation for further developing.

1.4.4. Github Copilot code generation

Fig. 1.14. “Project .env configuration file”

24

The developer writes a request to the AI in which he asks to offer options for

changing the database in an already existing application and waits for a response

with examples that he can use in the future.

Fig. 1.15. “DB code generation response”

3) Now we take the output with exactly the comments we need for our second

AI Github Copilot. (Removing some comments that do not belong to our file

and need to be extracted to another file).

4) Using Copilot changing our comments to code with additional code we need

to use.

5) Additional instructions:

- Create auth file in frontend folder.

- Add the main react function to this file.

- Change some html code.

6) Image below is the code we already have.

25

 Fig. 1.16. “Github copilot code generation”

7) Now by existing comments we start to use Github Copilot. Just start to write

some additional text in comments and the AI will understand what you want

to start creating the code (Fig. 1.17.).

Fig. 1.17. “Commented tasks for code generation”

8) By each line we see how AI gives us examples and by pushing “Enter it

starts code generation (Fig. 1.18.).

Fig. 1.18. “Code generation example”

In the image above, the developer has written comments that artificial

intelligence also picks up for the next correct answer. In response to the request,

the artificial intelligence immediately picks up the comments and gives the

assumed code that is needed, it is highlighted in gray. After pressing the Tab

button, the generated code is added to the file and the AI immediately offers the

following code or actions.

9) The same steps we continue to do with the other comments into another file

(Fig. 1.19.)

26

Fig. 1.19. “Code generation with panel request”

Another option for interaction with AI is the creation of a direct request and

in the file. To do this, you need to press Control + I, then you need to enter a

request with all additional descriptions of the task. It is also necessary to take into

account the fact that the generated code will appear in the line previously selected

by the mouse button, so the code may not be generated quite conveniently. In this

case, it is better to choose the last variant in advance and later change the generated

code to your requirements.

1.4.5. IntelliSense reference autocomplition

With the simplest examples of tasks AI can easily complete given tasks but

we overview the real world issues during development so now, our developer

should supplement the existing code.

10) Thereafter the developer starts to add some changes in code manually using

IntelliSense (Fig. 1.20).

Fig. 1.20. “Code auto completion with IntelliSense”

27

1.4.6. Code formatter manual preferences and work

11) Now we complete the given task, therefore we need to format all files to

developer friendly code view. The prefered Code Formatter in our case

is Prettier.

12) Created a “.prettier rc” file in the main project with adding some

preferences (Fig. 1.21.)

Fig. 1.21. “Importing Prettier code formatter”

13) Now we simply browse all unformatted files we created and push CTRL

+ S (Save key command)

1.4.7. Bug fixing

In the real project, generated code each time needs to be checked for bugs

and if the exists we need to make next steps:

14) Open Copilot management system, push the fix bug on file we need to fix

and AI starts to change the code (Fig. 1.22.).

Fig. 1.22. “Bug fixing with Copilot”

28

1.5. Signs of methodology

Now we understand the basics of AI characteristics, how it works, what

exactly it does and how to integrate all our technologies in our project developing

via IDE. Also we know that there is not much difference between IDE preferences

to work with these technologies.

We delved into practical studies to demonstrate the effective use of our

technologies. We explored various examples of how our technologies, including

artificial intelligence, can be employed in different stages of development. Here is

a summary of the key points covered:

ChatGPT Request Generation - We began by defining the project

requirements, identifying the need to change the simple add operation code from

SQL db to NoSQL. We input this request into ChatGPT, generating the desired

output that met our requirements.

Github Copilot Code Generation - Next, we utilized the output from

ChatGPT and integrated it with Github Copilot. By extracting the relevant

comments and instructions, we proceeded to convert them into code. We observed

how Copilot provided suggestions and examples based on the comments, enabling

us to generate code swiftly and accurately.

IntelliSense Reference Auto completion - To address real-world coding

challenges, our developer manually made further changes to the code using

IntelliSense. This allowed for fine-tuning and customization as per specific project

needs.

Code Formatter Manual Preferences and Work - After completing the

assigned tasks, we focused on ensuring a developer-friendly code view. We

incorporated a code formatter, Prettier, by creating a ".prettier rc" file in the main

project and specifying the desired preferences. By saving the files, the code was

automatically formatted to adhere to the defined standards.

Bug Fixing - In real projects, generated code often requires debugging. To

address this, we utilized the Copilot management system, selecting the file that

29

required fixing. The AI promptly analyzed the code and provided suggested

changes to rectify any identified bugs.

 Throughout this chapter, we witnessed the seamless integration of our

technologies and their ability to assist in various aspects of development. From

generating requests with ChatGPT to code generation with Github Copilot, along

with manual adjustments using IntelliSense and code formatting preferences, our

technologies proved to be valuable assets in the development process.

Additionally, the bug fixing capabilities of Copilot showcased its effectiveness in

identifying and resolving issues within the generated code.

 The practical examples presented in this chapter highlight the progressive

and helpful nature of our technologies, further validating their potential in model

development and beyond.

1.6. Analysis of literary sources and existing analogues of AI code

generators and AI code analyzers

1.6.1. Analysis of analog programs

Since the existence of a large number of software analogues was established

during the study of literary sources, it will be appropriate to choose a certain

number of software solution options, selected according to criteria that will most

show the various qualities of the programs, their advantages and disadvantages.

And therefore, first of all, it is necessary to describe artificial intelligences that

perform similar actions, have any advantages or disadvantages.

It is assumed that the software improvement methodology requires artificial

intelligence that can correctly respond to the necessary requests for code

generation, be able to work with various aspects of software development, that is,

work with structures in a given programming language, use the latest versions of

the programming language, etc. .

Thanks to the software solution, the work of the developer will be simplified

and facilitated, namely: creating the necessary information and minimal

30

documentation for creating software modules, improving the already existing code

by checking it with artificial intelligence, and finding security problems in the

code.

 Let's move on to the consideration of artificial intelligence analogues with

the aim of identifying shortcomings and advantages and using them in the

development of a software solution.

1.6.2. Found software analogs to artificial intelligence Github Copilot.

Product name;

«Codeium», Exafunction, (reference in appendix А).

Basic functionality;

1) Generation code with AI in one software module file.

Advantages of product:

1) Can generate simple functions;

2) Can generate more complex code but with help of developer;

3) Complete Test generation;

4) Can complete refactoring but with help of developer;

5) Can generate comments in your code.

Disadvantages of product:

1) Cannot generate more complex code without help of developer;

2) Cannot understand the context of the project;

3) Cannot work with ChatGPT in your IDE;

4) Cannot do routine work outside the module;

5) Cannot complete refactoring without help of developer;

6) Cannot work with specific scenarios.

Product name;

«Tabnine», Dror Weiss, (reference in appendix А).

Basic functionality;

1) Generation code with AI in one software module file.

31

Advantages of product:

1) Can generate simple functions

2) Can generate more complex code but with help of developer

3) Complete Test generation

Disadvantages of product:

1) Cannot generate more complex code without help of developer

2) Cannot understand the context of the project

3) Cannot work with ChatGPT in your IDE

4) Cannot do routine work outside the module

5) Cannot complete refactoring

6) Cannot generate comments in your code

7) Cannot work with specific scenarios

Product name:

«FaulPilot», Venthe, (reference in appendix А).

Basic functionality:

1) Generation code with AI in one software module file.

Advantages of product:

1) Can generate simple functions

2) Can generate more complex code but with help of developer

3) Complete Test generation

4) Can complete refactoring but with help of developer

5) Can generate comments in your code

6) Can work with specific scenarios with help of developer

Disadvantages of product:

1) Cannot generate more complex code without help of developer

2) Cannot understand the context of the project

3) Cannot work with ChatGPT in your IDE

4) Cannot do routine work outside the module

5) Cannot complete refactoring without help of developer

32

6) Cannot work with specific scenarios without help of developer

1.6.3. Comparison of existing analogue programs

A comparison of the described software analogues is given in table 1.

Table 1

Comparison of code generation AI’s

Property of the software Codeium Tabnine FauxPilot Gihub

Copilot

Generation of simple

functions

✅ ✅ ✅ ✅

Generation of more

complex code

❌ ✅ ❌ ✅ ❌ ✅ ✅

Test generation ✅ ✅ ✅ ✅

Understanding the context

of the project

❌ ❌ ❌ ✅

ChatGPT in your IDE ❌ ❌ ❌ ✅

Routine outside the code ❌ ❌ ❌ ✅

Refactoring ✅ ❌ ❌ ✅ ❌ ✅

Generation of comments ✅ ❌ ✅ ✅ ❌

Specific scenarios ❌ ❌ ❌ ✅ ✅

Having analyzed all the disadvantages and advantages of analog programs, it

became clear which properties of the software tool should be paid special attention

to when developing a software module and what are the two main points when

choosing artificial intelligence. Previously, Github Copilot only worked on a paid

subscription, compared to other free AIs. Second, only Copilot can step through

33

the modules of the entire project to analyze code and generate code relative to

existing code.

1.7. Source understanding

Based on the previous data that was researched, namely: the analysis of the

capabilities of artificial intelligence, its main aspects and AI integration into the

development process, a certain understanding of analogue programs and what they

can do, how they differ, its advantages and disadvantages.

Thanks to the research of literary sources and existing analogs, knowledge

was obtained about the problems and advantages of some analog products, which

makes it possible to understand that the development of software and its use at this

level requires a detailed consideration of where and how this system should work.

