MIHICTEPCTBO OCBITH I HAYKH YKPATHA
HAIIOHAJIBHUM ABIAIIIMHUM YHIBEPCUTET

dakyJabTeT KidepOe3nexku i mMporpaMHoI iH:KeHepil

Kadenpa imxenepii mporpaMHoro 3ade3neueHHs

JOITYCTUTHU A0 3AXUCTY
3aBimyBad BUITYCKOBOI Kadeapu

e 2023p.

JTUILIOMHA POBOTA

(ITOAACHIOBAJIBHA 3AIIMCKA)
BUITYCKHHUKA OCBITHBOI'O CTYIHEHSA MATICTPA

Tema: “MeTtomoJ0rist BIOCKOHAJICHHS TPOrpaM Ha OCHOBI 3aC001B TreHepallli Koy

MITYYHUM 1HTEIEKTOM

BuxonaBensb: ct. rp. 221MA Jlanunos Onekciit ['ennaaiiioBuy
KepiBHuk: x..-M.H., morient, Muxaiino Bikroposuu OleHiH

Hopmoxontpouaep: Muxaiino OJIEHIH

Kwuis 2023

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering
Software engineering department

ADMIT TO DEFENSE
Head of Department

(13 29 2023

QUALIFICATION WORK

(EXPLANATORY NOTE)

GRADUATE OF EDUCATIONAL MASTER’S DEGREE

Theme: “Methodology for improving programs based on means of code
generation by artificial intelligence”

Performer: Danylov Oleksii Gennadijovich

Standard controller: Doctor of technical sciences, Associate Professor, Mykola
Fyodorovych Radishevskyi

Supervisor: Mykhailo OLENIN

Kyiv 2023

HALIOHAJIBHUN ABIALIMHUN YVHIBEPCUTET

dakyJabTeT Ki0epOe3NneKu 1 MporpamMHoi 1HxKeHepii

Kadeapa imxenepii nporpaMmHoro 3abe3rneuyeHHs

OcBiTHill cTyniHb MaricTp

CuneniajbHiCTh 121 InxeHepis mporpaMHOTro 3abe3neueHHs
OcBiTHbO-IpOQeciiina mporpama [HXXeHepis MPOrpaMHOTo 3a0e3MeUeHHs

3ATBEP/IKVYIO
3aBimyBau kadeapu

" " 2023 p

3ABJIAHHSA
HA BUKOHAHHS JUILIOMHOI po00TH
Janunosa Omnekcis I'enHamiiioBnya

1. Tema guruioMHO1 poOoTU: «METOo0JIOTis BAOCKOHAIICHHS MPOTrpaM Ha OCHOBI
3aco01B reHepariii Koay MTYYHUM IHTEJIEKTOM)
3aTBep/KEHA HAKa30M peKTopa Bij «29» sxoBTHs 2023 p. Ne 1994/cr.

2. Tepwmin BukoHanss poootu: 3 02.10.2023 p. mo 31.12.2023 p.

3. Buxigni gani 10 po6otu : Baockonanenuii mporpaMHuil IpoayKT 3
BukopuctanHaMm VSCode Ta MoB nporpamyBanHs Typescript Ta Javascript.

4. 3MICT TOSICHIOBAJILHOT 3aMUCKHU:

1) Amnaii3 MeToa0J10Ti1 BAOCKOHAICHHS ITPOrpaM Ha OCHOBI TeHeparlil Koy
[T,

2) JlociimpKeHHsT TEXHOJIOTIH BIPOBAIKCHHS,

3) ApxiTeKTypa BIOCKOHAJICHHS MPOTPaMH,

4) TIpoToTun po3po0IEHOTO MPOrPaMHOT0 3a0€3MCUCHHS.

5. [lepenik 000B'SI3KOBOTO LTIOCTPATUBHOTO MaTepiany (Cliaii1iB mpe3eHTarlii):

1) Tema, BUKOHABEIb, KEPIBHUK;

2) Icuyroui MeToaM, aHAJI3 HEIOJIKIB, TOCTAHOBKA 3aBIAHHS;
3) Bumoru 10 mporpamMHOro 3acooy;

4) CtpykTypa iHCTPYMEHTY, Jiarpama Kiacis;

5) Iurepdetic mporpamMHOro 3acooy;

6) JleMOHCTpaIlisi MPOTOTHITY IHCTPYMEHTY

6. Kanennapuwuii mian-rpadix

No
3/m

3aBIaHHA

TepMmin BUKOHAHHS

BigmiTka
po
BUKOHAHHS

Po3po0Oka Ta 3aTBepiKeHHS Tpadika
po6otu. O3HaliOMIICHHS 3
MIOCTAHOBKOIO 3a]1a4i Ta BUBYCHHSI
JiTepaTypH.

Hanucanns po3ainis 113,
MIPE/ICTAaBICHHS KEPIBHUKY.

14.10.2023-31.10.2023

Hanucanns nepuoro ta gpyroro
po3ainy. Haganus Ha nepmuit Hopmo-
KOHTpOoJIb [13 - (060B’A3KOBO -
TUTYJIbHOI, 3aBAaHHs, rpadika,
pedepar, CIHUCOK CKOPOYEHb, 3MICT,
BCTYII, CITUCOK JKepen, po3aiau 113).

15.10.2023-22.10.2023

PenaryBanHs OSICHIOBaJIbHOT
3aMuCKy, TpadiuHoro MaTepiaty.

22.10.2023-01.11.2023

[IpoxoKEeHHS IEPIIOr0 HOPMO-
KOHTPOJIIO.

01.11.2023-14.11.2023

HarmmmcanHs TpeThOTO Ta 9€TBEPTOTO
PO3ILTY TUIIOMHOI pOOOTH.

14.11.2023-20.11.2023

[IpoxomxeHnHs koHTposto 113 Ha
Tiariar.

20.11.2023-26.11.2023

OTpumaHHS BIATYKY KEpIBHUKA.
[TinroToBka mpe3eHTallii Ta TEKCTY
nonoBifi. [TorepeaHii 3aXuCT.

26.11.2023-27.11.2023

[IpoxomKeHHsT HOPMO-KOHTPOJIIO,
HEPEIUIIT MOSCHIOBAJILHOL 3aMCKH.
OTpumaHHS pelLeHsli.

27.11.2023-13.12.2023

3natu cexperapro JEK: 13, I'M, CD-
R 3 enektponnumu Bepcisimu 113, ['M,
MPE3EHTallI0, BIATYK KEPIBHUKA,
pEeleH31t0, I0BIIKY MPO YCIIIIHICTD, 2
Narku, 2 KOHBEPTA.

13.12.2023-19.12.2023

10.

3axuct guruioMHoi pobotu nepen EK.

19.12.2023-31.12.2023

Jata Bumaui 3aBnanns 02.10.2023p.
KepiBHUK 1unioMHOI poOOTH:
3aBiaHHs IPUIHSB 10 BAKOHAHHS:

Muxaiino OJIEHIH

Omnexcint JAHWUJIOB

NATIONAL AVIATION UNIVERSITY

Faculty cybersecurity and software engineering
Department Software Engineering

Degree of education master

Specialty 121 Software engineering
Education-professional program Software engineering

APPROVED
Head of department

(13 29 2023

Task
on executing the graduation work
Danylov Oleksii Gennadijovich

1. Topic of the graduation work: “Methodology for improving programs based on
means of code generation by artificial intelligence”
Approved by the rector's order from «29» october 2023 Ne 1994/st.

2. Terms of work execution: from 02.10.2023. to 31.12.2023.

3. Source data of the work: improved software product using VS Code and
programming languages Typescript and Javascript

4. The content of the explanatory note:
1. Analysis of methodology for improving programs based on Al code
generation
2. Research of the implementation technologies
3. Architecture of improved program
4. Prototype of developed software

5. List of mandatory presentation slides:
1. Topic, performer, leader.
2. Existing methods, analysis of shortcomings, setting of the task.
3. Requirements for the software tool.
4. Tool structure, class diagram.
5. Software tool interface.
6. Demonstration of the tool prototype.

6. Calendar plan-schedule

Ne Task Deadline Performanc
e note
1. Familiarization with the statement of the 14.10.2023-
problem and the study of literature 31.10.2023
Writing 1 section, presentation to the
supervisor
2. Preprint of section 1 and auxiliary pages 15.10.2023-
(draft) - title, task, schedule, abstract, list 22.10.2023
of abbreviations, content, introduction,
source list. First standard control.
3. Writing 2 section, presentation to the 22.10.2023-
supervisor 01.11.2023
4, Writing 3 section, presentation to the 01.11.2023-
supervisor 14.11.2023
5. General editing and printing of an 14.11.2023-
explanatory note, graphic material 20.11.2023
6. Passing standard control 20.11.2023-
26.11.2023
7. Development of the text of the report. 26.11.2023-
Creating of graphic material for 27.11.2023
presentation
8. Get feedback from the supervisor, 27.11.2023-
reviews. 13.12.2023
Q. Preparation of materials for transmission 13.12.2023-
to the secretary of the DEC (software, 19.12.2023
GM, CD-R with electronic copies of
software, GM, presentations,
supervisors review, review, certificate of
progress, 2 folders, 2 envelopes)
10. | Graduation project presentation 19.12.2023-
31.12.2023

Date of issue of the assignment 02.10.2023.

Supervisor:
Task accepted for execution:

Mykhailo OLENIN
Oleksiy DANYLOV

PEDEPAT

[TosicHIOBaIbHA 3aMKCKa A0 AUIUIOMHOI poboTH “MeToaonoris
yIOCKOHAJIEHHS IPOrpaM Ha OCHOBI 3aC001B TeHepallii KoAy ITy4YHUM
iHTenekrom’: 93 c., 31 man., 1 Tabn., 2 rpadiku, 7 giarpamm, 10 BUKopucTaHUX
mxepen, 1 monaTok.

OG’€eKT TOCHIHKEHHSI — METO/I0JIOT1S BIIOCKOHAJICHHS IIPOrpaM Ha OCHOBI
3aco01B TeHeparlii Koy MTYYHUM 1HTEICKTOM.

Meta po6OTH — 3alpOIIOHYBAaTH METOJIOJIOTII0 BAOCKOHAJICHHS IPOTpaM Ha
OCHOBI 3ac001B reHepaltlii Koy ITYYHUM 1HTEJIEKTOM Ta MPOJAEMOHCTPYBATH ii
3aCTOCYBaHHS Ha MPAKTUYHUX MPHUKIAIAX.

MeTtoau nocmiKeHHs] — BUKOPUCTAHHS METO/IIB PEBEPCUBHO1 1HXXEHEPiT
IPOrpaMHOro 3a0€3MeUEHHs Ta METOAIB IITYYHOTO 1HTEJIEKTY.

Tun po3poOku: 00'€eKTHO-OPIEHTOBAHUM MMIIXI1A.

Amnapathe Ta nporpamue 3a0e3nedenss — [1K 3 onepaiiitHO0 cucTeMoro
Windows 11 a6o Windows 10, cepenouiiie aJist 00'€KTHO-OPIEHTOBAHOTO
nporpamyBaHHs — VS Code. BukopuctanHs MeTO10J10T1i IITYYHOTO IHTENEKTY
HEMO>KJIUBO 0€3 MIJKIIOUYEHHS 10 [HTepHeTYy.

Po3po6ka nporpamu BukonyBajacs B cepenonuiii Node.js [lependaueHe
MPUITYIIEHHS 00 PO3POOKH IHCTPYMEHTIB — pO3pO0JIeHE TPOTrpaMHE
3a0€3MeUYeHHs] MOYKHA MTOKPAIIUTH HUISIXOM MOETHAHHS TeHepallii ITYyYHOTO
IHTENEKTYaJIbHOT'O KOy Ta MEPEBIPKH BPANIMBOCTEN IITYYHOTO 1IHTEIEKTY.

PesynbraTti poO0TH — MOXKYTh OYyTH BUKOPHUCTAHI MPU PO3POOIT
pOrpamMHUX 3aco01B a0 CTBOPEHHI Ta BAOCKOHAJIEHHI MPOTPAMHUX MOIYIIB
ICHYI0YO1 MpOTpaMu, TPU3HAYEHUX JIJIS1 PI3HUX Tay3eil TPOMHUCIOBOCTI.

BJIOCKOHAJIEHHA ITPOI'PAMU, 'TEHEPYBAHHA KOAY, CTBOPEHHA
JIOKYMEHTALI, TIOIIYK BPA3JIMBOCTEHN, PEBEPCHA THXXEHEPIS,
JOJABAHHA ITPOTPAMHUX MOAVIJIIB.

ABSTRACT

Explanatory note to the thesis "Methodology of program improvement based
on means of code generation by artificial intelligence™: 93 pp., 31 figures, 1 tables,
2 graphs, 7 diagrams, 10 used sources, 1 appendices.

The object of the research — the methodology of improving programs based
on means of code generation by artificial intelligence.

The goal of the work is to propose a methodology for improving programs
based on means of code generation by artificial intelligence and to demonstrate its
application on practical examples.

Research methods — use of software reverse engineering methods and
artificial intelligence methods.

Type of development: object-oriented approach.

Hardware and software — PC with Windows 11 or Windows 10 operating
system, an environment for object-oriented programming —VS Code. The use of
artificial intelligence methodology is impossible without an Internet connection.

Application development was done in Node.js runtime environment
Intended tool development assumption — developed software can be improved by
combining artificial intelligence code generation and Al vulnerability testing.

The results of the work can be used in the development of software tools or
the creation and improvement of software modules of an existing program intended
for various industries.

SOFTWARE IMPROVEMENT, CODE GENERATION,
DOCUMENTATION CREATION, VULNERABILITY FINDING, REVERSE
ENGINEERING, ADDING SOFTWARE MODULES.