1.8. Relevance of the improving programs by ai code generation

1.8.1. Benefits and Challenges of AI-Driven code generation

Benefits The integration of AI techniques in development offers numerous

benefits. First, it improves the efficiency of code comprehension by automating the

analysis of complex code structures and reducing the manual effort required.

Second, automated refactoring through AI-driven tools enhances the readability,

maintainability, and modularity of legacy codebases.

Third, AI-assisted documentation generation facilitates the creation of

comprehensive and up-to-date documentation that aids in understanding system

behaviors and dependencies. Lastly, the use of AI models for intelligent code

generation expedites the identification of critical code segments and patterns,

accelerating the development process.

1.8.2. Future Directions

We propose future directions for research and development in AI-driven

development. These include improving AI models' contextual understanding,

addressing security and privacy concerns, developing techniques for integrating

human expertise, and advancing the field of AI-assisted software analysis.

34

1.8.3. Formulation of the problem of using these technologies and

possible solutions

1.9. Challenges

 While AI-driven module creation brings significant advantages, it also

presents challenges.

 We address the challenges associated with AI-driven development, such as

the need for accurate training data, potential biases in AI models, and ensuring the

reliability and trustworthiness of generated code.

 An Additional challenge is the requirement for accurate and representative

training data to ensure the AI models' effectiveness and reliability. Obtaining

suitable training data for development tasks may involve collecting and

preprocessing diverse codebases. Additionally, biases in the training data or AI

models themselves can impact the accuracy and objectivity of code

comprehension, refactoring, and documentation generation. Ensuring the

trustworthiness and reliability of AI-generated code and documentation is crucial

to prevent potential risks or errors in the module creation process.

Conclusion

 From these sections we understand that possible problems mostly appear

from the point that people think that AI can simply create anything without

controlling and testing the result and subsequent correction. If the developer will

carefully write what he wants and fix all problems immediately, the AI really can

provide several helpful tools and solutions to upgrade the module creation process

to the next level.

The integration of IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot

presents significant potential in automating and improving development processes.

The combination of these AI techniques offers benefits in code comprehension,

refactoring, and documentation generation. However, challenges related to data

quality, biases, and trustworthiness need to be addressed. The future of AI-driven

creation of program modules lies in advancing AI techniques and fostering

collaboration between AI and human expertise.

35

CHAPTER 2

REQUIREMENTS FOR THE IMPROVEMENT OF THE CODE

GENERATION SYSTEM

2.1. Requirements for the designing of software

This work considers the generation of code using the example of an existing

system for reducing links, in which a functional part of the application has already

been developed by the time of working with artificial intelligence, for working

with it through web requests, that is, there is no interface at the initial stage, but

several tools will be developed in the future during which they will be created as

well as part of product testing and changing the database used by this program.

From this it becomes clear that it will be advisable to create a scheme of

requirements specifically for the product being developed.

Figure 3 shows a diagram of the requirements that will be described in the

current section.

Fig. 2.1. “A model of web application design requirements”

36

2.2. Description of the diagram

After viewing the diagram, it is necessary to make a preliminary description

of it in order to understand all aspects of the system being developed.

The field drawn in green is the web application as a whole, its main parts are:

- Front end part of the application

- Back end part of the application

These two parts work separately from each other and are connected to

different ports, thanks to which they interact with each other by transmitting the

necessary data to each other. In this model, the testing modules are separated due

to the fact that they will not be included in the entire application at the production

stage, so at the time of development they are necessary for the customer to receive

certain data about the requirements given to the developers during the development

of the software tool.

The green field is subject to improvement as a whole through code

generation and vulnerability testing using artificial intelligence. In addition, there

are several requirements for the green field, that is, the application being

developed: writing code in some programming languages, the relationship between

application components, connecting artificial intelligence both externally and

during development, constant Internet access.

A component with an orange color, that is, a software module with a

connected database, subject to partial change, due to the fact that it is necessary to

change the databases with which the system works. This software module interacts

with the API that formats links in a certain way, and also interacts with the front-

end module of the application, that is, with the interface that the user sees.

Necessary requirements for the orange field should be - a connection between the

Sequelize ORM and the Postgres database.

In addition, this field should also use artificial intelligence to generate code.

The component with white color is the connection to the API, it receives

links from the software application, sends them for conversion and sends them

37

back to the application in a shortened form. There are no separate requirements for

it, since at the time of the start of improvement of the software solution, this part

was already written.

The program module with red color is a framework interface for interaction

with the user on the Internet, which must be developed. The requirements for this

module are that it is written in a specific programming language, connected to

artificial intelligence at the time of development for code generation. This software

module is subject to complete creation as it does not yet exist at the time of

software development.

Having described the diagram of requirements for the software application in

detail, we will proceed to the description of functional and non-functional

requirements.

2.3. Functional requirements

The field of software engineering includes writing requirements for software

development. Requirements are divided into two subtypes, functional and non-

functional. A functional requirement specifies a system or component of that

system. It describes the functions that the program will perform. A function is

described as an algorithm, input, actions, output.

2.3.1. Capabilities for backend part of web app applications

System requirements:

1. Design principles: Backend part of app needs to be written in a

programming language named Typescript to use OOP design principle.

2. Testing: Backend part of app should have include library named Jest for

testing the existing program modules.

3. Code: Backend program modules needs to be written with the help of AI

code generation software link Copilot, CodeWhisperer.

4. Connection: Backend part of app should have connection to Front end app

with fetch functions.

5. API Endpoints: The backend app should have API endpoints for retrieving

and updating user data.

38

6. Link sending: The backend app should have functionality for taking original

links from the frontend app and convert it to the shorter version and take the

data back.

7. Error Handling: The backend app should handle errors gracefully and

provide informative error messages to users.

8. Data Storage: The backend app should store user data securely and

efficiently.

9. The program must have access to the database and the ability to

communicate to provide information.

10. In a program module must be implemented to save the data entered from the

front-end in the database on the backend side.

11. The program must implement the function of removing from the database

the collected information from the application.

12. The program must implement the ability to change information in the

database.

13. The program must have the ability to review information from the database.

14. On the main page of the web application, a medium-sized logo will be

displayed, and the name of the system will be given as a large size.

15. The program should have Redis db as app cache for fast request and

responses in app.

User data requirements:

1. User Authentication: The backend app should allow users to register and

login to their accounts.

2. User Authorization: The backend app should have different type of

authentication for prefered user choice.

3. Security: The backend app should be secure and protect user data from

unauthorized access.

2.3.2. Capabilities for frontend part of web app applications

User pages:

1. System on the authentication page;

39

2. Admin page in Google service;

3. Main page auth requirement;

4. Input panel on the main page;

5. Data sending button;

6. Delete user from dataset;

7. Change user data from dataset;

8. View user data from dataset.

System main:

1. Development programming language requirement;

2. Each page company logo;

3. Front end app should have be written using React framework;

4. Front end app should have use code generation AI software in time of

writing the program modules;

5. Sending data to back end app.

User side:

1. User Interface: The frontend app should have a user-friendly interface that

allows users to easily navigate and interact with the app;

2. User Authentication: The frontend app should allow users to register and

login to their accounts;

3. User Authorization: The frontend app should have different levels of access

for different types of users;

4. Data Display: The frontend app should display user data in a clear and

organized manner;

5. Data Input: The frontend app should allow users to input and update their

data;

6. Error Handling: The frontend app should handle errors gracefully and

provide informative error messages to users.

2.4. Non-functional project requirements

Non-functional requirements represent aspects of the quality of a software

system; they look for standard parameters that are necessary to track the specific

40

performance of the system. For example, the loading speed of the site interface.

Non-functional requirements necessary to ensure accurate operation without

system crashes and efficiency of the entire software system. Improper support of

non-functional methods can lead to unsatisfactory system operation with the user.

2.4.1. Requirements for backend part of web app applications

1. Performance: The backend part of the app should be fast and responsive,

even under heavy load, caused by many requests from different users.

2. Scalability: The backend app should be able to handle increasing numbers

of users and data without performance degradation or with a low

degradation.

3. Reliability: The backend app should be reliable and available at all times.

4. Maintainability: The backend app should be easy to maintain and update.

5. Security: The backend app should be secure and protect user data from

unauthorized access.

6. Web: The backend app should have stable connection to the internet

because of api that convert the links

2.4.2. Requirements for frontend part of web app applications

1. Performance: The frontend app should have the same performance

requirements as the backend part.

2. Scalability: The frontend app should have good program architecture for

scalability like module addition (pages addition), design changing.

3. Reliability: The frontend app should be online all day.

4. Maintainability: The frontend app should be easy to maintain, update with

new versions, etc.

5. Accessibility: The frontend app should be accessible to users with

different prefered variants of authentication.

6. Usability: The frontend app should be well designed with a soft interface.

7. User Interface: The frontend app should have a well designed interactive

and dynamic UI for a good User experience.

41

8. Design: The frontend app should have a comfortable design to interest the

user to stay on the web page longer.

9. Cross-platform: the frontend app should have cross-platform between PC-

Mobile interface.

2.5. Detailed Description

2.5.1. Capabilities for backend part of web app applications

System requirements:

1. Design principles: among different options for using a large number of

programming languages, the Typescript language was chosen because it

adheres to the principles of Object-oriented programming and also

because the application being developed will not be very complex.