TABLE OF CONTENT

LIST ACRONYMS AND ABBREVIATIONS ...ttt sttt nne e
INTRODUGCTION . ..ottt bbbt b btk e bbb b a8 e Rt e b e e bt ekt e bt b nb e e b e st e bt e be et e s be et e nbe e e
CHAPTER L.ttt bbb e h bt b £t bt b A4 bbb e Rt e R £ e bt e h bbbk b et e st e bt e bt et e e bt et e nbe b
RESEARCH OF THE METHODOLOGY FOR IMPROVING PROGRAMS CODEccccoviininiinrenienae,
I = = Tod 1o | (01U o o TSP PP S USRS PR PP PPN
A oo T o] a I @] o] 1= od €TSS
IR T Y 11 1 g [0 (o] (o0 V2SSOSR
1.3.1. OVerview Of Al TECANIQUESccviieie e st sbe et s e e besteeseesaeenee)

1.3.2. TeChNOIOGI& INTEGIALION.......c.eiiiieiiciieii ettt ab e n e

1.4, PractiCal STUAIES OF USE.oiiiieiiiiieie sttt st sttt sbeete e e sreeseesbeeneesaesseeneeseeeneentenneen
1.4.0. OVEIVIBW ..ttt ettt bbb et s bbb bt b4t e Rt e bt e bt bt e b e b nb e b e e st e bt e bt e bt e be et e st e b e

1.4.2. Describing of eXiStiNG PrOJECT.......ociiiii ittt sbe et be s e e seesteeeesbeenee)

1.4.3. ChatGPT reqUESE GENETALIONc.viuiiiiitiitiite ittt b bbbt beab b nn e

1.4.4. Github Copilot COUE GENEIATIONcouiiiiiiite ettt b e n e

1.4.5. IntelliSense reference autOCOMPIITIONcoviiiiiiiiiii e

1.4.6. Code formatter manual preferences and WOrKccocoiiiiiiiiiiicic i

O S = TU T I £)T T [SRRSO

1.5. SigNS OF METNOUOIOGYciiiiiiitiiee bbb b et e e b e nenne

1.6. Analysis of literary sources and existing analogues of Al code generators and Al code
ANAIYZEES .ttt ettt Ee et b e Eeeabe e heeEe et Rt R teEeeRe e teaReeRteehe et e eteeheenteeReeReenteateenrenreeree)

1.6.1. ANalysis OF ANAI0QG PrOGIAIMScviiiiiitirtiite ettt bbbt st b e bbb s

1.6.2. Found software analogs to artificial intelligence Github Copilot.ccccoiiiiiiiiiiiie,

1.6.3. Comparison of existing analogue Programsc.cceiieieieeiieie e eeste e stesre e e sre e e sresreeseesreenes,

T 10 ot U o (=T sy v=T o To 1o To TSSOSO
1.8. Relevance of the improving programs by ai code generation............cccoveieeieie s
1.8.1. Benefits and Challenges of Al-Driven code generationoccoeviinineniieneneseeeee s

IS T U UL =3 DT = Tod A o] o PSSRSO

1.8.3. Formulation of the problem of using these technologies and possible solutionscccccccue....

I T O g T= 11 1= oo TSSOSO SSNY

(@0 3 Tod 1117 o] o RSSO SSPR PP
L8 o 1A e I Y SRR SRUS
REQUIREMENTS FOR THE IMPROVEMENT OF THE CODE GENERATION SYSTEM.........ccccevveniennee,
2.1. Requirements for the designing of SOFtWAIE ... e
2.2. DesCription Of the IAQIaMcooiiiiie et s be e be e et e be et e s beebe e besbeeneesbesneen
2.3. FUNCHIONAI FEOUITEMENTSviiiiie ettt ettt st et e et e sbeese e besae e besbeessesbesbaebesreeneesbesreen
2.3.1. Capabilities for backend part of web app appliCationscccooiiiiiiniiiiee e,

2.3.2. Capabilities for frontend part of web app appliCatioNs...........ccooviiiiiniiiie e,

2.4. Non-functional Project reqUITEMENTS.oi ittt ste ettt e s tesae et e seeeneeneesreeneeseeaneen
2.4.1. Requirements for backend part of web app applications...........cceoiioiiiniiiie i,

2.4.2. Requirements for frontend part of web app appliCationsccccvvviiriniiineneieeees e,

2.5. DEtAild DESCIIPLION ..ottt bbbt bbbt bbbttt b et e e s e e bt et bbb e
2.5.1. Capabilities for backend part of web app appliCations ...,

2.5.4. Requirements for frontend part of web app applicationscccccevveviiiiiiciccee e,

(@0 0 0] 11 1] T o PSSR
CHAPTER 3 ..ottt ettt et e st e e s e s e Rt e Re e R e e R e Eese et e e e st e Rt e R e e ReeReabe e e et et e s e st eneeseenenteeneanennennenees
PROPOSED ARCHITECTURE OF THE SOFTWARE APPLICATION......coiiiiiiiirienese e
3.1, SOTEWAKE GICHITECTUIE ...t bbbt bbb bbbt e e bt et et st e b e
3.2. Diagram of the deployment of the link shortening web applicationccocviiiiiieicicicisceen
3.3. Component diagram of the link shortening web appliCation.............cccooereiiiiiiiiiieee e
K O Lo TS o [F=To | = o BT TSP U TP PSSP PR PR PR UPTPPRY
3.5. Construction of connections of physical eQUIPMENTccoiiiiiiiiie e e,
(©70] o Tod (117 o] o ST S S SO P S PR PRI

(O o A e I SRS
PROTOTYPE IMPLEMENTATION USING THE CODE GENERATION METHODOLOGYccccceevrunee.

4.1. Development of a prototype of a web service for shortening links using the methodology of
USING ArtifiCIAl INTEIIIGENCE ... bbb nnene

4.2. Prototype of the deVelOPed SYSTEIMcoiiiiiiiiite ettt nb s
4.3. USer iNterface deVEIOPIMENT. ..ottt
4.4. Results of web link reduction SyStem teSTING.ccoviiriiiiiiieee s
CONCIUSION ...t h bbb bbb bbb bbbt E bbb bbb bbb bbb et et b e b e en e
CONCLUSIONS ..ttt a e bt e bt e bt e e bt e eb e e e h et 2R et e bt e oh e e Sh e e SR e e eR b e e R b e e R b e e be e ke eeb e e ebbeanneanneenbee e,
LIST OF REFERENGCES ... oottt h ettt b e s b e e e b bt e b b e e bt e beesbeesaeesnnesnneannes)
F N o = N B] I QS PSSO U SR PUPPOUROPRRTPR

LIST ACRONYMS AND ABBREVIATIONS
IDE — Integrated development environment;
JS — JavaScript programming language;
TS — Typescript object oriented programming language;
NE (Node.js) — Environment system for javascript and typescript;
EX (Express.js) — Framework that working with Node.js and webapps
SQ (Sequelize) — Typescript and Node.js ORM for different databases;
RD (Redis) — in memory data structure store, used as database (cache);
DB — database;
OOP - object oriented programming;
OS — operational system;
DBMS — database management systems;
DAO (Data Access Object) — a module that consists of one or more files in the
program, which is responsible for communication with the database;
GPT (Chat GPT) — Multifunctional Al that works in text solution that can create
some ideas, problem solves, code understanding;
CF (Code Formatter) — API or Integrated software that works with endup code to
convert it to more understandable and readable for developer view;
IS (IntelliSense) — Autocomplete technology that provide a developer mostly view
interface of different variants of references autocompletion that will automatically
generate code;
GC (Github Copilot — Al tool that can generate module/function code and give
variants of realization of some task, as well as bug fixing;
CW (Amazon CodeWhisperer)— Al tool for searching security vulnerabilities and
code stable analyzer;
CM (Codeium) — Free Al tool alternative to Copilot;
TE (Tabnine) — Free Al tool alternative to Copilot;
FP (Faux Pilot) — Open source self hosted copy of old version of Copilot;

Al — Atrtificial intelligence;

INTRODUCTION

The methodology of designing software modules using artificial intelligence
plays a crucial role in understanding and analyzing existing software systems. This
paper examines the integration of artificial intelligence (Al) techniques, including
IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot and similar programs
to GitHub Copilot for code generation of software systems.

The goal is to use Al capabilities to improve various software modules,
including code understanding, refactoring, and creating step-by-step
documentation for performing specific software improvement actions. We review
each Al method, discuss their potential contribution to improved part design, and
present a framework for their integration. In addition, we discuss the benefits,
challenges, and future directions for Al-driven improvement and exploration of
critical security challenges code generation model.

The relevance of the creation of program modules by artificial intelligence
as a scientific topic at the moment is difficult to overestimate, since in our time
there is a rapid development of artificial intelligence, its use can add an increase in
speed and create opportunities for the integration of Al in projects to obtain better
software. The use of artificial intelligence does not mean a complete rejection of
developers, they still need to develop and have the necessary level of knowledge to
create software, and the involvement of artificial intelligence in the development
process can contribute to positive changes in the design process, since artificial
intelligence cannot create a quality product that consists of from many modules
itself, but only to copy already existing software analogs and functions that this
analog has.

The methodology of creating software modules is strictly connected to
meaning of reverse engineering since this methodology involves viewing an
existing software, therefore, it is appropriate to use this concept as compatible with
this type of work

CHAPTER |

RESEARCH OF THE METHODOLOGY FOR IMPROVING PROGRAMS
CODE

1.1. Background

Al code generation involves analyzing and understanding existing software
systems to gain valuable insights, improve maintainability, and support future
development efforts. Traditional approaches to code generation rely on manual
analysis, which can be time-consuming and error-prone in inferences to existing
code. The problem statement in this area is that the manual nature of project
support and improvement creates challenges in terms of efficiency, accuracy and
scalability. Therefore, there is a growing need to use Al methods to automate and
improve various aspects of the design process.

1.2. Research Objectives

The main objectives of Al integration:

o To explore the integration of IntelliSense, Code Formatter, ChatGPT, and
GitHub Copilot for Al-driven code generation.

o To evaluate the effectiveness of the combined Al approach in improving code
comprehension, refactoring, and documentation generation during developing
software module.

o To identify the benefits, challenges, and ethical considerations associated with
Al-driven module development.

o To propose future directions and recommendations for advancing Al techniques

in time of development.

1.3. Methodology

1.3.1. Overview of Al Techniques

This section provides a brief explanation of the Al techniques used in the
integrated approach: IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot.
It describes their functionalities.

10

IntelliSense: Improving Code Comprehension IntelliSense goes beyond
traditional code completion by leveraging Al algorithms to provide context-aware
suggestions and documentation (Fig. 1.1.). In the context of developing,
IntelliSense can assist in understanding complex code structures by offering
relevant suggestions based on the current code context. For example, it can help
identify the parameters and return types of functions, provide documentation for
libraries or APIs, and suggest possible code fixes to improve the comprehension of

legacy codebases.

Fig. 1.1. “IntelliSense software logo”

IntelliSense is currently supported in Visual Studio for languages such as
Java, C++, C#, Javascript, Typescript J#, Visual Basic, Visual FoxPro, XML,
HTML, XSLT, and others.

Code Formatter: Automating Refactoring Code Formatter utilizes Al
algorithms to automatically analyze and refactor existing code, making it more
readable, maintainable, and aligned with coding best practices (Fig. 1.2.). In the
context of developing, Code Formatter can aid in refactoring legacy codebases by
identifying and applying improvements to the code structure, naming conventions,
indentation, and other formatting aspects. This automated refactoring not only
enhances code readability but also facilitates the identification of code patterns and

structures during the developing process.

11

== Prettier

Fig. 1.2. “Example of code formatter Prettier”

We have different code formatters, they all have some benefits and
disadvantages so we will not not draw attention to their different options and
methods of adjustment. In addition, their installation and connection have the same
structure, in which it is easy to install the extension and create a file with the
setting.

ChatGPT: Assisting in Documentation Generation ChatGPT, a powerful
language model trained on a vast corpus of text data, can play a significant role in
developing by assisting in the generation of documentation (Fig. 1.3.). During the
development process, ChatGPT can be wused to automatically generate
explanations, comments, and summaries that describe the functionality, purpose,
and relationships between code components. This documentation can serve as a
valuable resource for understanding the system's architecture, dependencies, and
behavior, particularly in cases where comprehensive documentation may be

lacking.

/— ChatGPT :

|

Fig. 1.3. “ChatGPT software logo”

12

ChatGPT can be integrated with Visual Studio, VS Code, jetBrains IDE,
IntellijIDEA, etc.

GitHub Copilot: Intelligent Code Generation GitHub Copilot leverages Al
models trained on vast code repositories to suggest code snippets, functions, and
even entire code blocks based on the observed context (Fig. 1.4.). In development,
GitHub Copilot can expedite the understanding of complex code structures by
generating relevant code segments that align with the observed behavior or patterns
within the software system. These intelligent code suggestions can assist in
identifying crucial functionality, understanding system interactions, and

accelerating the main process.

& GitHub Copilot

Fig. 1.4. “Github Copilot software logo”
GitHub Copilot is trained on all languages that appear in public repositories.

For each language, the quality of suggestions you receive may depend on the
volume and diversity of training data for that language. For example, JavaScript is
well-represented in public repositories and is one of GitHub Copilot's best
supported languages. Languages with less representation in public repositories may
produce fewer or less robust suggestions.

Codeium, Tabnine and FauxPilot work in the same way, the main difference
between them is that they are free to use, the Copilot unlucky have a paid

subscription.

13

1.3.2. Technologie Integration

The main structure of Al work will be the code generation by the request of
our Developer (Fig. 1.5.). Our engineer creates an idea of the software view, next
by existing problems he needs to solve, write to the ChatGPT what he wants to fix
or create and take some information on how to do that. By the answer he can create
code by writing comments in code lines of projects we improving and generate

some working code.