Testing: Backend part of app should have include library named Jest for

testing the existing program modules.

2. Testing: Software testing is necessary for the customer’s firm confidence

in the correctness of the future product without system errors. Testing also

shows the code coverage that has been verified and provides a partial

understanding of possible problems the system may have in the future for

product support by other developers.

3. Code: During the development of the back-end part of the web

application, it is advisable to use artificial intelligence, which will reduce

the time for the development of software modules.

4. Connection: The connection between the front-end part and the back-end

part enables the exchange between the software parts of important

information needed by the users of the web application.

5. API Endpoints: The connection and exchange of data between the server

part and the third-party API is vital in this case since there is no

implementation of the link shortening function and instead the functions

provided by the third-party product are used.

42

6. Link sending: The backend app should have functionality for taking

original links from the frontend app and convert it to the shorter version

and take the data back.

7. Error Handling: Providing errors to users when performing any actions

makes it possible to understand what exactly was done wrong, or to gain

an understanding of from which side the error was received, that is

(whether an error was received from the server side or a regular error due

to incorrect user actions, such as going to an address that doesn't exist).

8. Data Storage: Saving user data is one of the most important points when

developing software; if this point was not achieved during development,

this will definitely lead to people not wanting to interact with a product

that loses their data, such as (data about already shortened links that the

user introduced earlier).

9. Access to the database is necessary in order to capture and extract the

entire array of data that will be stored in the database. This will allow the

system to capture and capture information through customer requests.

10. The implemented software must be strictly configured for the rapid

interconnection of the interface with which the user interacts, sending a

request to the server side and dynamically processing the response to

update the website page.

11. In this application, it is necessary to implement the deletion of a certain

amount of data on request, as well as a cache application in the form of a

high-speed database that will store the data along with their deletion

timer, that is, after a certain time has passed, the data will become

outdated, or, after too many requests, deletion oldest requests.

12. Changing the data is necessary if an error was made when adding

information, or incorrect information was entered, or the data is simply

out of date. In this case, if this information relates to user data, it is

necessary to be able to change the data.

43

13. The ability to view information should be implemented in the software

part of the interface with which the user interacts, as well as in the admin

panel in which Google account data will be posted.

14. This display is made so that the user can immediately understand which

company this product belongs to and in the future can quickly find other

applications, while having confidence in a specific company if he liked

the previous product.

15. With a large number of users using the application simultaneously, a drop

in performance is inevitable. Because applications use rather slow

databases, they cannot meet user requirements on a large scale. To avoid

such problems, an additional database is needed that would have a fast

response time but would not burden itself with a large array of data. Thus,

the most frequent user requests will be temporarily stored in this database

and sent in response to user requests.

User data requirements:

1. User Authentication: Logging in with your email is necessary both for

authentication of a specific user and on the part of the company, which in the

future could extract useful information from the array of user data without

violating his rights. For example, isolating from the total mass of data

information which particular email domains users use most, which would give

an understanding of what aspects are worth paying attention to in the future.

2. User Authorization: Additional authentication choices are necessary because

some users may have a limited amount of time to interact with the product, in

which case it is necessary to implement additional login methods that will

significantly save time.

3. Security: Data protection is one of the most important aspects when

developing software; loss of data or its public disclosure will be a strict

violation of the user's rights, which can lead to lengthy proceedings and

problems from the law. Therefore, data must be protected in all possible ways

at the time of development.

44

2.5.2. Capabilities for frontend part of web app applications:

User pages:

1. System on the authentication page should have a button to go to log in via

Google authentication, so that the client can log in with an already created

Google account.

2. On the admin page in Google service, the administrator should see all the

users logged in with a Google account, this is necessary in order to, in some

cases, be able to check user information or change it in the future.

3. Main page of the app should appear only if the user logged in, otherwise the

user should be redirected to the auth panel. In this way, it will be possible to

limit the ability of an unknown user to interact with the product and allow

only identified users to work with it.

4. On the main page should be an input panel where the user can put the link he

wants to convert, together with the information modules on the page this will

give the user a quick understanding of the interface and exactly how to send

links.

5. On the main page should be a button with which the user can send the link to

converter API. Together with the points described earlier (modules with basic

information and a data entry field), this is an additional understanding of

working with this interface.

6. Deleting a user makes it possible, for some reason, to exclude a specific

person from the list of users of a given product. The reasons may be different,

but the main one is incorrect operation of the product or an attempt to obtain

benefits or confidential information from the application.

7. Changing user information may be one of the requirements of the user himself

if he has entered incorrect information about his account. There may also be

situations when previously valid information is already outdated and has been

changed and because of this the user can no longer access this application.

45

8. Adding a user by the application administrator can also be implemented for

the reason that the user cannot create an account himself but also wants to use

the system.

System main:

1. You can implement a logo in the application in a dynamic way, this will make

it possible to add a logo on each page, regardless of its content.

2. Since the application does not require a complex architecture, it is advisable

to use the easiest programming language for web application development,

which is called Javascript, in this way it will be possible to implement a

website quickly and efficiently.

3. Using the React framework in combination with the Javascript programming

language will make it possible to create dynamic, scalable web applications

with an architecture convenient for further development, which will give

more options for changing the product after the release of the initial version.

4. Development of the front-end part of the application using artificial

intelligence that generates code will make it possible to speed up the software

development process due to the fact that the developer will eliminate the part

of developing a complete architecture from scratch and will only gradually

supplement the proposed parts of the generated code.

5. The user will be required to have an original link, which is subsequently

converted into a short version of it, but at the same time makes it possible to

follow it in the same way as the original one.

User side:

1. User Interface: A user-friendly interface and easy to understand makes it

possible to quickly navigate through parts of the application and obtain the

necessary information through simple interaction.

2. User Authentication: Logging into your accounts is necessary because the

user may return to the application and interact with it again after a while.

Such a system must also be implemented due to the fact that nowadays every

application inherits this system behavior.

46

3. User Authorization: Different access levels separate layers of interaction

available to different types of users to differentiate access options and also

provide a better security system.

4. Data Display: A structured display of data, for example from older to newer,

provides a clear understanding and comfortable interaction with the system in

the future after a certain amount of work has been done in the system.

5. Data Input: Entering and updating data allows the user to perform lengthy

actions in the system without receiving errors or delays in response.

6. Error Handling: Providing a correct description of errors or displaying a

system boot icon under load will make it possible for the user to understand

that he continues to do everything correctly, but due to the large number of

simultaneously executing requests, the system processes them and requires

more time to respond.

2.5.3. Requirements for backend part of web app applications

1. Performance: Fast responsiveness must be realized through the use of a

variety of technologies and systems that allow this to be done. Starting from a

high-speed database in the form of a completion application cache to correctly

configured and connected program modules for quick interaction of the

system with the user.

2. Scalability: Deterioration in performance is inevitable since even the server

on which the application was running may not be able to work quickly under

a huge load, however, such problems must be resolved in a timely manner by

moving the system to more productive servers or searching for possible

problems in the system architecture. It is also possible to locate parts of the

system on different servers to try to gain benefits in overall system

performance.

3. Reliability: Supporting robots of the system rests on the server. The owner of

the system must promptly agree on such support (in our case, 24/7), since

without this the system will be susceptible to possible errors in the event of an

47

emergency restart of the servers and even loss of the latest data that was

entered when the application was stopped.

4. Maintainability: Correct implementation of the architecture and mobility of

the application will provide its bonuses with further changes to the system in

the form of easy configuration or adding software modules.

5. Security: Unauthorized access can be obtained as a result of system hacking.

To avoid such cases, the architecture of software modules responsible for

security should be built in the most secure manner.

6. Web: Internet access is one of the most important aspects when sending an

application to production, which will make it possible to interact with the

system as a whole. Without it, such a system will not be able to update or save

user data, not to mention the main function - converting links.

2.5.4. Requirements for frontend part of web app applications

10. Performance: An unambiguous requirement during development must be the

correct implementation of systems that will enable the application to interact

between its software parts correctly without errors.

11. Scalability: An architecture that combines the best principles and rules for

building a system will make it possible to support, change and delete software

parts of the system without any problems.

12. Reliability: For user convenience, system support is required that will work

around the clock.

13. Maintainability: To update versions when developing a system, you must

configure and use version control, which will make it possible to quickly

switch between versions with new or old software modules and then send a

new version of the system to the server.

14. Accessibility: Access to different authentication options is necessary since the

user may refuse to work with the system for any reason.

15. Usability: Since the initial version of the back-end application assumed the

use of the system as a simple API, it is necessary to take into account the

48

software modules that must be changed in case of transition to a full-fledged

full-time application.

Interface:

Since this application is aimed at many users, the interface should be clear

and pleasing to the eye. To make the system as comfortable as possible, you need

to reduce: the amount of information in the form of buttons and information

columns, as well as the excessive number of colored parts of the page.

Regarding pages with basic information, such as a main page with a link

field, it is necessary to reduce the amount of miscellaneous information other than

the general operation of a list of shortened links by the user.

From here it is clear that in addition to the panel where the user enters

information, below there should be a dynamic display of links that the user has

already used in convertible form Thus, a simple web application interface needs to

be developed, which should be created as follows:

1) The correct part with the navigation bar.

2) On the navigation panel, on the left is a logo centered on a link with buttons,

and on the right is a user icon with his mail name.

3) In the middle, a panel with general information that the user can perform on

this page.

4) Below is the field for entering the necessary information.