Proprietary \ Output \
. ML Model | . Prediction |

Confidential
training
Dataset

Fig. 1.5. “Artificial intelligence work structure”

We will use the creation of code by ChatGPT named ChatGPT as well as
Gihub Copilot to take the best variants of Al code answers.

If the answer from ChatGPT and Github Copilot don’t work, developers at
the same time can write to Copilot to fix the problems with code or regenerate the
request.

To integrate our technologies we need to perform several steps.
We will use two types of Chat GPT:

1. Browser version for code ideas and solutions.

2. CodeGPT to create some code.

Installation steps:

14

1. Install the IDE and open the already created project.
2. On the top left of the panel, select the "extensions" tab.
3. Enter "chat gpt" in the search panel and open the tab.
4. Press the installation button.
5. Make the same steps for “Github Copilot” ta “Prettier”.
Usage steps Chat GPT(Code GPT):

1. After installing the extension, you need to create a Chat GPT Account on the
OpenAl website.

2. Next you need to open your profile in OpenAl and create your APl Key.

3. Open command palette in Visual Studios and choose “CodeGPT set api key”.

4. Now you can choose.

Usage steps Github Copilot:

1. After installing the extension, you can already open any file of your project
and start writing some requests.

2. In writing time you will see auto completion of Copilot because it start
working and gives you some output even on the start. You can push the “Tab”
button to autocomplete requests.

3. To start generating code, push “Enter” button.

Other Als have similar steps to install.

1.4. Practical studies of use.

1.4.1. Overview

As we see, the listed opportunities provided by tools for project
improvement inherit the logic of reverse engineering, since this methodology
involves viewing an existing software solution, its research and the creation of
additional software modules.

In this section we will see examples of usage of these technologies with each
other. As well as describing the model of reverse engineering. Here we can already
simply understand why it is so progressive and helpful in developing models.

Let’s look at different practical usage of our technologies and artificial

intelligence. We will start by each stage of development:
15

1.4.2. Describing of existing project

Firstly, we defined the existing project points which need to be added. In our
case we have already created a project for customers but we need to improve this
product and check the vulnerability in it. Thir project makes any link the user sends
to it shorter. According to experimental project name “Link shortening API” which

has already been created we have next structure of the project

@ EXPLORER

“ SHORTENING LINK API
v @@ backend
> B® coverage
> h@ dist
> I§ node_modules
™ [p src
> IR api
> IR controllers
> e db
> % routes
> IR services
server.ts
> Wy tests
.dockerignore
it .env

= _Prettierrc

B babel.config.js

Fig. 1.6. “ChatGPT documentation request”
Main technology stack of the project:
- Environment Node.js;
- Programming language TS and JS;
- Back-end connection to DB is Sequelize;
- Back-end database MySQL;
- “Link” model for DB;
- Fast requests provided by Redis db as application (cache);
- Containerization for starting project with Docker;
- Env file for collection of config credentials;
- Basic CRUD architecture;
- API folders and files to connect link shortening feature;

16

According to that technology stack our task is to develop several improvements in
a project:
(Back end part)
- Change database type due to customer’s wishes;
(Front end part)
- Develop the front end part of application to make full-stack app;
(Revision part)
- Audit the project as a whole for security issues and check architecture of app for
further scale the project;
Based on the received data, it will be advisable to proceed the operations with
artificial intelligence.
1.4.3. ChatGPT request generation
“Change the db type of backend project part by Sequelize from MySQL to
PostgresSQL” (Fig. 1.7.) and code input (addition 2.1.).

’:1' Help mei need idea how can i improve created backend APl app by changing the type of db
== MySQL to PostgreSQL, by using Sequelize. Project technology stack is: Typescript, Node.js

@ Migrating your backend APl app from MySQL to PostgreSQL using Sequelize is a good idea,

and it can be done relatively smoothly. Here are the steps to help you improve your

application:

1. Backup Data: Before making any changes, make sure to create a backup of your MySQL
database. This is crucial to ensure you don't lose any data during the migration process.
2. Install Sequelize and Sequelize CLI:

] Copycode

npm install sequelize sequelize-cli pg pg-hstore

3. Create a PostgreSQL Database: Set up a PostgreSQL database if you haven't already. You
will need the connection details (e.g., host, port, username, password, database name) for
Sequelize configuration.

1. Create Sequelize Models: Sequelize allows you to define models that represent you - .
= Regenerate

Fig. 1.7. “ChatGPT documentation first part of response”
Now we can see that artificial intelligence is starting to write an algorithm

for the developer with steps that must be performed to get the desired result. First
of all, in his opinion, it is necessary to copy the data of the old database so as not to
lose important information. Next, the development stages begin. He offers to
install the necessary components that we already have, so we will skip this step.

Next, it is necessary to install the database we need and change the corresponding

17

model for the database, because before that we had a model for the another

database.

MySQL tables. You can use the "“sequelize-auto” tool to generate models based on your
existing MySQL database schema.

arduino D Copy code
npx sequelize- - -d your_old_mysql_db -h mysql_host -u mysq
5. Modify Sequelize Config: Update your Sequelize configuration to point to the PostgreSQL
database. The configuration is typically found in a file like ~config/config. json". Replace

the MySQL configuration with PostgreSQL configuration.

json] Copycode

ns to transfer the data from MySQL to PostgreSQL.

lata from your My atabase and insertsiti ‘< Regenerate

Fig. 1.8. “ChatGPT documentation second response”

Now he provided information in which specific files need to change code in
order for the application to create a connection with the database we need.

It is necessary to generate the model with the following command suggested
by artificial intelligence, correct it a little, and also change the configuration file,

which contains confidential data necessary for the work of the database.

18

PostgreSQL database.

7. Update Application Code: Review your application code and update any queries or ORM
operations to u equelize syntax for PostgreSQL. Ensure that all queries are compatible
with PostgreSQL's SQL dialect.

8. Test Thoroughly: Test your application extensively after making the changes. Make sure
that all features and endpoints are working as expected with PostgreSQL.

9. Optimize Queries: PostgreSQL has different query optimization techniques compared to
MySQL. Take advantage of PostgreSQL-specific features to improve query performance
where needed.

0. Monitor and Optimize: After deploying your application with PostgreSQL, continuously
monitor its performance and make necessary optimizations. PostgreSQL offers various
tools and extensions for performance tuning.

. Backup and Maintenance: Regularly back up your PostgreSQL database and perform

routine maintenance tasks, such as vacuuming, to keep your database healthy.

2. Documentation: Update your documentation to reflect the changes made, including any

differences in the database schema and connection details.

3. Security: Ensure that your PostgreSQL database is properly secured, including setting up
authentication, access control, and encryption.

4. Rollback Plan: Always have a rollback plan in case something goes wrong during the
migration. This plan should include restoring the MySQL backup and rolling back your code
changes.

5. Deploym Deploy your updated application to your production environment, and

monitor it closely for any issues.

Fig. 1.9. “ChatGPT documentation third response”
Next, he offers to check different aspects of the program for possible

problems that may appear after changing the data. Let's take these requirements
into account and check the entire application for relevant problems.
1) The request and response about developing the front end part of the

application to make a full-stack app (Fig. 1.10.)

19

| have back-end part with the technology stack i write above, how can i create and connect
front end part to my back end part

Creating and connecting a frontend part to your existing backend application can be
accomplished by following these general steps. Since your backend is built using TypeScript
and Node.js, you can consider using a frontend framework like React for your frontend

application. Here's a step-by-step guide:

1. SetUp a Frontend Project:
* Create a new directory for your frontend project.
* Initialize a new React project using a tool like Create React App (CRA):

bash) Copycode

npx create-react-app my-frontend-app

* Change into the frontend directory:

bash) Copycode

cd my-frontend-app

2. Install Required Dependencies:

* You might need additional packages to handle HT TP requests, state management, and

other frontend-specific tasks. Common choices include Axios for HTTP requests and
Redux for state management. Install these dependencies as needed:

bash) Copycode

npm install axios redux react-redux

3. Create User Interface:
* Design and create the user interface for your frontend application. You can use HTML,
CS5, and React components to build the UL

Set Up Routing (Optional): > Regenerate

Fig. 1.10. “ChatGPT documentation request”

In the image above, artificial intelligence offers an option on how to create a
front-end part of the application. As usual, first of all, creating a file, then installing
all the necessary software modules, libraries and frameworks that will be needed
during development. After that, with the help of the command in terminal, a
starting front-end application is created, and the developer begins to modify it and

supplement it with the necessary functions

20

4. Set Up Routing (Optional):
* If your application requires multiple pages or routes, set up routing using a package like
‘react-router-dom’.

bash) Copycode
npm install react-router-dom
* Define the routes and create components for each route.
5. HTTP Requests to the Backend:
* Use Axios or another HTTP client to make requests to your backend APIL. For example,
you can make GET, POST, PUT, or DELETE requests to interact with your backend

endpoints.

javascript) Copycode
axios

backendUrl =

axios. (

(response => {

(error => {

i H

G. State Management (Optional):

* If your application requires state management, configure Redux or another state

management library. Create reducers, actions, and connect components to the store to
manage application state.
7. Connect to Backend API:

* Use the same APl endpoints and routes that you defined in your backend applic
> Regenerate

Fig. 1.11. “ChatGPT code change request”
Here it offers manual installation and in-app routing setup. Since the

framework with the help of which the front-end part of the application is developed
IS created as a single-page application (an application in which actions take place
on one link that does not change, during these actions, program modules are
dynamically interchanged and everything is displayed without changing the link of
the web page), it is necessary to add additional technology that will react to the
user's actions and replace the web page link so that the user can conveniently

understand that he is already on the another page. Next, he creates an example of

21

connecting requests to the back-end part of the application to send the necessary

data
2)

-

G

i - 1

Request and response about vulnerability in our project with AWS

CodeWhisperer

‘-...? What files in my project do | need to check for vulnerabilities using AWS CodeWhisperer

Profiler) is a service that helps you identify security vulnerabilities and performance
your code. To check your project for vulnerabilities, you typically need to focus on the

following files and aspects of your project:

1. Code Files:

s in your project, including TypeScript and JavaScript files. AWS
rer can analyze code written in these languages.

2. Package.json:

* Inspect your project's “package.json” file to identify all the dependencies your project
uses. Vulnerabilities can often be introduced through third-party libraries and packages.
AWS CodeWhisperer can help you identify vulnerabilities in these dependencies.

3. LockFiles:

* Check your project's lock files, such as "“package-lock. json™ (for npm) or “yarn.lock™
(for Yarn). These files specify exact versions of dependencies, which can affect security
and vulnerability status.

4. Dependency Scanning:

* Consider using a package or dependency scanning tool as part of your CIfCD pipeline.
Tools like OWASP Depende Check, Snyk, or AWS CodeArtifact can scan for known
vulnerabilities in your project's dependencies.

5. Security Configuration Files:

* Review any configuration files related to security settings. For example, in Node.js

applications, you may have a *.npmzxe” file with certain security settings.
5. Serverless Configuration (if applicable):

* If you're using serverl frameworks like AWS SAM or the Serverless Framewor’

"+ Regenerate

Fig. 1.12. “ChatGPT documentation first response”
In the image above, the answer from the artificial intelligence makes it

possible to understand how the check for possible problems with the security of the

application works, and how it is necessary to connect the artificial intelligence

CodeWhisperer so that it can check the project for possible problems.

22

0. 2EerMVeress wonmguraton Ul appicaniess

* If you're using serverless frameworks like AWS SAM or the Serverless Framework, revi
configuration files specific to these framewaorks. They might have security settings or

potential vulnerabili

7. Environment Configuration:

* Check for configuration files (e.g., ~ -env" files) that store sitive data, such as API

for security.

0, Server Configuration (if applicable):

* If you have server-specific configuration files (e.g., Nginx or Apache configurations),

ensure they are correctly configured for security.

(0. Scripts and Build Files:

* Examine build scripts (e.g., “package.json " scripts) and any other scripts used in your
project for potential s ity issues. Ensure that they don't introduce vulnerabilit

during the build or deployment process.

. Testing and Test Configuration:

* If you have tests in your project, review test files and configuration to ensure they are not

causing any security issues.

2. Documentation and README:

* Consider documenting security best practices and guidelines for your project in the
README file or documentation. This helps other developers understand how to work

securely with your codebase.

Fig. 1.13. “ChatGPT documentation second response”

Continuation of the previous answer from Al, here he describes all

additional necessary information, the developer can quickly read it and easily start

performing this work.

Indeed, we can use that documentation for further developing.

1.44.

EXPLORER

Github Copilot code generation

X

* DIPLOMA-WORK ba d > 1it env
v @@ backend =_database_development

% SIc

¥ tests

=mysql
=host.docker.internal
=root
=3306
=root

.dockerignore =_database_production

Fig. 1.14. “Project .env configuration file”

23

The developer writes a request to the Al in which he asks to offer options for
changing the database in an already existing application and waits for a response

with examples that he can use in the future.

""f . Javez

How to change connection from mysql to postgres in my project if i have config

GitHub Copilot

To change the connection from MySQL to PostgreSQL in your project, you will need to update the configuration settings for your database
connection. Here are the steps you can follow:

1. Update the database dialect setting to "postgres" in your configuration file. This will tell your application to use the PostgreSQL driver
instead of the MySQL driver.

2. Update the database host, port, username, and password settings to match your PostgreSQL database configuration.
3. Update the database name setting to match the name of your PostgreSQL database.
4. Save the changes to your configuration file.

Here is an example of what your updated configuration file might look like:

E=_database_development
=postgres
ur-postgres-host
'D=your-postgres-password

m m m m
- - - -
o

your-postgres-port
[E=your-postgres-username

Fig. 1.15. “DB code generation response”

3) Now we take the output with exactly the comments we need for our second
Al Github Copilot. (Removing some comments that do not belong to our file
and need to be extracted to another file).

4) Using Copilot changing our comments to code with additional code we need
to use.

5) Additional instructions:

- Create auth file in frontend folder.
- Add the main react function to this file.

- Change some html code.

t typing to dismiss.

24

Fig. 1.16. “Github copilot code generation”
7) Now by existing comments we start to use Github Copilot. Just start to write

some additional text in comments and the Al will understand what you want

to start creating the code (Fig. 1.17.).

frontend > src > components > auth > auth.js

Fig. 1.17. “Commented tasks for code generation”

8) By each line we see how Al gives us examples and by pushing “Enter it

starts code generation (Fig. 1.18.).

frontend > src > components > auth > I auth.js > & AuthPage

um: Refactor | Explain | Generate JSDoc

rt default AuthPage() [

Fig. 1.18. “Code generation example”

In the image above, the developer has written comments that artificial
intelligence also picks up for the next correct answer. In response to the request,
the artificial intelligence immediately picks up the comments and gives the
assumed code that is needed, it is highlighted in gray. After pressing the Tab
button, the generated code is added to the file and the Al immediately offers the
following code or actions.

9) The same steps we continue to do with the other comments into another file

(Fig. 1.19.)

25

src={user.icon} alt="User Icon'

user.name

xport default NavBar;
add div to navbar with user profile name and icon

Accept| Discard| v O

Fig. 1.19. “Code generation with panel request”

Another option for interaction with Al is the creation of a direct request and
in the file. To do this, you need to press Control + I, then you need to enter a
request with all additional descriptions of the task. It is also necessary to take into
account the fact that the generated code will appear in the line previously selected
by the mouse button, so the code may not be generated quite conveniently. In this
case, it is better to choose the last variant in advance and later change the generated
code to your requirements.

1.4.5. IntelliSense reference autocomplition

With the simplest examples of tasks Al can easily complete given tasks but
we overview the real world issues during development so now, our developer
should supplement the existing code.

10) Thereafter the developer starts to add some changes in code manually using
IntelliSense (Fig. 1.20).

to n arguments

P} assign
) assignln @ = to cap arguments for.

@returns — Returns the new function

Fig. 1.20. “Code auto completion with IntelliSense”

26

1.4.6. Code formatter manual preferences and work

11) Now we complete the given task, therefore we need to format all files to
developer friendly code view. The prefered Code Formatter in our case
IS Prettier.

12) Created a “.prettier rc” file in the main project with adding some

preferences (Fig. 1.21.)
EXPLORER sequelizeDb.ts = _Prettierrc X

~ DIPLOMA-WORK
v (@@ backend

"semi": R
"trailingComma": "none",

"singleQuote": ,
2 M isic "printWidth": 80
¥ tests
.dockerignore
it

= .Prettierrc

Fig. 1.21. “Importing Prettier code formatter”
13) Now we simply browse all unformatted files we created and push CTRL

+ S (Save key command)
1.4.7. Bug fixing
In the real project, generated code each time needs to be checked for bugs
and if the exists we need to make next steps:
14) Open Copilot management system, push the fix bug on file we need to fix
and Al starts to change the code (Fig. 1.22.).

® Explain using Copilot
constructor(config: Options) {
.sequelize = Sequelize(config);

Fig. 1.22. “Bug fixing with Copilot”

27

1.5. Signs of methodology

Now we understand the basics of Al characteristics, how it works, what
exactly it does and how to integrate all our technologies in our project developing
via IDE. Also we know that there is not much difference between IDE preferences
to work with these technologies.

We delved into practical studies to demonstrate the effective use of our
technologies. We explored various examples of how our technologies, including
artificial intelligence, can be employed in different stages of development. Here is
a summary of the key points covered:

ChatGPT Request Generation - We began Dby defining the project
requirements, identifying the need to change the simple add operation code from
SQL db to NoSQL. We input this request into ChatGPT, generating the desired
output that met our requirements.

Github Copilot Code Generation - Next, we utilized the output from
ChatGPT and integrated it with Github Copilot. By extracting the relevant
comments and instructions, we proceeded to convert them into code. We observed
how Copilot provided suggestions and examples based on the comments, enabling
us to generate code swiftly and accurately.

IntelliSense Reference Auto completion - To address real-world coding
challenges, our developer manually made further changes to the code using
IntelliSense. This allowed for fine-tuning and customization as per specific project
needs.

Code Formatter Manual Preferences and Work - After completing the
assigned tasks, we focused on ensuring a developer-friendly code view. We
incorporated a code formatter, Prettier, by creating a ".prettier rc" file in the main
project and specifying the desired preferences. By saving the files, the code was
automatically formatted to adhere to the defined standards.

Bug Fixing - In real projects, generated code often requires debugging. To

address this, we utilized the Copilot management system, selecting the file that

28

required fixing. The Al promptly analyzed the code and provided suggested
changes to rectify any identified bugs.

Throughout this chapter, we witnessed the seamless integration of our
technologies and their ability to assist in various aspects of development. From
generating requests with ChatGPT to code generation with Github Copilot, along
with manual adjustments using IntelliSense and code formatting preferences, our
technologies proved to be valuable assets in the development process.
Additionally, the bug fixing capabilities of Copilot showcased its effectiveness in
identifying and resolving issues within the generated code.

The practical examples presented in this chapter highlight the progressive
and helpful nature of our technologies, further validating their potential in model
development and beyond.

1.6. Analysis of literary sources and existing analogues of Al code

generators and Al code analyzers

1.6.1. Analysis of analog programs

Since the existence of a large number of software analogues was established
during the study of literary sources, it will be appropriate to choose a certain
number of software solution options, selected according to criteria that will most
show the various qualities of the programs, their advantages and disadvantages.
And therefore, first of all, it is necessary to describe artificial intelligences that

perform similar actions, have any advantages or disadvantages.

It is assumed that the software improvement methodology requires artificial
intelligence that can correctly respond to the necessary requests for code
generation, be able to work with various aspects of software development, that is,
work with structures in a given programming language, use the latest versions of

the programming language, etc. .

Thanks to the software solution, the work of the developer will be simplified

and facilitated, namely: creating the necessary information and minimal
29

documentation for creating software modules, improving the already existing code
by checking it with artificial intelligence, and finding security problems in the

code.

Let's move on to the consideration of artificial intelligence analogues with
the aim of identifying shortcomings and advantages and using them in the
development of a software solution.

1.6.2. Found software analogs to artificial intelligence Github Copilot.
Product name;

«Codeiumy, Exafunction, (reference in appendix A).
Basic functionality;
1) Generation code with Al in one software module file.
Advantages of product:
1) Can generate simple functions;
2) Can generate more complex code but with help of developer;
3) Complete Test generation;
4) Can complete refactoring but with help of developer;
5) Can generate comments in your code.
Disadvantages of product:
1) Cannot generate more complex code without help of developer;
2) Cannot understand the context of the project;
3) Cannot work with ChatGPT in your IDE;
4) Cannot do routine work outside the module;
5) Cannot complete refactoring without help of developer;

6) Cannot work with specific scenarios.

Product name;
«Tabnine», Dror Weiss, (reference in appendix A).
Basic functionality;

1) Generation code with Al in one software module file.
30

Advantages of product:

1)
2)
3)

Can generate simple functions
Can generate more complex code but with help of developer

Complete Test generation

Disadvantages of product:

1)
2)
3)
4)
5)
6)
7)

Cannot generate more complex code without help of developer
Cannot understand the context of the project

Cannot work with ChatGPT in your IDE

Cannot do routine work outside the module

Cannot complete refactoring

Cannot generate comments in your code

Cannot work with specific scenarios

Product name:

«FaulPilot», Venthe, (reference in appendix A).

Basic functionality:

1)

Generation code with Al in one software module file.

Advantages of product:

1)
2)
3)
4)
5)
6)

Can generate simple functions

Can generate more complex code but with help of developer
Complete Test generation

Can complete refactoring but with help of developer

Can generate comments in your code

Can work with specific scenarios with help of developer

Disadvantages of product:

1)
2)
3)
4)
5)

Cannot generate more complex code without help of developer
Cannot understand the context of the project

Cannot work with ChatGPT in your IDE

Cannot do routine work outside the module

Cannot complete refactoring without help of developer

31

6) Cannot work with specific scenarios without help of developer

1.6.3. Comparison of existing analogue programs

A comparison of the described software analogues is given in table 1.

Table 1
Comparison of code generation Al’s
Property of the software Codeium Tabnine FauxPilot Gihub
Copilot

Generation of simple 7 &7 4 V4
functions
Generation of more X | v | X 7 X | 4
complex code
Test generation 4
Understanding the context X X X 7
of the project
ChatGPT in your IDE X 4
Routine outside the code X 7
Refactoring v | X X 7 | X 7
Generation of comments X Y4 & | X
Specific scenarios X X X |V 7

Having analyzed all the disadvantages and advantages of analog programs, it

became clear which properties of the software tool should be paid special attention

to when developing a software module and what are the two main points when

choosing artificial intelligence. Previously, Github Copilot only worked on a paid

subscription, compared to other free Als. Second, only Copilot can step through

32

the modules of the entire project to analyze code and generate code relative to
existing code.

1.7. Source understanding

Based on the previous data that was researched, namely: the analysis of the
capabilities of artificial intelligence, its main aspects and Al integration into the
development process, a certain understanding of analogue programs and what they
can do, how they differ, its advantages and disadvantages.

Thanks to the research of literary sources and existing analogs, knowledge
was obtained about the problems and advantages of some analog products, which
makes it possible to understand that the development of software and its use at this

level requires a detailed consideration of where and how this system should work.

1.8. Relevance of the improving programs by ai code generation
1.8.1. Benefits and Challenges of Al-Driven code generation

Benefits The integration of Al techniques in development offers numerous
benefits. First, it improves the efficiency of code comprehension by automating the
analysis of complex code structures and reducing the manual effort required.
Second, automated refactoring through Al-driven tools enhances the readability,
maintainability, and modularity of legacy codebases.

Third, Al-assisted documentation generation facilitates the creation of
comprehensive and up-to-date documentation that aids in understanding system
behaviors and dependencies. Lastly, the use of Al models for intelligent code
generation expedites the identification of critical code segments and patterns,
accelerating the development process.

1.8.2. Future Directions

We propose future directions for research and development in Al-driven
development. These include improving Al models' contextual understanding,
addressing security and privacy concerns, developing techniques for integrating

human expertise, and advancing the field of Al-assisted software analysis.

33

1.8.3. Formulation of the problem of using these technologies and

possible solutions

1.9. Challenges

While Al-driven module creation brings significant advantages, it also
presents challenges.

We address the challenges associated with Al-driven development, such as
the need for accurate training data, potential biases in Al models, and ensuring the
reliability and trustworthiness of generated code.

An Additional challenge is the requirement for accurate and representative
training data to ensure the Al models' effectiveness and reliability. Obtaining
suitable training data for development tasks may involve collecting and
preprocessing diverse codebases. Additionally, biases in the training data or Al
models themselves can impact the accuracy and objectivity of code
comprehension, refactoring, and documentation generation. Ensuring the
trustworthiness and reliability of Al-generated code and documentation is crucial
to prevent potential risks or errors in the module creation process.

Conclusion

From these sections we understand that possible problems mostly appear
from the point that people think that Al can simply create anything without
controlling and testing the result and subsequent correction. If the developer will
carefully write what he wants and fix all problems immediately, the Al really can
provide several helpful tools and solutions to upgrade the module creation process
to the next level.

The integration of IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot
presents significant potential in automating and improving development processes.
The combination of these Al techniques offers benefits in code comprehension,
refactoring, and documentation generation. However, challenges related to data
quality, biases, and trustworthiness need to be addressed. The future of Al-driven
creation of program modules lies in advancing Al techniques and fostering

collaboration between Al and human expertise.
34

CHAPTER 2

REQUIREMENTS FOR THE IMPROVEMENT OF THE CODE
GENERATION SYSTEM

2.1. Requirements for the designing of software

This work considers the generation of code using the example of an existing
system for reducing links, in which a functional part of the application has already
been developed by the time of working with artificial intelligence, for working
with it through web requests, that is, there is no interface at the initial stage, but
several tools will be developed in the future during which they will be created as
well as part of product testing and changing the database used by this program.
From this it becomes clear that it will be advisable to create a scheme of
requirements specifically for the product being developed.

Figure 3 shows a diagram of the requirements that will be described in the

current section.

Javascript
Front-end
React
Framework

Programm ing
language

Frontend
Platform Services

Github

i Jesttesting
Copilot g

Framework

front-end
container

Database
- AWS
MySQL with Internet
N Code Chat GPT L
i Connection
o Whis perer
Sequelize

Fig. 2.1. “A model of web application design requirements”

35

2.2. Description of the diagram

After viewing the diagram, it is necessary to make a preliminary description
of it in order to understand all aspects of the system being developed.

The field drawn in green is the web application as a whole, its main parts are:
- Front end part of the application
- Back end part of the application

These two parts work separately from each other and are connected to
different ports, thanks to which they interact with each other by transmitting the
necessary data to each other. In this model, the testing modules are separated due
to the fact that they will not be included in the entire application at the production
stage, so at the time of development they are necessary for the customer to receive
certain data about the requirements given to the developers during the development
of the software tool.

The green field is subject to improvement as a whole through code
generation and vulnerability testing using artificial intelligence. In addition, there
are several requirements for the green field, that is, the application being
developed: writing code in some programming languages, the relationship between
application components, connecting artificial intelligence both externally and
during development, constant Internet access.

A component with an orange color, that is, a software module with a
connected database, subject to partial change, due to the fact that it is necessary to
change the databases with which the system works. This software module interacts
with the API that formats links in a certain way, and also interacts with the front-
end module of the application, that is, with the interface that the user sees.
Necessary requirements for the orange field should be - a connection between the
Sequelize ORM and the Postgres database.

In addition, this field should also use artificial intelligence to generate code.