5) Even lower is the button for sending information to the server side.

6) Under the main container there should be a dynamic generated list that

displays all the converted links that the user sent, and so that the next links

sent by him do not erase the previous ones.

7) At the very bottom there is a container with contact information, the

company’s rights to this product, and some links.

Design:

The design of the interface of the web application is a very important part of

the software, because of which users may have a great need for this software

solution. In the event that the interface is unfriendly and difficult to master with a

49

50 percent chance, the user will immediately change his mind about using the

product.

To achieve such design criteria, it is necessary to use a number of

technologies during the development of the web part of the application.

In addition to the standard need for a markup language and styling with the

help of HTML and CSS, it is also possible to use the JavaScript programming

language and a framework for it called React, this will add responsiveness and

dynamism to the application, i.e. web pages will respond to the user's actions and

immediately change according to his needs.

Also, for greater necessity, it will be possible to use such frameworks as

Material UI which give already developed front-end solutions etc.

Cross-platform:

Given that the product being developed must be open to all users, the need

for a cross platform immediately becomes clear. That is, the application works

both on PCs, tablets and phones. This will add a large number of users, as web

applications are increasingly being used through phones.

Conclusion

The section reviewed the basic requirements for the design of the web

application that will be developed. A study of aspects of the program was made,

the main parts of the program were separated into program modules, to obtain the

final form of the finished product.

Pitfalls that must be taken into account when describing the requirements for

this software are described.

Revised user interface module, database connection module and API that

allows you to receive formatted links, API module that receives original links and

converts them into a shortened form.

Received information about external requirements that are necessary during

development A description of the functional and non-functional requirements for

the concrete system was made based on the preliminary research.

50

Each requirement is highlighted with its detailed description for

comprehensive information.

51

CHAPTER 3

PROPOSED ARCHITECTURE OF THE SOFTWARE APPLICATION

3.1. Software architecture

 When building a "shortening of web links" system using several products

that perform artificial intelligence actions, it is advisable to use the MVC pattern.

This software construction methodology includes a model (a description of abstract

objects that will be used later as tables in the database), a representation (a system

layer designed to display the user interface and general interaction with the

system), a controller (controllers for performing certain actions in the system, data

redirection, etc.). Since the web application chosen for software development will

be a web application, the use of this pattern will help the developer to speed up the

solution of fundamental problems during application development.

 A necessary parameter for the implementation of the system will be the

addition of several databases to it.

 First, the system should have a standard slow database for handling all data

such as user models and links.

 Secondly, there should also be a fast database that will be responsible for

saving a small number of records that can be quickly corrected in response in order

to improve the performance of the web application.

 In the first case, the Sequelize cross-platform database connection system

will be used. Its advantage is that it provides an opportunity to quickly change the

type of Database without problems, as well as an easy way to connect these

databases. Since when using our AI code generation methodology, the

documentation created chose to change the database from MySQL to PostgreSQL,

the final database will be the latter.

 In the second, a high-speed Redis database will be connected to the main

operation of the system in the form of a wrapper over the backend part of the

application. This will allow you to pre-search for a record in Redis and issue a

52

response, or if the necessary data is not found, the next work will already be done

with a regular database.

Thanks to the ORM system implemented today, the software supports such a

scheme by creating a Sequelize model (standardized Sequelize object) in the

program, which has the usual data fields, methods and a constructor. Such a

Sequelize entity should not have any additional complicated functions, since

complex operations with the database will rely on Service (service) classes and

methods, and all system logic, redirection, use of necessary functions and APIs

will be performed by Controller objects, in which it will be possible to create

additional solutions.

The diagram of the MVC pattern is shown in the figure 3.1.

Fig. 3.1. “Scheme of the MVC pattern”

Using the selected software architecture pattern, it is appropriate to also use

the concept of data processing CRUD (abbreviation from the English abbreviation

of four words: create, view, restore, delete). This concept determines that the

53

system will calculate data processing according to certain operations. Creation,

editing, modification and deletion of data.

Figure 3.2 visually presents the functions of the concept.

Fig. 3.2. “Functions of the principle of C.R.U.D.”

3.2. Diagram of the deployment of the link shortening web application

Installing the system will not have any complicated steps. The created

deployment diagram of the system will help to understand aspects of its operation.

It is assumed that the finished product will be installed on the server of the

customer's company, after which it will work as a separate product, that is, a

separate web service. The use of this system may vary depending on the needs of

the end users.

One possible option is to use the system to create a large number of links that

can be followed, embedded in documents, web data tables, etc.

Regarding ensuring the reliability of the system and the processing capacity

of the web application, it is necessary to introduce a strong emphasis on security.

During development, the protection of user data and the links they send must be

monitored at the highest level.

54

The graphic appearance of the system will meet all needs in accordance with

the UI and UX principles of system construction, which will allow smog to use the

web application quickly and comfortably.

For a more detailed description of the system, a deployment diagram should

be presented

Figure 6 shows the deployment diagram..

Fig. 3.3. “System deployment diagram”

55

After looking at the diagrams, it is possible to characterize several important

aspects of the system.

This system contains three components of a blue color. It should be noted

that users can use three types of hardware devices. This can be a corporate or home

computer, laptop or smartphone.

In the next ball, which is connected between the blue ball and the purple

ball, whatever browser is installed on your hardware, you can interact with the

system and see the type of network connection at the interface modules when

performing operations with the system.

The purple color web add-on interacts with two databases through a front-

end controller that responds to the user's actions and after the service module,

which also interacts with the databases themselves.

Application of software solutions under the hour of development of the

service module use description of the abstract model of the user, send, etc. The

connection with the databases is completed under a logical mind. In case of a

different version of the first database, the data continues to interact with the static

other database.

For a more detailed explanation, we need to take a look at the component

diagram

3.3. Component diagram of the link shortening web application

The details of the relationships between the components in the system can be

viewed when the component diagram is expanded. The display component in the

class module allows you to identify different warehouses throughout the system,

which determines what they are responsible for. Figure 3.4. is a diagram of the

system components is presented with the ability to demonstrate how operations are

performed on the skin of the program.

56

Fig. 3.4. “Diagram of system components”

3.4. Class diagram

The class diagram was created for the back-end part of the web application.

We will review the diagrams for the front end part later. On the basis of

abstractions and their connections, it is possible to see the relationship between

system components.

A large volume of fields has been written to map Sequelize to an object (that

is, a certain model created on the basis of the Sequelize class), thanks to which the

system initializes these models and creates the corresponding tables in the database

It makes no sense to describe the functions and class constructors in detail

because they perform standard actions that are subject to this type of functions.

Their basic logic can be immediately understood from their name.

However, it is necessary to describe some unique functions that do not

follow standard methods and solutions:

57

- Router - this class performs actions on receiving a request from the front-end

part, and the corresponding redirection of the request to the corresponding

methods of the controller when a response is returned in the form of data or a

status of 200 OK, the front-end part considers this request to be fulfilled

correctly, stores and/or displays the corresponding data.

- Controller - performs both normal functions corresponding to it for

redirection to the Service part and unique ones, such as sending links to a

function that will communicate with a third-party API and perform the

necessary actions.

Service classes have a characteristic logic, namely:

- Creation of entries in the database

- Deleting entries in the database

- Changing entries in the database

- Receiving data from the database

These actions are performed according to a normal user, a user from the

Google service, Links (two types in one row of the database table: abbreviated and

original). Generate a hash code to generate the corresponding encryption hash in

the Redis database for further quick lookup in the table.

Classes are not divided into interfaces because they do not have possible

changes for future needs at the time of the technical task.

The User class is intended for use when working with the system as a unique

user, necessary during authentications in order to understand that specific actions

are performed by that user. According to him, the system modules will display

unique responses based on his actions. After passing through the security

safeguards of the system, a coded token is created for each user, which later

enables the user to enter the main page of the system and perform some actions.

Without a token, the user will not be able to access the pages, as the token is

checked on each page.

The GoogleUser class (google service user) performs a similar function to

an ordinary user, but with some differences, because the google service system

58

gives partial information about the user when he chooses the type of authentication

on our platform using google, instead of a password, the google service also sends

an authenticated token, which will be systemically verified using the appropriate

functions, after which this user will be entered into the database just like a normal

user and will accordingly receive a token of our web application.

The Link class is the main class for the system because the entire application

is built around it. Performs the role of receiving a link from the user, which will be

converted using a third-party API and in turn entered into the database as a single

row with two columns, the original link and its shortened version.

The class whose names contain the Service postfix is responsible for

connecting and working with the database In addition, the system has three main

classes of configurations that help the software work at the lower levels of the

program code and without which the entire system would immediately increase

several times.

Sequelize ORM handles all the work between the created abstraction models and

the tables in the PostgreSQL database. In addition, the ORM receives data for

connecting to the database system itself, i.e.: connection type, administrator login,

password, database name, its specific schemas using a configuration file.

React configures the web part of the application. It configures exactly which

pages of the presentation will be read, their format, the location of the main HTML

file, and changes of interface components according to user actions. With the help

of fetch functions, as a complex unit, the web part also communicates with the

back-end part for some actions.

For each of the solutions, that is, the backend and the frontend, there is a

configuration file, it is hidden from viewers and is a system file that is needed to

maintain the most important data of the system itself, without which the ability to

send requests between software solutions, communicate with a third-party API, etc.

will disappear.