The component with white color is the connection to the API, it receives

links from the software application, sends them for conversion and sends them
36

back to the application in a shortened form. There are no separate requirements for
it, since at the time of the start of improvement of the software solution, this part
was already written.

The program module with red color is a framework interface for interaction
with the user on the Internet, which must be developed. The requirements for this
module are that it is written in a specific programming language, connected to
artificial intelligence at the time of development for code generation. This software
module is subject to complete creation as it does not yet exist at the time of
software development.

Having described the diagram of requirements for the software application in
detail, we will proceed to the description of functional and non-functional
requirements.

2.3. Functional requirements

The field of software engineering includes writing requirements for software
development. Requirements are divided into two subtypes, functional and non-
functional. A functional requirement specifies a system or component of that
system. It describes the functions that the program will perform. A function is
described as an algorithm, input, actions, output.

2.3.1. Capabilities for backend part of web app applications
System requirements:

1. Design principles: Backend part of app needs to be written in a
programming language named Typescript to use OOP design principle.

2. Testing: Backend part of app should have include library named Jest for
testing the existing program modules.

3. Code: Backend program modules needs to be written with the help of Al
code generation software link Copilot, CodeWhisperer.

4. Connection: Backend part of app should have connection to Front end app
with fetch functions.

5. API Endpoints: The backend app should have API endpoints for retrieving

and updating user data.
37

6. Link sending: The backend app should have functionality for taking original
links from the frontend app and convert it to the shorter version and take the
data back.

7. Error Handling: The backend app should handle errors gracefully and
provide informative error messages to users.

8. Data Storage: The backend app should store user data securely and
efficiently.

9. The program must have access to the database and the ability to
communicate to provide information.

10.1n a program module must be implemented to save the data entered from the
front-end in the database on the backend side.

11.The program must implement the function of removing from the database
the collected information from the application.

12.The program must implement the ability to change information in the
database.

13.The program must have the ability to review information from the database.

14.0n the main page of the web application, a medium-sized logo will be
displayed, and the name of the system will be given as a large size.

15.The program should have Redis db as app cache for fast request and
responses in app.

User data requirements:

1. User Authentication: The backend app should allow users to register and
login to their accounts.

2. User Authorization: The backend app should have different type of
authentication for prefered user choice.

3. Security: The backend app should be secure and protect user data from
unauthorized access.

2.3.2. Capabilities for frontend part of web app applications
User pages:

1. System on the authentication page;
38

N o g bk DN

8.

Admin page in Google service,
Main page auth requirement;
Input panel on the main page;
Data sending button;

Delete user from dataset;
Change user data from dataset;

View user data from dataset.

System main:

1.
2
3.
4

5.

Development programming language requirement;

. Each page company logo;

Front end app should have be written using React framework;

. Front end app should have use code generation Al software in time of

writing the program modules;

Sending data to back end app.

User side:

1.

User Interface: The frontend app should have a user-friendly interface that
allows users to easily navigate and interact with the app;

User Authentication: The frontend app should allow users to register and
login to their accounts;

User Authorization: The frontend app should have different levels of access
for different types of users;

Data Display: The frontend app should display user data in a clear and
organized manner;

Data Input: The frontend app should allow users to input and update their
data;

Error Handling: The frontend app should handle errors gracefully and
provide informative error messages to users.

2.4. Non-functional project requirements

Non-functional requirements represent aspects of the quality of a software

system; they look for standard parameters that are necessary to track the specific

39

performance of the system. For example, the loading speed of the site interface.

Non-functional requirements necessary to ensure accurate operation without

system crashes and efficiency of the entire software system. Improper support of

non-functional methods can lead to unsatisfactory system operation with the user.

2.4.1. Requirements for backend part of web app applications

1.

Performance: The backend part of the app should be fast and responsive,
even under heavy load, caused by many requests from different users.
Scalability: The backend app should be able to handle increasing numbers
of users and data without performance degradation or with a low
degradation.

Reliability: The backend app should be reliable and available at all times.
Maintainability: The backend app should be easy to maintain and update.
Security: The backend app should be secure and protect user data from
unauthorized access.

Web: The backend app should have stable connection to the internet

because of api that convert the links

2.4.2. Requirements for frontend part of web app applications

1.

Performance: The frontend app should have the same performance
requirements as the backend part.

Scalability: The frontend app should have good program architecture for
scalability like module addition (pages addition), design changing.
Reliability: The frontend app should be online all day.

Maintainability: The frontend app should be easy to maintain, update with
new versions, etc.

Accessibility: The frontend app should be accessible to users with
different prefered variants of authentication.

Usability: The frontend app should be well designed with a soft interface.
User Interface: The frontend app should have a well designed interactive

and dynamic Ul for a good User experience.

40

Design: The frontend app should have a comfortable design to interest the
user to stay on the web page longer.
Cross-platform: the frontend app should have cross-platform between PC-

Mobile interface.

2.5. Detailed Description

2.5.1. Capabilities for backend part of web app applications

System requirements:

1.

Design principles: among different options for using a large number of
programming languages, the Typescript language was chosen because it
adheres to the principles of Object-oriented programming and also
because the application being developed will not be very complex.
Testing: Backend part of app should have include library named Jest for
testing the existing program modules.

Testing: Software testing is necessary for the customer’s firm confidence
in the correctness of the future product without system errors. Testing also
shows the code coverage that has been verified and provides a partial
understanding of possible problems the system may have in the future for
product support by other developers.

Code: During the development of the back-end part of the web
application, it is advisable to use artificial intelligence, which will reduce
the time for the development of software modules.

Connection: The connection between the front-end part and the back-end
part enables the exchange between the software parts of important
information needed by the users of the web application.

API Endpoints: The connection and exchange of data between the server
part and the third-party API is vital in this case since there is no
implementation of the link shortening function and instead the functions
provided by the third-party product are used.

41

. Link sending: The backend app should have functionality for taking
original links from the frontend app and convert it to the shorter version
and take the data back.

. Error Handling: Providing errors to users when performing any actions
makes it possible to understand what exactly was done wrong, or to gain
an understanding of from which side the error was received, that is
(whether an error was received from the server side or a regular error due
to incorrect user actions, such as going to an address that doesn't exist).

. Data Storage: Saving user data is one of the most important points when
developing software; if this point was not achieved during development,
this will definitely lead to people not wanting to interact with a product
that loses their data, such as (data about already shortened links that the
user introduced earlier).

. Access to the database is necessary in order to capture and extract the
entire array of data that will be stored in the database. This will allow the

system to capture and capture information through customer requests.

10. The implemented software must be strictly configured for the rapid

interconnection of the interface with which the user interacts, sending a
request to the server side and dynamically processing the response to

update the website page.

11. In this application, it is necessary to implement the deletion of a certain

amount of data on request, as well as a cache application in the form of a
high-speed database that will store the data along with their deletion
timer, that is, after a certain time has passed, the data will become

outdated, or, after too many requests, deletion oldest requests.

12. Changing the data is necessary if an error was made when adding

information, or incorrect information was entered, or the data is simply
out of date. In this case, if this information relates to user data, it is

necessary to be able to change the data.

42

13. The ability to view information should be implemented in the software
part of the interface with which the user interacts, as well as in the admin
panel in which Google account data will be posted.

14. This display is made so that the user can immediately understand which
company this product belongs to and in the future can quickly find other
applications, while having confidence in a specific company if he liked
the previous product.

15. With a large number of users using the application simultaneously, a drop
in performance is inevitable. Because applications use rather slow
databases, they cannot meet user requirements on a large scale. To avoid
such problems, an additional database is needed that would have a fast
response time but would not burden itself with a large array of data. Thus,
the most frequent user requests will be temporarily stored in this database
and sent in response to user requests.

User data requirements:

1. User Authentication: Logging in with your email is necessary both for
authentication of a specific user and on the part of the company, which in the
future could extract useful information from the array of user data without
violating his rights. For example, isolating from the total mass of data
information which particular email domains users use most, which would give
an understanding of what aspects are worth paying attention to in the future.

2. User Authorization: Additional authentication choices are necessary because
some users may have a limited amount of time to interact with the product, in
which case it is necessary to implement additional login methods that will
significantly save time.

3. Security: Data protection is one of the most important aspects when
developing software; loss of data or its public disclosure will be a strict
violation of the user's rights, which can lead to lengthy proceedings and
problems from the law. Therefore, data must be protected in all possible ways

at the time of development.
43

2.5.2. Capabilities for frontend part of web app applications:

User pages:

1.

System on the authentication page should have a button to go to log in via
Google authentication, so that the client can log in with an already created
Google account.

On the admin page in Google service, the administrator should see all the
users logged in with a Google account, this is necessary in order to, in some
cases, be able to check user information or change it in the future.

Main page of the app should appear only if the user logged in, otherwise the
user should be redirected to the auth panel. In this way, it will be possible to
limit the ability of an unknown user to interact with the product and allow
only identified users to work with it.

On the main page should be an input panel where the user can put the link he
wants to convert, together with the information modules on the page this will
give the user a quick understanding of the interface and exactly how to send
links.

On the main page should be a button with which the user can send the link to
converter API. Together with the points described earlier (modules with basic
information and a data entry field), this is an additional understanding of
working with this interface.

Deleting a user makes it possible, for some reason, to exclude a specific
person from the list of users of a given product. The reasons may be different,
but the main one is incorrect operation of the product or an attempt to obtain
benefits or confidential information from the application.

Changing user information may be one of the requirements of the user himself
if he has entered incorrect information about his account. There may also be
situations when previously valid information is already outdated and has been

changed and because of this the user can no longer access this application.

44

8. Adding a user by the application administrator can also be implemented for
the reason that the user cannot create an account himself but also wants to use
the system.

System main:

1. You can implement a logo in the application in a dynamic way, this will make
it possible to add a logo on each page, regardless of its content.

2. Since the application does not require a complex architecture, it is advisable
to use the easiest programming language for web application development,
which is called Javascript, in this way it will be possible to implement a
website quickly and efficiently.

3. Using the React framework in combination with the Javascript programming
language will make it possible to create dynamic, scalable web applications
with an architecture convenient for further development, which will give
more options for changing the product after the release of the initial version.

4. Development of the front-end part of the application using artificial
intelligence that generates code will make it possible to speed up the software
development process due to the fact that the developer will eliminate the part
of developing a complete architecture from scratch and will only gradually
supplement the proposed parts of the generated code.

5. The user will be required to have an original link, which is subsequently
converted into a short version of it, but at the same time makes it possible to
follow it in the same way as the original one.

User side:

1. User Interface: A user-friendly interface and easy to understand makes it
possible to quickly navigate through parts of the application and obtain the
necessary information through simple interaction.

2. User Authentication: Logging into your accounts is necessary because the
user may return to the application and interact with it again after a while.

Such a system must also be implemented due to the fact that nowadays every

application inherits this system behavior.
45

. User Authorization: Different access levels separate layers of interaction
available to different types of users to differentiate access options and also
provide a better security system.

. Data Display: A structured display of data, for example from older to newer,
provides a clear understanding and comfortable interaction with the system in
the future after a certain amount of work has been done in the system.

. Data Input: Entering and updating data allows the user to perform lengthy
actions in the system without receiving errors or delays in response.

. Error Handling: Providing a correct description of errors or displaying a
system boot icon under load will make it possible for the user to understand
that he continues to do everything correctly, but due to the large number of
simultaneously executing requests, the system processes them and requires

more time to respond.

2.5.3. Requirements for backend part of web app applications

. Performance: Fast responsiveness must be realized through the use of a
variety of technologies and systems that allow this to be done. Starting from a
high-speed database in the form of a completion application cache to correctly
configured and connected program modules for quick interaction of the
system with the user.

. Scalability: Deterioration in performance is inevitable since even the server
on which the application was running may not be able to work quickly under
a huge load, however, such problems must be resolved in a timely manner by
moving the system to more productive servers or searching for possible
problems in the system architecture. It is also possible to locate parts of the
system on different servers to try to gain benefits in overall system
performance.

. Reliability: Supporting robots of the system rests on the server. The owner of
the system must promptly agree on such support (in our case, 24/7), since

without this the system will be susceptible to possible errors in the event of an

46

emergency restart of the servers and even loss of the latest data that was
entered when the application was stopped.

4. Maintainability: Correct implementation of the architecture and mobility of
the application will provide its bonuses with further changes to the system in
the form of easy configuration or adding software modules.

5. Security: Unauthorized access can be obtained as a result of system hacking.
To avoid such cases, the architecture of software modules responsible for
security should be built in the most secure manner.

6. Web: Internet access is one of the most important aspects when sending an
application to production, which will make it possible to interact with the
system as a whole. Without it, such a system will not be able to update or save

user data, not to mention the main function - converting links.

2.5.4. Requirements for frontend part of web app applications

10.Performance: An unambiguous requirement during development must be the
correct implementation of systems that will enable the application to interact
between its software parts correctly without errors.

11.Scalability: An architecture that combines the best principles and rules for
building a system will make it possible to support, change and delete software
parts of the system without any problems.

12.Reliability: For user convenience, system support is required that will work
around the clock.

13.Maintainability: To update versions when developing a system, you must
configure and use version control, which will make it possible to quickly
switch between versions with new or old software modules and then send a
new version of the system to the server.

14.Accessibility: Access to different authentication options is necessary since the
user may refuse to work with the system for any reason.

15.Usability: Since the initial version of the back-end application assumed the

use of the system as a simple API, it is necessary to take into account the

47

software modules that must be changed in case of transition to a full-fledged
full-time application.
Interface:

Since this application is aimed at many users, the interface should be clear
and pleasing to the eye. To make the system as comfortable as possible, you need
to reduce: the amount of information in the form of buttons and information
columns, as well as the excessive number of colored parts of the page.

Regarding pages with basic information, such as a main page with a link
field, it is necessary to reduce the amount of miscellaneous information other than
the general operation of a list of shortened links by the user.

From here it is clear that in addition to the panel where the user enters
information, below there should be a dynamic display of links that the user has
already used in convertible form Thus, a simple web application interface needs to
be developed, which should be created as follows:

1) The correct part with the navigation bar.

2) On the navigation panel, on the left is a logo centered on a link with buttons,
and on the right is a user icon with his mail name.

3) In the middle, a panel with general information that the user can perform on
this page.

4) Below is the field for entering the necessary information.

5) Even lower is the button for sending information to the server side.

6) Under the main container there should be a dynamic generated list that
displays all the converted links that the user sent, and so that the next links

sent by him do not erase the previous ones.

7) At the very bottom there is a container with contact information, the
company’s rights to this product, and some links.
Design:
The design of the interface of the web application is a very important part of
the software, because of which users may have a great need for this software

solution. In the event that the interface is unfriendly and difficult to master with a
48

50 percent chance, the user will immediately change his mind about using the
product.

To achieve such design criteria, it is necessary to use a number of
technologies during the development of the web part of the application.

In addition to the standard need for a markup language and styling with the
help of HTML and CSS, it is also possible to use the JavaScript programming
language and a framework for it called React, this will add responsiveness and
dynamism to the application, i.e. web pages will respond to the user's actions and
immediately change according to his needs.

Also, for greater necessity, it will be possible to use such frameworks as
Material Ul which give already developed front-end solutions etc.

Cross-platform:

Given that the product being developed must be open to all users, the need
for a cross platform immediately becomes clear. That is, the application works
both on PCs, tablets and phones. This will add a large number of users, as web
applications are increasingly being used through phones.

Conclusion

The section reviewed the basic requirements for the design of the web
application that will be developed. A study of aspects of the program was made,
the main parts of the program were separated into program modules, to obtain the
final form of the finished product.

Pitfalls that must be taken into account when describing the requirements for
this software are described.

Revised user interface module, database connection module and API that
allows you to receive formatted links, APl module that receives original links and
converts them into a shortened form.

Received information about external requirements that are necessary during
development A description of the functional and non-functional requirements for

the concrete system was made based on the preliminary research.

49

Each requirement is highlighted with its detailed description for

comprehensive information.

50

CHAPTER 3
PROPOSED ARCHITECTURE OF THE SOFTWARE APPLICATION

3.1. Software architecture

When building a "shortening of web links" system using several products
that perform artificial intelligence actions, it is advisable to use the MV C pattern.
This software construction methodology includes a model (a description of abstract
objects that will be used later as tables in the database), a representation (a system
layer designed to display the user interface and general interaction with the
system), a controller (controllers for performing certain actions in the system, data
redirection, etc.). Since the web application chosen for software development will
be a web application, the use of this pattern will help the developer to speed up the
solution of fundamental problems during application development.

A necessary parameter for the implementation of the system will be the
addition of several databases to it.

First, the system should have a standard slow database for handling all data
such as user models and links.

Secondly, there should also be a fast database that will be responsible for
saving a small number of records that can be quickly corrected in response in order
to improve the performance of the web application.

In the first case, the Sequelize cross-platform database connection system
will be used. Its advantage is that it provides an opportunity to quickly change the
type of Database without problems, as well as an easy way to connect these
databases. Since when using our Al code generation methodology, the
documentation created chose to change the database from MySQL to PostgreSQL,
the final database will be the latter.

In the second, a high-speed Redis database will be connected to the main
operation of the system in the form of a wrapper over the backend part of the

application. This will allow you to pre-search for a record in Redis and issue a

51

response, or if the necessary data is not found, the next work will already be done
with a regular database.

Thanks to the ORM system implemented today, the software supports such a
scheme by creating a Sequelize model (standardized Sequelize object) in the
program, which has the usual data fields, methods and a constructor. Such a
Sequelize entity should not have any additional complicated functions, since
complex operations with the database will rely on Service (service) classes and
methods, and all system logic, redirection, use of necessary functions and APIs
will be performed by Controller objects, in which it will be possible to create
additional solutions.

The diagram of the MV C pattern is shown in the figure 3.1.

Controller

Fig. 3.1. “Scheme of the MVC pattern”

Using the selected software architecture pattern, it is appropriate to also use
the concept of data processing CRUD (abbreviation from the English abbreviation

of four words: create, view, restore, delete). This concept determines that the

52

system will calculate data processing according to certain operations. Creation,
editing, modification and deletion of data.

Figure 3.2 visually presents the functions of the concept.

CREATE
A DELETE

-| new item
b ‘

item
item
item

READ —T

UPDATE
S ‘ item 4] |

Fig. 3.2. “Functions of the principle of C.R.U.D.”

3.2. Diagram of the deployment of the link shortening web application

Installing the system will not have any complicated steps. The created
deployment diagram of the system will help to understand aspects of its operation.
It is assumed that the finished product will be installed on the server of the
customer's company, after which it will work as a separate product, that is, a
separate web service. The use of this system may vary depending on the needs of
the end users.

One possible option is to use the system to create a large number of links that
can be followed, embedded in documents, web data tables, etc.

Regarding ensuring the reliability of the system and the processing capacity
of the web application, it is necessary to introduce a strong emphasis on security.
During development, the protection of user data and the links they send must be

monitored at the highest level.

53

The graphic appearance of the system will meet all needs in accordance with
the Ul and UX principles of system construction, which will allow smog to use the
web application quickly and comfortably.

For a more detailed description of the system, a deployment diagram should
be presented

Figure 6 shows the deployment diagram..

Keyboard, mouse, Keyboard, mouse,
touchpad = touchpad

[]

Http connection

Redis image Web app
«interfaces
= Web-interface
Redis
Database

Hitp connection
Backend connection
Sernver

[] PostgresaL Brogram par
Database

TCR/AP Local
network

Fig. 3.3. “System deployment diagram”
54

After looking at the diagrams, it is possible to characterize several important
aspects of the system.

This system contains three components of a blue color. It should be noted
that users can use three types of hardware devices. This can be a corporate or home
computer, laptop or smartphone.

In the next ball, which is connected between the blue ball and the purple
ball, whatever browser is installed on your hardware, you can interact with the
system and see the type of network connection at the interface modules when
performing operations with the system.

The purple color web add-on interacts with two databases through a front-
end controller that responds to the user's actions and after the service module,
which also interacts with the databases themselves.

Application of software solutions under the hour of development of the
service module use description of the abstract model of the user, send, etc. The
connection with the databases is completed under a logical mind. In case of a
different version of the first database, the data continues to interact with the static
other database.

For a more detailed explanation, we need to take a look at the component
diagram

3.3. Component diagram of the link shortening web application

The details of the relationships between the components in the system can be
viewed when the component diagram is expanded. The display component in the
class module allows you to identify different warehouses throughout the system,
which determines what they are responsible for. Figure 3.4. is a diagram of the
system components is presented with the ability to demonstrate how operations are

performed on the skin of the program.

55

= Server

y L1 Aep
I::I Database [~ .

Info b
request

1

- 1|.|ﬂ|.|rE! b‘ I: | | =] |-|t

DB Data Web-clie
change operations

Fig. 3.4. “Diagram of system components”

3.4. Class diagram

The class diagram was created for the back-end part of the web application.
We will review the diagrams for the front end part later. On the basis of
abstractions and their connections, it is possible to see the relationship between
system components.

A large volume of fields has been written to map Sequelize to an object (that
IS, a certain model created on the basis of the Sequelize class), thanks to which the
system initializes these models and creates the corresponding tables in the database

It makes no sense to describe the functions and class constructors in detail
because they perform standard actions that are subject to this type of functions.
Their basic logic can be immediately understood from their name.

However, it is necessary to describe some unique functions that do not

follow standard methods and solutions:

56

- Router - this class performs actions on receiving a request from the front-end
part, and the corresponding redirection of the request to the corresponding
methods of the controller when a response is returned in the form of data or a
status of 200 OK, the front-end part considers this request to be fulfilled
correctly, stores and/or displays the corresponding data.

- Controller - performs both normal functions corresponding to it for
redirection to the Service part and unique ones, such as sending links to a
function that will communicate with a third-party APl and perform the
necessary actions.

Service classes have a characteristic logic, namely:

Creation of entries in the database

Deleting entries in the database

Changing entries in the database

Receiving data from the database

These actions are performed according to a normal user, a user from the
Google service, Links (two types in one row of the database table: abbreviated and
original). Generate a hash code to generate the corresponding encryption hash in
the Redis database for further quick lookup in the table.

Classes are not divided into interfaces because they do not have possible
changes for future needs at the time of the technical task.

The User class is intended for use when working with the system as a unique
user, necessary during authentications in order to understand that specific actions
are performed by that user. According to him, the system modules will display
unique responses based on his actions. After passing through the security
safeguards of the system, a coded token is created for each user, which later
enables the user to enter the main page of the system and perform some actions.
Without a token, the user will not be able to access the pages, as the token is
checked on each page.

The GoogleUser class (google service user) performs a similar function to

an ordinary user, but with some differences, because the google service system
57

gives partial information about the user when he chooses the type of authentication
on our platform using google, instead of a password, the google service also sends
an authenticated token, which will be systemically verified using the appropriate
functions, after which this user will be entered into the database just like a normal
user and will accordingly receive a token of our web application.

The Link class is the main class for the system because the entire application
IS built around it. Performs the role of receiving a link from the user, which will be
converted using a third-party API and in turn entered into the database as a single
row with two columns, the original link and its shortened version.

The class whose names contain the Service postfix is responsible for

connecting and working with the database In addition, the system has three main
classes of configurations that help the software work at the lower levels of the
program code and without which the entire system would immediately increase
several times.
Sequelize ORM handles all the work between the created abstraction models and
the tables in the PostgreSQL database. In addition, the ORM receives data for
connecting to the database system itself, i.e.: connection type, administrator login,
password, database name, its specific schemas using a configuration file.

React configures the web part of the application. It configures exactly which
pages of the presentation will be read, their format, the location of the main HTML
file, and changes of interface components according to user actions. With the help
of fetch functions, as a complex unit, the web part also communicates with the
back-end part for some actions.

For each of the solutions, that is, the backend and the frontend, there is a
configuration file, it is hidden from viewers and is a system file that is needed to
maintain the most important data of the system itself, without which the ability to
send requests between software solutions, communicate with a third-party API, etc.
will disappear.

Using this architecture, the simplest work with data is obtained in the developed

software. Figure 3.5 shows the class diagram of the system.
58

src/db/sequelize.db.ts

SequelizeDB | r sequelize
sequelize :Sequelize | sequelize :Seq
constructor() '
closeConnec
createTabl
getlnstance(]
openConnect

T

email
id :n
password

id :numbe
shortUrl
url :string
username :st L =
shrinkLink

\ shrinkLink :(url: string) => Promise

A redis
_ _ - = — ==\ redis :Redi

sro/middleware/auth/auth.ts
checkUser(data:any) = createToken
getlinkByShortUrl(ne \ createToken :(er rd: str...)
getLinkBylUri(; e —————————
hashCode! st umbe
shrinkUrl(d

[appControllerinstance)
\ appControllerinstance :apy

router ‘

router :Router

Fig. 3.5. “Class diaram”

3.5. Construction of connections of physical equipment

Let's move on to the description of the system at the physical level. Thanks
to the scheme of working with the system, it becomes clear how the system should
be used and how it interacts with each other. Any number of users can use the
Internet and go to the resource through a link or with the help of browser search
engines, and then start interacting with the system itself. An important factor of
this system is that, after its implementation, it will be configured as separate
systems that interact with each other, they will be uploaded to some server
according to the customer's needs. Thus, there are three containers that are
programmed together and can be replaced as needed:

The first container is the front-end solution, i.e. the user interface, it starts on
its port, and communicates only with the second container, i.e. the back-end part,

using the configured internal network.
59

The second container is the back-end part, it will have all the logic of
interaction, and the necessary mechanisms without which the first container will
not be able to process the data necessary for the user, but will only be an empty
display of the interface without interaction with the system. Also, a common
database will be locally configured in the back-end part to store information.

The third container is a separate high-speed database the backend part will
interact with it before working with the main database. Interaction will be
performed thanks to http requests, just like in a local network.

In general, such a system will allow implementing the principle of
modularity, when some parts of the system can be used for other software

applications in the future, which will speed up the development of new systems.

Figure 9 shows the construction of connections of physical equipment.

Frontend
Platform Services

>

[=] Backend
= Platform Semvices

Fig. 3.6. “Construction of connections of physical equipment”

60

Conclusion

In this section, the diagrams and schemes built on the basis of the completed
software solution were described and considered. First, the main principles and
patterns by which the system was built were taken, and it was considered which
aspects should be paid attention to during development.

Then a system deployment diagram was created, which gave an accurate
understanding of the software modules, their use and interaction with each other.

In addition to it, a component diagram was also developed for a better
understanding of the internal mechanics of the system.

For a visual understanding of the classes and methods of the system, a class
diagram with a detailed answer to the step-by-step implementation of the system
was presented as an open source code.

At the end, the possible physical implementation, implementation and use of

the system by the user was investigated.

61

CHAPTER 4

PROTOTYPE IMPLEMENTATION USING THE CODE GENERATION
METHODOLOGY

4.1. Development of a prototype of a web service for shortening links
using the methodology of using artificial intelligence

According to the provisions, when developing software by some company
under the order of an individual, it is necessary to take into account and respond to
the needs of the customer. Thus, after receiving a certain set of documents, such as
a technical task, use cases (use cases created on the basis of a technical task and a
study of how the user will use the finished system), needs and the deadline by
which the manufactured product must be delivered (divided into smaller parts of
the work with phased deadlines) it is possible to produce a reliable and high-
quality product.