Using this architecture, the simplest work with data is obtained in the developed

software. Figure 3.5 shows the class diagram of the system.

59

Fig. 3.5. “Class diagram”

3.5. Construction of connections of physical equipment

 Let's move on to the description of the system at the physical level. Thanks

to the scheme of working with the system, it becomes clear how the system should

be used and how it interacts with each other. Any number of users can use the

Internet and go to the resource through a link or with the help of browser search

engines, and then start interacting with the system itself. An important factor of

this system is that, after its implementation, it will be configured as separate

systems that interact with each other, they will be uploaded to some server

according to the customer's needs. Thus, there are three containers that are

programmed together and can be replaced as needed:

The first container is the front-end solution, i.e. the user interface, it starts on

its port, and communicates only with the second container, i.e. the back-end part,

using the configured internal network.

60

The second container is the back-end part, it will have all the logic of

interaction, and the necessary mechanisms without which the first container will

not be able to process the data necessary for the user, but will only be an empty

display of the interface without interaction with the system. Also, a common

database will be locally configured in the back-end part to store information.

The third container is a separate high-speed database the backend part will

interact with it before working with the main database. Interaction will be

performed thanks to http requests, just like in a local network.

In general, such a system will allow implementing the principle of

modularity, when some parts of the system can be used for other software

applications in the future, which will speed up the development of new systems.

Figure 9 shows the construction of connections of physical equipment.

Fig. 3.6. “Construction of connections of physical equipment”

61

Conclusion

In this section, the diagrams and schemes built on the basis of the completed

software solution were described and considered. First, the main principles and

patterns by which the system was built were taken, and it was considered which

aspects should be paid attention to during development.

Then a system deployment diagram was created, which gave an accurate

understanding of the software modules, their use and interaction with each other.

 In addition to it, a component diagram was also developed for a better

understanding of the internal mechanics of the system.

For a visual understanding of the classes and methods of the system, a class

diagram with a detailed answer to the step-by-step implementation of the system

was presented as an open source code.

At the end, the possible physical implementation, implementation and use of

the system by the user was investigated.

62

CHAPTER 4

PROTOTYPE IMPLEMENTATION USING THE CODE GENERATION

METHODOLOGY

4.1. Development of a prototype of a web service for shortening links

using the methodology of using artificial intelligence

According to the provisions, when developing software by some company

under the order of an individual, it is necessary to take into account and respond to

the needs of the customer. Thus, after receiving a certain set of documents, such as

a technical task, use cases (use cases created on the basis of a technical task and a

study of how the user will use the finished system), needs and the deadline by

which the manufactured product must be delivered (divided into smaller parts of

the work with phased deadlines) it is possible to produce a reliable and high-

quality product.

Based on obtaining such information, the first factor is cooperation with the

customer and characterization of the appearance of the system (in the usual case, it

is a layout, interface of the future system). After that, this data is sent to the chief

specialist in software architecture. It defines and sends all the necessary questions

about the functionality of the system. These additional aspects are discussed with

the customer, and after some time of communication, a final agreement is drawn

up on what exactly will be developed. From this moment, the development of the

prototype begins.

There are many software development methodologies and models, so it's

worth noting that prototyping and using these methodologies will vary from

system to system.

A prototype is a pre-made product that can have software modules that are

subject to improvement and change. Depending on the contract with the customer,

the type of prototype may be different. After the production of the previous

product, the customer confirms or adds information about which modules will be

changed. It is correct to note that the prototype can fully satisfy the needs of the

63

customer and immediately be transferred to the production version after

verification by methods of system testing.

According to the listed information, the selected link shortening system in

the form of a web service will be developed on a server to which the customer will

have access, thus he will be able to view real-time scaling of the system.

4.2. Prototype of the developed system

App will be separated into three parts, each part have different ports and

connections preferences. Font-end part will be running on local host and port 3000

(default port for frontend application). Back-end part using Postgres db which

running on port 5432, and the app on 8080 (default port for backend application).

The third part will be redis container on port 6379. All parts are different

containers connected by one network with Docker system.

The beginning of the software begins with a description (characterization) of

the models that will be used in the system. For which classes are implemented that

are inherited from another base class “Model”. This class is built into the backbone

of the ORM system by Sequelize, a package whose framework contains a wide

range of classes for initializing models. Once again, it will be possible to quickly

create tables and data from the selected databases.

The necessary models for the system were equipped with the following

abstractions:

- Link

- User

- GoogleUser

The “Link” model is aimed at selecting a table with messages that will be

sent to the correspondent and sent messages that will be removed after conversion

for a short view and return to the customer.

The “User” model is oriented towards the use of a user account. Without this

model, the system will lost its ability to create a user account as well as entering

under a specific user account for further access to additional functions.

64

The “GoogleUser” model has similar logic to the previous model. The only

difference is that the Google account returns to a third-party resource and may go

through a full verification of these returns.

This file use DataTypes for creation of model provided by Sequelize

framework

Listing 1 shows these models in action.

Listing 1

File “Model.ts”

import { DataTypes, Model } from 'sequelize';

import { sequelize } from '../sequelize.db';

export class GoogleUser extends Model {

 id!: number;

 username!: string;

 email!: string;

}

GoogleUser.init(

 {

 id: {

 type: DataTypes.UUID,

 defaultValue: DataTypes.UUIDV4,

 primaryKey: true

 },

 username: {

 type: DataTypes.STRING,

 allowNull: false

 },

 email: {

 type: DataTypes.STRING,

 allowNull: false

 }

 },

 {

 tableName: 'GoogleUser',

 sequelize: sequelize

 }

);

export class Link extends Model {

 id!: number;

 url!: string;

 shortUrl!: string;

}

65

Link.init(

 {

 id: {

 primaryKey: true

 },

 url: {

 type: DataTypes.STRING,

 allowNull: false

 },

 shortUrl: {

 type: DataTypes.STRING,

 allowNull: false

 }

 },

 {

 tableName: 'Link',

 sequelize: sequelize

 }

);

export class User extends Model {

 id!: number;

 username!: string;

 email!: string;

 password!: string;

}

User.init(

 {

 id: {

 type: DataTypes.UUID,

 defaultValue: DataTypes.UUIDV4,

 primaryKey: true

 },

 username: {

 type: DataTypes.STRING,

 allowNull: false

 },

 email: {

 type: DataTypes.STRING,

 allowNull: false

 },

 password: {

 type: DataTypes.STRING,

66

 allowNull: false

 }

 tableName: 'User',

 sequelize: sequelize

 }

);

 Configuration files that will be used by these models in the future to

connect several databases. This configuration file is responsible for connecting the

Redis database, a high-speed database that will be connected to the system by

creating a container based on the downloaded Redis package snapshot in Docker. Here, the enabling database is connected to our application. Redis also has different logic of tables with data, it contains a hash of data as id, also it does not have tables as it is, because

it has stable tables with data only connected by hashed ids.

 File use redis feature received from “ioredis” package as well as “dotenv”

feature from “dotenv” package. Dotenv feature gives ability to take some secured

credentials for our app

On listing 2 presented the connection between software and the image of redis.

Listing 2

File “Redis.db.ts”

import dotenv from 'dotenv';

import Redis from 'ioredis';

dotenv.config();

const redis = new Redis({

 host: process.env.REDIS_HOST || '',

 port: parseInt(process.env.REDIS_PORT || '6379')

});

redis.on('error', (error: any) => {

 console.error('Redis connection error:', error);

});

export default redis;

 It is also a configuration file responsible for configuring the Sequelize

ORM and its connection to the PostgreSQL database. Its advantage is that the

database is arranged as a local connection and not a snapshot of a specific software

that is launched separately, and therefore software settings are required to start the

67

database, to interact with it, to disable it, etc. In addition, tables in the database are

created in this file according to the corresponding rules described in our

application, as well as according to the corresponding model fields.

 This file uses the dialect feature from sequelize package for creating a

valid type of database to create right settings for sending data between concrete

databases.

 Also use User, GoogleUser and Link classes exported from model file in

the app

Listing 3 describes the sequelize configuration file.

Listing 3

File “Sequelize.db.ts”

import { Dialect, Sequelize } from 'sequelize';

import { User, GoogleUser, Link } from './models/models';

import dotenv from 'dotenv';

dotenv.config();

const env = process.env.NODE_ENV || 'development';

export class SequelizeDB {

 public sequelize: Sequelize;

 constructor() {

 this.sequelize = new Sequelize({

 database: process.env[`${env.toUpperCase()}_DATABASE`] || '',

 username: process.env[`${env.toUpperCase()}_USERNAME`] || '',

 password: process.env[`${env.toUpperCase()}_PASSWORD`] || '',

 host: process.env[`${env.toUpperCase()}_HOST`] || '',

 port: parseInt(process.env[`${env.toUpperCase()}_PORT`] || '', 10),

 dialect: (process.env[`${env.toUpperCase()}_DIALECT`] || '') as

Dialect

 });

 }

 public getInstance(): Sequelize {

 return this.sequelize;

 }

 public async openConnection() {

 try {

 await this.sequelize.authenticate();

 console.log('Connection has been established successfully.');

 return true;

 } catch (error) {

68

 console.error('Unable to connect to the database:', error);

 return false;

 }

 }

 public async closeConnection() {

 try {

 await this.sequelize.close();

 console.log('Connection has been closed successfully');

 return true;

 } catch (error) {

 console.error('Unable to close the database connection:', error);

 return false;

 }

 }

 public async createTables() {

 try {

 await User.sync();

 await GoogleUser.sync();

 await Link.sync();

 console.log('Tables have been created successfully.');

 return true;

 } catch (error) {

 console.error('Unable to create tables:', error);

 return false;

 }

 }

}

const sequelizeDB = new SequelizeDB();

export const sequelize = sequelizeDB.sequelize;

 These models are already used in the lost file responsible for sending

commands and data together to the database. Initially, the data is sent to the usual

database during user registration. After that, when interacting as a user, the

corresponding model of "links" is sent to two databases.

 This is necessary in order to reduce the load on the system in the event of a

user request for data, because the last most popular links that were sent by users

could be quickly found in the system and returned, if the data is not found in the

database with a high-speed connection, the interaction is switched to a regular

database that will search for certain data.

69

 File using different types of features. Redis feature used for connection

between service file app and Redis image. Dotenv for taking secured credentials

from .env configurative file. createToken feature, used to create tokens which need

to be used in a session of a user and know that some user has a valid

authentication.

 OAuth2Client feature gives our app ability for authentication for google

users with their accounts.

Listing 4 describes the DAO service file linkService.

Listing 4

File “LinkService.ts”

import shrinkLink from '../api/shrink-api';

import redis from '../db/redis.db';

import dotenv from 'dotenv';

import { createToken } from '../middleware/auth/auth';

import { OAuth2Client } from 'google-auth-library';

import { User, GoogleUser, Link } from '../db/models/models';

const client = new OAuth2Client(process.env.GOOGLE_CLIENT_ID);

dotenv.config();

export class linkService {

 async shrinkUrl(data: any) {

 try {

 const shrinkedUrl = await shrinkLink(data.url);

 data.shortUrl = shrinkedUrl.result_url;

 console.log(

 'data in the append queue' + '\n' + data.url,

 'and ' + data.shortUrl

);

 await this.addLink(data);

 return data.shortUrl;

 } catch (error) {

 console.log(error);

 }

 }

 hashCodeUrl(url: string) {

 let hash = 0;

 for (let i = 0, len = url.length; i < len; i++) {

 let chr = url.charCodeAt(i);

 hash = (hash << 5) - hash + chr;

70

 hash |= 0;

 }

 return hash;

 }

 async addLink(data: any) {...}

 async getLinkByUrl(url: any) {...}

 async getLinkByShortUrl(data: any) {...}

 async addGoogleUser(data: any) {...}

 async checkUser(data: any) {

 try {

 const user = await User.findOne({

 where: {

 email: data.email,

 password: data.password

 }

 });

 if (user) {

 const token = createToken(data.email, data.password);

 const userAndTokenData = {

 username: user.username,

 token: token

 };

 return userAndTokenData;

 } else return false;

 } catch (error) {

 console.log(error);

 }

 }

 async checkGoogleUser(data: any) {...}

export default new linkService();

 This file is responsible for the manipulation and execution of processes

necessary for the operation of the system. Includes various operations. From

receiving and further sending data for processing by a service file and database, to

sending data to a third-party API used by this application and further converting

links. It also includes user verification and subsequent creation of tokens for data

71

access. It uses the Request and Response features taken from Express framework.

All these methods working by receiving the taks by request and then doing some

logic according to the name of methods.

Listing 5 describes the controller file appController.

Listing 5

File “appController.ts”

import linkServices from '../services/service';

import { Request, Response } from 'express';

import { error } from 'console';

import dotenv from 'dotenv';

dotenv.config();

const _host = process.env.FRONTEND_HOST;

const _port = process.env.FRONTEND_PORT;

class appController {

 shrinkUrl = async (req: Request, res: Response) => {...};

 addLink = async (req: Request, res: Response) => {...};

 getLinkByUrl = async (req: Request, res: Response) => {...};

 getLinkByShortUrl = async (req: Request, res: Response) => {...};

 addUser = async (req: Request, res: Response) => {...};

 checkUser = async (req: Request, res: Response) => {...};

 checkGoogleUser = async (req: Request, res: Response) => {...}

const appControllerInstance = new appController();

export default appControllerInstance;

 API file used as connection and configuration file for taking links and

sending this data to shrink api as requested. This file uses the “Axios” package that

changes the simple fetch function used for sending http requests and makes fast

72

responses with data. Here we need to create options variable valid “Axios”

requests.

 File using the encodedParams var created by URLSearchParams feature

for creation of url requests in valid form.

Listing 6 describes the api management file “shrink api”.

Listing 6

File “shrink-api.ts”

const axios = require('axios');

const encodedParams = new URLSearchParams();

import dotenv from 'dotenv';

dotenv.config();

const options = {

 method: 'POST',

 url: process.env.API_URL,

 headers: {

 'content-type': process.env.CONTENT_TYPE,

 'X-RapidAPI-Key': process.env.X_RAPID_API_KEY,

 'X-RapidAPI-Host': process.env.X_RAPID_API_HOST

 },

 data: encodedParams

};

const shrinkLink = async (url: string) => {

 encodedParams.set('url', url);

 try {

 const response = await axios.request(options);

 console.log(response.data);

 return response.data;

 } catch (error) {

 console.error(error);

 }

};

export default shrinkLink;

 The router file. Provide all routing features for frontend part of app.

Manage all request and switching between routes according to some url string

received from react app. Next it will send this data to some controller function

which will make some actions and return the status of concrete operation. Router

73

can send some output status of some operation for frontend app to see some

changes.

 Before redirecting to some methods all routes require verification of cors

rule as well as user token check. If the verification returned true value it can

continue making required functions.

Listing 7 describes the route system of “app router”.

Listing 7

File “app-router.ts”

import express from 'express';

import linkController from '../controllers/app-controller';

import { verifyToken } from '../middleware/auth/auth';

export const router = express.Router();

router.post('/login/user', linkController.checkUser);

router.post('/register/user', linkController.addUser);

router.post('/auth/googleuser', linkController.checkGoogleUser);

router.get('/', verifyToken, (req, res) => {

 res.json({ success: true, message: 'Protected resource' });

});

router.post('/shrinkUrl', verifyToken, linkController.shrinkUrl);

router.post('/addLink', verifyToken, linkController.addLink);

router.get('/getLinkByUrl', verifyToken, linkController.getLinkByUrl);

router.get('/getLinkByShortUrl', verifyToken,

linkController.getLinkByShortUrl);

export default router;

 Server initialization file, provide all necessary actions for application

work. This file set up all parser features for http requests as well as set up the

CORS rules to provide security management of data between parts of app and

prevent connection from unknow sources.

 File use SequelizeDB feature imported from “Sequelize” config file.

Dotenv imports app credentials. Express - setup the rules of parsing and main

settings of express app.

Listing 8 describes the server size code of “server file”.

74

Listing 8

File “server.ts”

import express from 'express';

import router from './routes/app-routes';

import { SequelizeDB } from './db/sequelize.db';

import dotenv from 'dotenv';

dotenv.config();

const _frontend_port = process.env.FRONTEND_PORT;

const _frontend_host = process.env.FRONTEND_HOST;

const db = new SequelizeDB();

const cors = require('cors');

const path = require('path');

const multer = require('multer');

const upload = multer();

const app = express();

const corsOptions = {

 origin: `http://${_frontend_host}:${_frontend_port}`,

 credentials: true,

 methods: ['GET', 'POST'], allowedHeaders: ['Content-Type',

'Authorization']

};

app.use(cors(corsOptions));

app.options('*', cors(corsOptions));

app.use(express.json());

app.use(express.urlencoded({ extended: true }));

app.use(upload.none());

app.use(express.static(path.join(__dirname, 'public')));

app.use('/', router);

db.openConnection().then(() => {

 const PORT = parseInt(process.env.APP_PORT || '8080');

 app.listen(PORT, () => {

 console.log(`The server is running on port ${PORT}`);

 });

 db.createTables().then(() => {

 console.log('Model for db created');

 });

});

75

 Authentication page file, responsible for authentication user with two types

of security, app auth or google auth. This two options both have token system

which will be provided after auth code 200 “OK”.

 This file use many react features like Link for creation of app move by

urls, UseHistory for redirecting, useLocation, etc. It also has google package

feature for wrapping react component with googleOAuth, and the logic of google

authentication with GoogleLogin. For token which return by google we use jwt

decode feature for parsing the info from token, to continue our verification.

Listing 9 describes the auth page of “Auth Page” react component.

Listing 9

File “AuthPage.js”

import React, { useState, useEffect } from "react";

import { Link, useHistory, useLocation } from "react-router-dom";

import { GoogleOAuthProvider } from "@react-oauth/google";

import { GoogleLogin } from "@react-oauth/google";

import isGoogleTokenValid from "../api/googleTokenCheck";

import { FontAwesomeIcon } from "@fortawesome/react-fontawesome";

import { faGoogle } from "@fortawesome/free-brands-svg-icons";

import { jwtDecode as jwt_decode } from "jwt-decode";

const _host = process.env.REACT_APP_BACKEND_HOST;

const _port = process.env.REACT_APP_BACKEND_PORT;

const _google_cliend_id = process.env.REACT_APP_GOOGLE_CLIENT_ID;

const AuthPage = () => {

 const [email, setEmail] = useState("");

 const [password, setPassword] = useState("");

 const [error, setError] = useState("");

 const [success, setSuccess] = useState("");

 const history = useHistory();

 const location = useLocation();

 useEffect(() => {...}, [location]);

 const handleLogin = (e) => {…};

76

 const onSuccessGoogleLogin = async (res) => {…};

 const result = await isGoogleTokenValid(doc.token);

 if (!result) {

 setError("Google token is not valid");

 } else {

 const formData = new FormData();

 formData.append("username", doc.username);

 formData.append("email", doc.email);

 fetch(`http://${_host}:${_port}/auth/googleuser`, {…});

 }

 } catch (error) {

 console.error(

 "A network error occurred when trying to fetch resource:",

 error

);

 }

 };

 const onFailureGoogleLogin = async (res) => {…};

 return (...);

export default AuthPage;

 Login page inherit logic of Register page file, it has create user account in

a system with two types of authentication. This account will have unique token to

connect with the system each time the user log in by his credentials.