Based on obtaining such information, the first factor is cooperation with the
customer and characterization of the appearance of the system (in the usual case, it
is a layout, interface of the future system). After that, this data is sent to the chief
specialist in software architecture. It defines and sends all the necessary questions
about the functionality of the system. These additional aspects are discussed with
the customer, and after some time of communication, a final agreement is drawn
up on what exactly will be developed. From this moment, the development of the
prototype begins.

There are many software development methodologies and models, so it's
worth noting that prototyping and using these methodologies will vary from
system to system.

A prototype is a pre-made product that can have software modules that are
subject to improvement and change. Depending on the contract with the customer,
the type of prototype may be different. After the production of the previous
product, the customer confirms or adds information about which modules will be

changed. It is correct to note that the prototype can fully satisfy the needs of the
62

customer and immediately be transferred to the production version after
verification by methods of system testing.

According to the listed information, the selected link shortening system in
the form of a web service will be developed on a server to which the customer will

have access, thus he will be able to view real-time scaling of the system.

4.2. Prototype of the developed system

App will be separated into three parts, each part have different ports and
connections preferences. Font-end part will be running on local host and port 3000
(default port for frontend application). Back-end part using Postgres db which
running on port 5432, and the app on 8080 (default port for backend application).
The third part will be redis container on port 6379. All parts are different
containers connected by one network with Docker system.

The beginning of the software begins with a description (characterization) of
the models that will be used in the system. For which classes are implemented that
are inherited from another base class “Model”. This class is built into the backbone
of the ORM system by Sequelize, a package whose framework contains a wide
range of classes for initializing models. Once again, it will be possible to quickly
create tables and data from the selected databases.

The necessary models for the system were equipped with the following
abstractions:

- Link

- User

- GoogleUser

The “Link” model is aimed at selecting a table with messages that will be
sent to the correspondent and sent messages that will be removed after conversion
for a short view and return to the customer.

The “User” model is oriented towards the use of a user account. Without this
model, the system will lost its ability to create a user account as well as entering
under a specific user account for further access to additional functions.

63

The “GoogleUser” model has similar logic to the previous model. The only
difference is that the Google account returns to a third-party resource and may go
through a full verification of these returns.

This file use DataTypes for creation of model provided by Sequelize
framework
Listing 1 shows these models in action.

Listing 1

File “Model.ts”

import { DataTypes, Model } from 'sequelize';

import { sequelize } from '../sequelize.db';

export class GoogleUser extends Model {
id!: number;
username!: string;

email!: string;

GoogleUser.init (
{
id: {
type: DataTypes.UUID,
defaultValue: DataTypes.UUIDV4,
primaryKey: true
by
username: {
type: DataTypes.STRING,
allowNull: false
by
email: {
type: DataTypes.STRING,
allowNull: false
}
by
{
tableName: 'GoogleUser',
sequelize: sequelize
}
)

export class Link extends Model ({
id!: number;
url!: string;

shortUrl!: string;

64

Link.init(
{

id: {
primaryKey: true

}y

url: |
type: DataTypes.STRING,
allowNull: false

by

shortUrl: {
type: DataTypes.STRING,
allowNull: false

b
{
tableName: 'Link',

sequelize: sequelize

) ;

export class User extends Model {
id!: number;
username!: string;
email!: string;

password!: string;

User.init(
{

id: {
type: DataTypes.UUID,
defaultValue: DataTypes.UUIDV4,
primaryKey: true

by

username: {
type: DataTypes.STRING,
allowNull: false

by

email: {
type: DataTypes.STRING,
allowNull: false

s

password: {
type: DataTypes.STRING,

allowNull: false
}

tableName: 'User',

sequelize: sequelize

Configuration files that will be used by these models in the future to
connect several databases. This configuration file is responsible for connecting the
Redis database, a high-speed database that will be connected to the system by
creating a container based on the downloaded Redis package snapshot in Docker.
it has stable tables with data only connected by hashed ids.

File use redis feature received from “ioredis” package as well as “dotenv”
feature from “dotenv” package. Dotenv feature gives ability to take some secured
credentials for our app
On listing 2 presented the connection between software and the image of redis.

Listing 2
File “Redis.db.ts”

import dotenv from 'dotenv';
import Redis from 'ioredis';

dotenv.config();

const redis = new Redis ({

host: process.env.REDIS HOST || '',

port: parselnt (process.env.REDIS PORT || '6379"')
1) ;
redis.on('error', (error: any) => {

console.error ('Redis connection error:', error);

1)

export default redis;

It is also a configuration file responsible for configuring the Sequelize
ORM and its connection to the PostgreSQL database. Its advantage is that the
database is arranged as a local connection and not a snapshot of a specific software

that is launched separately, and therefore software settings are required to start the

66

database, to interact with it, to disable it, etc. In addition, tables in the database are
created in this file according to the corresponding rules described in our
application, as well as according to the corresponding model fields.

This file uses the dialect feature from sequelize package for creating a
valid type of database to create right settings for sending data between concrete
databases.

Also use User, GoogleUser and Link classes exported from model file in
the app
Listing 3 describes the sequelize configuration file.

Listing 3
File “Sequelize.db.ts”

import { Dialect, Sequelize } from 'sequelize';
import { User, GoogleUser, Link } from './models/models"';
import dotenv from 'dotenv';
dotenv.config();
const env = process.env.NODE ENV || 'development';
export class SequelizeDB ({

public sequelize: Sequelize;

constructor () {

this.sequelize = new Sequelize ({
database: process.env[${env.toUpperCase ()} DATABASE] || '',

L |

username: process.env[${env.toUpperCase ()} USERNAME] || ,

|| T

password: process.env[${env.toUpperCase ()} PASSWORD]

’
host: process.env[${env.toUpperCase()} HOST] || '',
port: parselnt (process.env[${env.toUpperCase()} PORT] || '', 10),
dialect: (process.env([${env.toUpperCase ()} DIALECT '] || '') as
Dialect
});
}
public getInstance(): Sequelize {
return this.sequelize;
}

public async openConnection () {

try {

await this.sequelize.authenticate();
console.log('Connection has been established successfully.');
return true;

} catch (error) {

67

}

console.error ('Unable to connect to the database:', error):;

return false;

}
public async closeConnection () {
try {
await this.sequelize.close();
console.log('Connection has been closed successfully');
return true;
} catch (error) {
console.error ('Unable to close the database connection:', error);

return false;

}
public async createTables () {
try {
await User.sync();
await GoogleUser.sync();
await Link.sync();
console.log('Tables have been created successfully.');
return true;
} catch (error) {
console.error ('Unable to create tables:', error);

return false;

const sequelizeDB = new SequelizeDB();

export const sequelize = sequelizeDB.sequelize;

These models are already used in the lost file responsible for sending

commands and data together to the database. Initially, the data is sent to the usual

database during user registration. After that, when interacting as a user, the

corresponding model of "links" is sent to two databases.

This is necessary in order to reduce the load on the system in the event of a

user request for data, because the last most popular links that were sent by users

could be quickly found in the system and returned, if the data is not found in the

database with a high-speed connection, the interaction is switched to a regular

database that will search for certain data.

68

File using different types of features. Redis feature used for connection
between service file app and Redis image. Dotenv for taking secured credentials
from .env configurative file. createToken feature, used to create tokens which need
to be used in a session of a user and know that some user has a valid
authentication.

OAuth2Client feature gives our app ability for authentication for google
users with their accounts.

Listing 4 describes the DAO service file linkService.

Listing 4
File “LinkService.ts”
import shrinkLink from '../api/shrink-api';
import redis from '../db/redis.db';

import dotenv from 'dotenv';

import { createToken } from '../middleware/auth/auth';

import { OAuth2Client } from 'google-auth-library';

import { User, GoogleUser, Link } from '../db/models/models’;

const client = new OAuth2Client (process.env.GOOGLE CLIENT ID);
dotenv.config();
export class linkService {
async shrinkUrl (data: any) {
try |
const shrinkedUrl = await shrinkLink (data.url);
data.shortUrl = shrinkedUrl.result url;
console.log(
'data in the append queue' + '\n' + data.url,
'and ' + data.shortUrl
)

await this.addLink (data);
return data.shortUrl;
} catch (error) {

console.log(error);

}
hashCodeUrl (url: string) {
let hash = 0;
for (let i = 0, len = url.length; i < len; i++) {
let chr = url.charCodeAt (1) ;
hash = (hash << 5) - hash + chr;
69

hash |= 0;

}

return hash;
}
async addLink (data: any) {...}
async getLinkByUrl (url: any) {...}
async getLinkByShortUrl (data: any) {...}
async addGoogleUser (data: any) {...}

async checkUser (data: any) {
try |
const user = await User.findOne ({
where: {
email: data.email,
password: data.password
}
1) ;
if (user) {
const token = createToken (data.email, data.password);
const userAndTokenData = {
username: user.username,
token: token
bi
return userAndTokenData;
} else return false;
} catch (error) {

console.log(error);

async checkGoogleUser (data: any) {...}

export default new linkService();

This file is responsible for the manipulation and execution of processes
necessary for the operation of the system. Includes various operations. From
receiving and further sending data for processing by a service file and database, to
sending data to a third-party API used by this application and further converting

links. It also includes user verification and subsequent creation of tokens for data

70

access. It uses the Request and Response features taken from Express framework.

All these methods working by receiving the taks by request and then doing some

logic according to the name of methods.

Listing 5 describes the controller file appController.

File “appController.ts”

import linkServices from '../services/service';
import { Request, Response } from 'express';
import { error } from 'console';

import dotenv from 'dotenv';

dotenv.config();

const host = process.env.FRONTEND HOST;
const port = process.env.FRONTEND PORT;
class appController {

shrinkUrl = async (req: Request, res: Response) => {...};
addLink = async (req: Request, res: Response) => {...};

getLinkByUrl = async (reqg: Request, res: Response) => {...};

getLinkByShortUrl = async (req: Request, res: Response) => {..

addUser = async (req: Request, res: Response) => {...};

checkUser = async (req: Request, res: Response) => {...};
checkGoogleUser = async (req: Request, res: Response) => {...}
const appControllerInstance = new appController();

export default appControllerInstance;

Listing 5

.}

API file used as connection and configuration file for taking links and

sending this data to shrink api as requested. This file uses the “Axios” package that

changes the simple fetch function used for sending http requests and makes fast

71

responses with data. Here we need to create options variable valid “Axios”
requests.
File using the encodedParams var created by URLSearchParams feature
for creation of url requests in valid form.
Listing 6 describes the api management file “shrink api”.
Listing 6
File “shrink-api.ts”

const axios = require('axios');
const encodedParams = new URLSearchParams () ;

import dotenv from 'dotenv';
dotenv.config();

const options = {

method: 'POST',

url: process.env.API URL,

headers: {
'content-type': process.env.CONTENT TYPE,
'X-RapidAPI-Key': process.env.X RAPID API KEY,
'X-RapidAPI-Host': process.env.X RAPID API HOST

}y

data: encodedParams

b

const shrinkLink = async (url: string) => {
encodedParams.set ('url', url);
try |
const response = awalt axios.request (options);
console.log(response.data);
return response.data;
} catch (error) {
console.error (error) ;
}
}i
export default shrinkLink;

The router file. Provide all routing features for frontend part of app.
Manage all request and switching between routes according to some url string
received from react app. Next it will send this data to some controller function

which will make some actions and return the status of concrete operation. Router

72

can send some output status of some operation for frontend app to see some
changes.

Before redirecting to some methods all routes require verification of cors
rule as well as user token check. If the verification returned true value it can
continue making required functions.

Listing 7 describes the route system of “app router”.
Listing 7
File “app-router.ts”

import express from 'express';

import linkController from '../controllers/app-controller';
import { verifyToken } from '../middleware/auth/auth';
export const router = express.Router();

router.post('/login/user', linkController.checkUser);
router.post ('/register/user', linkController.addUser):;
router.post ('/auth/googleuser', linkController.checkGoogleUser) ;
router.get ('/', verifyToken, (req, res) => {

res.json ({ success: true, message: 'Protected resource' });
1) ;
router.post ('/shrinkUrl', verifyToken, linkController.shrinkUrl);
router.post ('/addLink', verifyToken, linkController.addLink);
router.get ('/getLinkByUrl', verifyToken, linkController.getLinkByUrl);
router.get ('/getLinkByShortUrl', verifyToken,
linkController.getLinkByShortUrl) ;

export default router;

Server initialization file, provide all necessary actions for application
work. This file set up all parser features for http requests as well as set up the
CORS rules to provide security management of data between parts of app and
prevent connection from unknow sources.

File use SequelizeDB feature imported from “Sequelize” config file.
Dotenv imports app credentials. Express - setup the rules of parsing and main
settings of express app.

Listing 8 describes the server size code of “server file”.

73

Listing 8
File “server.ts”

import express from 'express';
import router from './routes/app-routes';
import { SequelizeDB } from './db/sequelize.db';

import dotenv from 'dotenv';

dotenv.config();
const frontend port = process.env.FRONTEND PORT;
process.env.FRONTEND HOST;

const frontend host
const db = new SequelizeDB() ;

const cors = require('cors');

const path require ('path');

const multer = require('multer');

const upload multer ()

const app = express|();

const corsOptions = {
origin: “http://${ frontend host}:${ frontend port}’,
credentials: true,
methods: ['GET', 'POST'], allowedHeaders: ['Content-Type',
'Authorization']

b

app.use (cors (corsOptions));

app.options('*', cors(corsOptions));

app.use (express.json()) ;

app.use (express.urlencoded ({ extended: true }));
app.use (upload.none());
(

app.use (express.static(path.join(dirname, 'public'))):

app.use('/', router);

db.openConnection () .then(() => {
const PORT = parselnt (process.env.APP PORT || '8080");
app.listen (PORT, () => {

console.log(The server is running on port ${PORT}");
1) :
db.createTables () .then(() => {
console.log('Model for db created');
1) :
});

74

Authentication page file, responsible for authentication user with two types
of security, app auth or google auth. This two options both have token system
which will be provided after auth code 200 “OK”.