 The file have similar packages of login page but i have different http

request witch will use different route of backend part of app.

Listing 10 describes registration page react component

Listing 10

File “RegisterPage.js”

import React, { useState } from "react";

import { Link } from "react-router-dom";

import { GoogleOAuthProvider } from "@react-oauth/google";

import { GoogleLogin } from "@react-oauth/google";

import { useHistory } from "react-router-dom";

import isGoogleTokenValid from "../api/googleTokenCheck";

import { FontAwesomeIcon } from "@fortawesome/react-fontawesome";

import { faGoogle } from "@fortawesome/free-brands-svg-icons";

import { jwtDecode as jwt_decode } from "jwt-decode";

import { faExclamationTriangle } from "@fortawesome/free-solid-svg-icons";

77

const _google_cliend_id = process.env.REACT_APP_GOOGLE_CLIENT_ID;

const _host = process.env.REACT_APP_BACKEND_HOST;

const _port = process.env.REACT_APP_BACKEND_PORT;

const RegisterPage = ({ ClientId }) => {

 const [username, setUsername] = useState("");

 const [email, setEmail] = useState("");

 const [password, setPassword] = useState("");

 const [error, setError] = useState("");

 const history = useHistory();

 const handleRegistration = async (event) => {...};

 const onSuccessGoogleLogin = async (res) => {…};

 const onFailureGoogleLogin = async (res) => {...};

 return {...};

};

export default RegisterPage;

 Main page responsible for main software interface where the user can

make some actions with the links, like send long links to api or browse the lists of

already shrinked links. Copy that links and use it or just add favorite and unfavorite

links. The main page handles the user data with different buttons. User also can use

different links to redirect himself by some interested pages. Main page nav bar will

receive user info like “username” and “user icon” and display it on the upper right

corner

Listing 11 describes main page react component

Listing 11

File “MainPage.js”

import React, { useEffect, useState } from "react";

import { useHistory } from "react-router-dom";

import NavBar from "../components/Navbar";

import Footer from "../components/Footer";

import LinkForm from "./LinkForm";

import RecentLinks from "./RecentLinks";

const _host = process.env.REACT_APP_BACKEND_HOST;

const _port = process.env.REACT_APP_BACKEND_PORT;

78

const MainPage = () => {

 const history = useHistory();

 const [urlArray, setUrlArray] = useState([]);

 const [shortUrlArray, setShortUrlArray] = useState([]);

 const handleLinkFormData = (newUrl, newShortUrl) => {...};

 setShortUrlArray((oldArray) => {...};

 useEffect(() => {

 const token = sessionStorage.getItem("token");

 const username = sessionStorage.getItem("username");

 if (!token && !username) {

 history.push("/login");

 }

 }, [history]);

 return (...);

export default MainPage;

 Link form responsible for creation of user interface form component in

which user can make actions related to links and api that can make short versions

of the links. Contain copy method, which connected to inputs in that form and

make copy function as the effect of the user click the button.

Listing 12 describes the link form component.

Listing 12

File “LinkForm.js”

import React, { useState } from "react";

import { FontAwesomeIcon } from "@fortawesome/react-fontawesome";

import { faCopy } from "@fortawesome/free-solid-svg-icons";

import { useRef } from "react";

const LinkForm = (props) => {

 const [link, setLink] = useState("");

 const [shortLink, setShortLink] = useState("");

 const inputRef = useRef();

 const handleLinkSubmit = (event) => {...}

 const handleCopy = () => {...};

79

 return (...);

};

export default LinkForm;

 Navbar is a react component, can be integrated as part of each component

page, his responsible for navigation between pages by using Link features and

contain info about the application Company and User info.

Listing 13 describes the navbar react component.

Listing 13

File “Navbar.js”

import React from "react";

import { Link, useHistory } from "react-router-dom";

import userIcon from "../img/User-icon.png";

import logo from '../img/Logo.png';

const NavBar = (props) => {

 const history = useHistory();

 let userAvatar;

 const username = props.username ? props.username : "Anonymous";

 if (props.picUrl) {

 userAvatar = props.picUrl;

 } else {

 userAvatar = userIcon;

 }

 function handleLogout() {...}

 return (...);

};

export default NavBar;

 “Not Found” page component refers to error type of components. User can

see displayed “not found” page only by manually redirecting himself to some url

which has not any prerendered content, in that way user will be informed that he is

not on a right page.

 This file does not use any of packages or features but only simple react.

Listing 14 describes “Not Found” component.

80

Listing 14

File “NotFound.js”

import React from "react";

const NotFoundPage = () => {

 return (...);

};

export default NotFoundPage;

 Recent Links is a react component which display a list of lists combined

with their short links already converted with API. As well as the Link Form

component it has a handle copy function for each group of links to copy that for

comfort user experience.

Listing 15 describes recent links component.

Listing 15

File “RecentLinks.js”

import React from "react";

const RecentLinks = ({ urlArray, shortUrlArray }) => {

 const handleCopy = (url) => {...};

 return (...);

};

export default RecentLinks;

 App file is a main react configuration file, which hold all react components

and provide woking frontend part of app. It has import all the components and use

their logic. Also using BrowserROuter to switch between paths (some sort of

navigation), router, route and switch features that cannot be without this main

package. The architecture of that type of app should have all wrapped routes in

switch to change the pages of app by user actions as well as imported components

as the parameters in each route to return the content of some page to user.

81

Listing 16 describes app react file.

Listing 16

File “index.js”

import React from "react";

import ReactDOM from "react-dom";

import { BrowserRouter as Router, Route, Switch } from "react-router-dom";

import AuthPage from "./auth/AuthPage";

import MainPage from "./components/MainPage";

import NotFoundPage from "./components/NotFoundPage";

import RegisterPage from "./auth/RegistrationPage";

import "./sass/main.scss";

import { BrowserRouter } from "react-router-dom/cjs/react-router-dom.min";

const App = () => {

 return (

 <BrowserRouter>

 <Router>

 <Switch>

 <Route exact path="/" component={MainPage} />

 <Route exact path="/login" component={AuthPage} />

 <Route exact path="/register" component={RegisterPage} />

 <Route component={NotFoundPage} />

 </Switch>

 </Router>

 </BrowserRouter>

);

};

ReactDOM.render(<App />, document.getElementById("root"));

4.3. User interface development.

The launch page of the web service is the "Mainpage.js" file, this is the main

page that immediately checks the attempt to receive data from the application for

the presence of a token confirming his identity by the subject who made the

request. In the usual version, when the user has not yet created an account in the

application, he is redirected to the authentication page, and we will start with it.

This page requires two lines of data from the user, e-mail name and account

password.

82

Figure 1 shows the web service login page.

Fig. 4.1. “Login page”

 As you enter data into the cells, the system will evaluate and change the

color of the bottom lines to show the status of the data, whether it meets the

required data entry rules or not. In addition, standard information about incorrect

data entry will be displayed thanks to the browsers themselves.

At the moment of clicking a button in the interface form, the browser checks

the data entered in the form for compliance with the conditions. If these conditions

are not met, the form submission will be canceled. After that, the user will be

prompted for information on how to correctly fill in the form fields. If these fields

are successfully filled with data in the required form, the system will accept this

information and take appropriate actions.

Figure 2 shows the web service login page with incorrect data fields.

83

Fig. 4.2. “Error login page”

 Entering data into the fields of the form in the correct form before sending

the data itself by pressing the button will be highlighted in green by the lines under

each field.

Figure 3 shows the login page to the web service with correctly filled form fields.

Fig. 4.3. “Error login page”

 If the user does not have an account created in the corresponding service, he

can quickly go to the account registration form by clicking on the link located

under the button to send the "Confirm" form. After these actions, the user will be

redirected to a similar page, but already intended for user registration.

84

The difference from the previous form is that it has an additional cell with

the name "username", which requires the user to enter his nickname, which will be

displayed on the main page of the web service. Also, one of the differences are the

methods that will be performed when sending the form, this is the creation of a

new account in the database, and not a check for the presence of this account.

Figure 4 shows the login page to the web service with correctly filled form

fields.

Fig. 4.4. “Registration page”

 One of the possible authentication options is also the use of Google OAuth

functions, which provides the possibility of entering the application through the

use of an already existing Google account, which in turn exchanges data with the

service and receives the necessary user information and adds it to its system. The

display name and image of the Google account will also be received and displayed

later on the main page. Figure 5 shows the Google authentication button.

Fig. 4.5. “Google authentication button”

After pressing the button to log in using google authentication, a standard

form will open for the user to choose the account with which he wants to use our

application.

85

Figure 6 shows the Google account selection form.

Fig. 4.6. “Google authentication form”

 Handling of major errors that may occur while working with the system at

times when its parts are under maintenance or for some reason an important error

in the system has been discovered also takes place. Therefore, in some moments of

system errors, for the user to understand the root of the problem, it was chosen to

create additional interface components that display these errors, in their usual form,

they will look like a drop-down block with information in red or green color if the

operation was successful. However, unlike the information shown in the picture, it

will have more understandable information for the user.

Figure 7 shows a form with an error block when performing some operation.

86

Fig. 4.7. “Google authentication button”

 After successful registration and authorization in the system, the user will be

redirected to the main page of the system. This page displays basic user data,

buttons that can be used to go to other resources, etc. The main form of the system

is shortening of links sent by the user. In order to perform operations, the user

needs to independently select a link or a package of links and send these links to

the system through the field for entering the link and the submit button of the form.

In addition, by following the links by pressing the buttons, the user can get

various pages with information for familiarization. For example, the button called

"about" will open a page with a description of the system and its capabilities. The

"Company" button provides information about the company that owns this service.

The "Support" button helps the company to improve the system.

Figure 8 shows the main page of the application.

87

Fig. 4.8. “Main page”

After sending a certain number of links, the answer together with the sent

link will be stored and displayed under the form for sending data, the number of

storage of the last links was programmatically limited to no more than 10 so that

the user does not make too large lists of links that he may not need. Next to these

links will be a copy button that will allow you to quickly copy already converted

links.

Figure 9 shows the main page of the application with recently used links.

Fig. 4.9. “Main page with recent links”

88

4.4. Results of web link reduction system testing.

Having constructed a prototype of the software, preliminary testing of

separate parts of the software was carried out, functions, components, units of

software modules and the interaction of units with each other were involved.

In general, only the part with a complex authentication architecture was

difficult in testing the system due to the creation of user tokens based on receiving

data about his registration in the system and further saving this data to keep a

certain user in the system. In addition, the ORM Sequelize configuration file was

difficult to test, which is why the creation of tests around such a system was hidden

due to security issues.

An example of testing the backend part of a web service. Testing includes

almost all software files that can be tested. Some of the software components have

little coverage due to the low need for testing software modules that perform a

light load on the system.

Figure 4.10 presents the results of preliminary testing of the back-end part of

the system prototype obtained from frameworks for software testing.

Fig. 4.10. “Backend test results”

89

 When testing front-end parts, it is necessary to take into account the fact that

separate files with functions that perform business logic on the client side, as well

as user interface components that can also include some simpler functions but

perform the necessary actions to change display information, can be tested in the

application interface. Program files are logically sorted into folders that are

responsible for individual functions in the system.

In this way, it is possible to obtain data that during testing, the software

module that was difficult to verify was the testing of registration and authentication

forms, because they, in addition to the usual logic and requests to the back-end

part, perform authentication logic using Google and also send requests to it to

receive valid tokens for further their confirmation.

Figure 4.11 presents the results of preliminary testing of the front-end part of

the system prototype obtained from frameworks for software testing.

Fig. 4.11. “Frontend test results”

We have two minimum condition during testing of the front-end part. First is

the processing of the most important modules that are responsible for the security

of all web service operations. Secondly is the processing of the minimum half 50%

of the entire system with tests coverage both separate and integration tests (for the

interaction of these modules).

90

Conclusion

In this section, the final part of the work on software development using the

methodology of code generation by artificial intelligence was considered. A

detailed description of the design and development aspects of the software

prototype as a whole was made.

Also considered what is the software architecture and the requirements for it

when choosing an architecture according to the system to be developed with

presentation of the main software modules of the system.

Made description of the final requirements for the appearance of the system

interface, including the most important pages that will be used by users.

After constructing the prototype of the link shortening service, software

testing of the entire system, i.e., two parts of the service, was also created.

Separately created unit and integration testing of the front-end part, its react

components and functions. The unit and integration testing of the front-end part, its

service parts and function APIs have been created.

91

CONCLUSIONS
In conclusion, the integration of artificial intelligence (AI) techniques,

including IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot, in

development software systems offers tremendous potential for improving the

efficiency and effectiveness of the code creation process. The combination of these

AI-driven tools provides benefits in code comprehension, automated refactoring,

and documentation generation.

By leveraging IntelliSense, development can gain a deeper understanding of

complex code structures, identify relationships between software components, and

obtain contextual suggestions for code completion. This enhances code

comprehension and reduces the manual effort required for analyzing and

understanding intricate codebases.

Code Formatter automates refactoring tasks, making legacy codebases more

maintainable and aligned with coding best practices. It improves code readability,

structure, and modularity, thereby facilitating the code creation process and

enabling developers to work with cleaner and more organized code.

ChatGPT proves valuable in generating comprehensive and up-to-date

documentation during code generation. It assists in documenting code logic,

identifying system dependencies, and providing explanations and summaries. This

AI-powered documentation generation saves time and effort, ensuring that crucial

information about the software system is captured accurately.

GitHub Copilot, with its intelligent code generation capabilities, expedites

the development process by suggesting relevant code snippets, functions, and

patterns based on observed context. This AI-powered tool assists during

development in identifying critical functionality and accelerates the understanding

of complex code structures within the software system.

However, it is important to consider the challenges associated with AI-

driven code generation. Ensuring the availability of accurate and representative

training data, addressing biases in AI models, and ensuring the trustworthiness and

reliability of AI-generated code and documentation are critical considerations.

92

Future directions for research and development in AI-driven code generation

include improving AI models' contextual understanding, addressing security and

privacy concerns, and fostering effective collaboration between AI and human

expertise.

In summary, the integration of AI techniques in module development of

software systems has the potential to revolutionize the field, improving code

comprehension, refactoring efficiency, and documentation generation. It enables

code generation to navigate complex codebases more effectively, enhance

maintainability, and gain deeper insights into software systems, ultimately leading

to more efficient and informed software development and maintenance processes.

93

LIST OF REFERENCES

1. Beiqi Zhang, Peng Liang, Xiyu Zhou, Aakash Ahmad, «Practices and Challenges of Using

Github Copilot: An Empirical Study», March 2023,

 [Electronic resource] - Mode of access:

 https://www.researchgate.net/publication/369266175_Practices_and_Challenges_of_Using_G

itHub_Copilot_An_Empirical_Study

2. Mateusz Jaworski, Dariusz Piotrkowski, «Studios of software developers experience using the

Github Copilot Tool in the software development process», January 2023, [Electronic

resource] - Mode of access:

 https://www.researchgate.net/publication/367088653_Study_of_software_developers%27_ex

perience_using_the_Github_Copilot_Tool_in_the_software_development_process

3. Burak Yetiştiren, Eray Tüzün, Işık Özsoy, «Assessing the Quality of GitHub Copilot’s Code

Generation», November 2022, посилання [Electronic resource] - Mode of access:

 https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Co

pilot%27s_Code_Generation

4. Meiyappan Nagappan, N. Asokan, «Is GitHub's Copilot as Bad As Humans at Introducing

Vulnerabilities in Code», April 2022, [Electronic resource] - Mode of access:

 https://www.researchgate.net/publication/359890768_Is_GitHub%27s_Copilot_as_Bad_As_

Humans_at_Introducing_Vulnerabilities_in_Code

5. Tosh Velaga, «Code generation Resources for ChatGPT» Dec 12, 2022 [Electronic resource]

- Mode of access:

https://medium.com/@toshvelaga/reverse-engineering-resources-for-chatgpt-bd69155b2423

6. Aleksandar Milenkoski, «Problems Chatgpt Chan Solve for Code Generation and Malware

Analyzis» December 2022, [Electronic resource] - Mode of access:

 https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-

malware-analysts/

7. Рябокінь Ю.М., «Інженерія програмного забезпечення» НАУ, 2015 –184с.;

8. Крамар Ю.М., Рябокінь Ю.М., Кузнєцов С.В., Марченко О.І., Програмне забезпечення

автоматизованих систем, НАУ 2006 –38с.;

9. Радішевський М.Ф., Рябокінь Ю.М., Оцінювання об'єктно-орієнтованих програмних

систем на етапі проектування, НАУ 2009 – 6с.;

10. Сидоров М.О., Вступ до інженерії програмного забезпечення, НАУ 2010 –112с.;

https://www.researchgate.net/publication/369266175_Practices_and_Challenges_of_Using_GitHub_Copilot_An_Empirical_Study
https://www.researchgate.net/publication/369266175_Practices_and_Challenges_of_Using_GitHub_Copilot_An_Empirical_Study
https://www.researchgate.net/publication/367088653_Study_of_software_developers%27_experience_using_the_Github_Copilot_Tool_in_the_software_development_process
https://www.researchgate.net/publication/367088653_Study_of_software_developers%27_experience_using_the_Github_Copilot_Tool_in_the_software_development_process
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/359890768_Is_GitHub%27s_Copilot_as_Bad_As_Humans_at_Introducing_Vulnerabilities_in_Code
https://www.researchgate.net/publication/359890768_Is_GitHub%27s_Copilot_as_Bad_As_Humans_at_Introducing_Vulnerabilities_in_Code
https://medium.com/@toshvelaga/reverse-engineering-resources-for-chatgpt-bd69155b2423
https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-malware-analysts/
https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-malware-analysts/

94

APPENDIX A.

ADDITIONAL PICTURES