This file use many react features like Link for creation of app move by
urls, UseHistory for redirecting, useLocation, etc. It also has google package
feature for wrapping react component with googleOAuth, and the logic of google
authentication with GoogleLogin. For token which return by google we use jwt
decode feature for parsing the info from token, to continue our verification.

Listing 9 describes the auth page of “Auth Page” react component.
Listing 9
File “AuthPage.js”

import React, { useState, useEffect } from "react";

import { Link, useHistory, uselLocation } from "react-router-dom";
import { GoogleOAuthProvider } from "Q@react-oauth/google";

import { GoogleLogin } from "@react-oauth/google";

import isGoogleTokenValid from "../api/googleTokenCheck";

import { FontAwesomelIcon } from "@fortawesome/react-fontawesome";
import { faGoogle } from "@fortawesome/free-brands-svg-icons";

import { jwtDecode as jwt decode } from "jwt-decode";

const host = process.env.REACT APP BACKEND HOST;
const port process.env.REACT APP BACKEND PORT;
const google cliend id = process.env.REACT APP GOOGLE CLIENT ID;

const AuthPage = () => {
const [email, setEmail] = useState("");
const [password, setPassword] = useState("");
const [error, setError] = useState("");
const [success, setSuccess] = useState("");

const history = useHistory();

const location = uselLocation();

useEffect (() => {...}, [location]);

const handleLogin = (e) => {..};

75

const onSuccessGooglelLogin = async (res) => {..};

const result = await isGoogleTokenValid(doc.token);

if (!result) {

}

}

setError ("Google token is not wvalid");
else {

const formData = new FormData() ;
formData.append ("username", doc.username) ;
formData.append ("email"™, doc.email);

fetch(http://${ host}:${ port}/auth/googleuser”, {..});

} catch (error) {

console.error (

) .

}
}i

"A network error occurred when trying to fetch resource:",

error

’

const onFailureGooglelLogin = async (res) => {..};

return (...);

export

default AuthPage;

Login page inherit logic of Register page file, it has create user account in

a system with two types of authentication. This account will have unique token to

connect with the system each time the user log in by his credentials.

request

Listing

import
import
import
import
import
import
import
import
import

import

The file have similar packages of login page but i have different http
witch will use different route of backend part of app.
10 describes registration page react component
Listing 10
File “RegisterPage.js”
React, { useState } from "react";
{ Link } from "react-router-dom";
{ GoogleOAuthProvider } from "@react-ocauth/google";
{ GoogleLogin } from "@react-oauth/google";
{ useHistory } from "react-router-dom";
isGoogleTokenValid from "../api/googleTokenCheck";
{ FontAwesomeIcon } from "@fortawesome/react-fontawesome";
faGoogle } from "Q@fortawesome/free-brands-svg-icons";

{
{ JwtDecode as jwt decode } from "jwt-decode";
{

faExclamationTriangle } from "@fortawesome/free-solid-svg-icons";

76

const google cliend id = process.env.REACT APP GOOGLE CLIENT ID;

const host

process.env.REACT APP BACKEND HOST;

const port = process.env.REACT APP BACKEND PORT;

const RegisterPage = ({ ClientId }) => {
const [username, setUsername] = useState("");
const [email, setEmail] = useState("");
const [password, setPassword] = useState("");
const [error, setError] = useState("");
const history = useHistory();

const

const

const

retur
b

export

handleRegistration = async (event) => {...};
onSuccessGooglelLogin = async (res) => {..};
onFailureGooglelogin = async (res) => { .}
n {...};

default RegisterPage;

Main page responsible for main software interface where the user can

make some actions with the links, like send long links to api or browse the lists of

already

shrinked links. Copy that links and use it or just add favorite and unfavorite

links. The main page handles the user data with different buttons. User also can use

differen

t links to redirect himself by some interested pages. Main page nav bar will

receive user info like “username” and “user icon” and display it on the upper right

corner

Listing 11 describes main page react component

import
import
import
import
import

import

const

const

_host

Listing 11
File “MainPage.js”

React, { useEffect, useState } from "react";

{ useHistory } from "react-router-dom";

n

NavBar from "../components/Navbar";

Footer from "../components/Footer";
LinkForm from "./LinkForm";

RecentlLinks from "./RecentLinks";

process.env.REACT APP BACKEND HOST;
port = process.env.REACT APP BACKEND PORT;

77

const MainPage = () => {

const history = useHistory();

const [urlArray, setUrlArray] = useState([]):
const [shortUrlArray, setShortUrlArray] = useState([]);
const handlelLinkFormData = (newUrl, newShortUrl) => {...};

setShortUrlArray((oldArray) => {...};

useEffect (() => {
const token = sessionStorage.getItem("token");
const username = sessionStorage.getItem("username");

if (!token && !username) {
history.push("/login");
}
}, [historyl):

return (...);

export default MainPage;

Link form responsible for creation of user interface form component in
which user can make actions related to links and api that can make short versions
of the links. Contain copy method, which connected to inputs in that form and
make copy function as the effect of the user click the button.

Listing 12 describes the link form component.
Listing 12
File “LinkForm.js”

import React, { useState } from "react";
import { FontAwesomelIcon } from "@fortawesome/react-fontawesome";
import { faCopy } from "Q@fortawesome/free-solid-svg-icons";

import { useRef } from "react";

const LinkForm = (props) => {
const [link, setLink] = useState("");
const [shortLink, setShortLink] = useState("");

const inputRef = useRef ();

const handleLinkSubmit = (event) => {...}

const handleCopy = () => {...};

78

return (...);
}s

export default LinkForm;

Navbar is a react component, can be integrated as part of each component

page, his responsible for navigation between pages by using Link features and

contain info about the application Company and User info.

Listing 13 describes the navbar react component.

File “Navbar.js”

import React from "react";

import { Link, useHistory } from "react-router-dom";

import userIcon from "../img/User-icon.png";
import logo from '../img/Logo.png';
const NavBar = (props) => {

const history = useHistory();

let userAvatar;

const username = props.username ? pProps.username :

if (props.picUrl) {
userAvatar = props.picUrl;
} else {

userAvatar = userlIcon;

function handleLogout () {...}

return (...);

}i
export default NavBar;

"Anonymous";

Listing 13

“Not Found” page component refers to error type of components. User can

see displayed “not found” page only by manually redirecting himself to some url

which has not any prerendered content, in that way user will be informed that he is

not on a right page.

This file does not use any of packages or features but only simple react.

Listing 14 describes “Not Found” component.

79

Listing 14
File “NotFound.js”

import React from "react";

const NotFoundPage = () => {

return (...);

export default NotFoundPage;

Recent Links is a react component which display a list of lists combined
with their short links already converted with API. As well as the Link Form
component it has a handle copy function for each group of links to copy that for
comfort user experience.

Listing 15 describes recent links component.
Listing 15
File “RecentLinks.js”

import React from "react";

const Recentlinks = ({ urlArray, shortUrlArray }) => {
const handleCopy = (url) => {...};
return (...);

export default RecentlLinks;

App file is a main react configuration file, which hold all react components
and provide woking frontend part of app. It has import all the components and use
their logic. Also using BrowserROuter to switch between paths (some sort of
navigation), router, route and switch features that cannot be without this main
package. The architecture of that type of app should have all wrapped routes in
switch to change the pages of app by user actions as well as imported components

as the parameters in each route to return the content of some page to user.

80

Listing 16 describes app react file.
Listing 16
File “index.js”
import React from "react";
import ReactDOM from "react-dom";
import { BrowserRouter as Router, Route, Switch } from "react-router-dom";
import AuthPage from "./auth/AuthPage";
import MainPage from "./components/MainPage";
import NotFoundPage from "./components/NotFoundPage";

import RegisterPage from "./auth/RegistrationPage";

import "./sass/main.scss";
import { BrowserRouter } from "react-router-dom/cjs/react-router-dom.min";

const App = () => {
return (
<BrowserRouter>
<Router>
<Switch>
<Route exact path="/" component={MainPage} />
<Route exact path="/login" component={AuthPage} />
<Route exact path="/register" component={RegisterPage} />
<Route component={NotFoundPage} />
</Switch>
</Router>
</BrowserRouter>
)
}i

ReactDOM.render (<App />, document.getElementById("root")):;

4.3. User interface development.

The launch page of the web service is the "Mainpage.js" file, this is the main
page that immediately checks the attempt to receive data from the application for
the presence of a token confirming his identity by the subject who made the
request. In the usual version, when the user has not yet created an account in the
application, he is redirected to the authentication page, and we will start with it.

This page requires two lines of data from the user, e-mail name and account

password.
81

Figure 1 shows the web service login page.

Please enter your data

Email

Password

Confirm

Dont have an account? Register

Fig. 4.1. “Login page”

As you enter data into the cells, the system will evaluate and change the
color of the bottom lines to show the status of the data, whether it meets the
required data entry rules or not. In addition, standard information about incorrect
data entry will be displayed thanks to the browsers themselves.

At the moment of clicking a button in the interface form, the browser checks
the data entered in the form for compliance with the conditions. If these conditions
are not met, the form submission will be canceled. After that, the user will be
prompted for information on how to correctly fill in the form fields. If these fields
are successfully filled with data in the required form, the system will accept this
information and take appropriate actions.

Figure 2 shows the web service login page with incorrect data fields.

82

Please enter your data

Confirm

Dont have an account? Register

Fig. 4.2. “Error login page”
Entering data into the fields of the form in the correct form before sending
the data itself by pressing the button will be highlighted in green by the lines under
each field.

Figure 3 shows the login page to the web service with correctly filled form fields.

Please enter your data

test@test.com

Confirm

Dont have an account? Register

Fig. 4.3. “Error login page”
If the user does not have an account created in the corresponding service, he
can quickly go to the account registration form by clicking on the link located
under the button to send the "Confirm" form. After these actions, the user will be

redirected to a similar page, but already intended for user registration.

83

The difference from the previous form is that it has an additional cell with
the name "username™, which requires the user to enter his nickname, which will be
displayed on the main page of the web service. Also, one of the differences are the
methods that will be performed when sending the form, this is the creation of a
new account in the database, and not a check for the presence of this account.

Figure 4 shows the login page to the web service with correctly filled form
fields.

Please enter your data

Test

Email

Confirm

Already have account? Sing_ In

Fig. 4.4. “Registration page”

One of the possible authentication options is also the use of Google OAuth
functions, which provides the possibility of entering the application through the
use of an already existing Google account, which in turn exchanges data with the
service and receives the necessary user information and adds it to its system. The
display name and image of the Google account will also be received and displayed

later on the main page. Figure 5 shows the Google authentication button.

YBiATH AK Direct -~

mr.javez@ukr.net v 7

Fig. 4.5. “Google authentication button”
After pressing the button to log in using google authentication, a standard

form will open for the user to choose the account with which he wants to use our

application.

84

Figure 6 shows the Google account selection form.

google.com

Bubepitb obnikoBun 3anuc
wob nepentu B gopatok LinkToShrink_App

Direct CoreX
mrjavez@ukr.net

Onexcin NeHHaginoesuy [lanunos
5748739@stud.nau.edu.ua

Bubpartu iHWwKI obnikoBun 3anuc

YKpaiHcbKka ~

MonitTnka KoHdIAeHWHHOCTI

3aransHi NonoXxeHHA Ta ymoen Google

Fig. 4.6. “Google authentication form”

Handling of major errors that may occur while working with the system at
times when its parts are under maintenance or for some reason an important error
in the system has been discovered also takes place. Therefore, in some moments of
system errors, for the user to understand the root of the problem, it was chosen to
create additional interface components that display these errors, in their usual form,
they will look like a drop-down block with information in red or green color if the
operation was successful. However, unlike the information shown in the picture, it
will have more understandable information for the user.

Figure 7 shows a form with an error block when performing some operation.

85

JSON.parse: unexpected end of data at line 1 column 1 of the JSON data

Please enter your data

Test

Email

Confirm

Already have account? Sing In

BoWlTH Kak Direct
mr.javez(@ukrnet w

Fig. 4.7. “Google authentication button”
After successful registration and authorization in the system, the user will be

redirected to the main page of the system. This page displays basic user data,
buttons that can be used to go to other resources, etc. The main form of the system
Is shortening of links sent by the user. In order to perform operations, the user
needs to independently select a link or a package of links and send these links to
the system through the field for entering the link and the submit button of the form.

In addition, by following the links by pressing the buttons, the user can get
various pages with information for familiarization. For example, the button called
"about" will open a page with a description of the system and its capabilities. The
"Company" button provides information about the company that owns this service.
The "Support” button helps the company to improve the system.

Figure 8 shows the main page of the application.

86

Link to Shrink

[Link to Shrink

Support Other Products About

Insert a link to reduce

https://lexample.com

Reduce My Link

Here you will see a short link

L)

Recent links

Company Privacy

]
Log Out
\ e T
Onekciit lennapiviosny [Janunos H

© 2023-2024 Danylov O.G. | Al Rights Reserverd

Fig. 4.8. “Main page”

After sending a certain number of links, the answer together with the sent

link will be stored and displayed under the form for sending data, the number of

storage of the last links was programmatically limited to no more than 10 so that

the user does not make too large lists of links that he may not need. Next to these

links will be a copy button that will allow you to quickly copy already converted

links.

Figure 9 shows the main page of the application with recently used links.

Link to Shrink

[Link to Shrink

Support Other Products ~ About

Insert a link to reduce

https://medium.com/

Reduce My Link

Here you will see a short link
https://goolnk.com/Kz4d WDN L]

Recent links

Company Privacy

©2023-2024 Danylov OG. | All Rights Reserverd

Fig. 4.9. “Main page with recent links”

87

4.4. Results of web link reduction system testing.

Having constructed a prototype of the software, preliminary testing of
separate parts of the software was carried out, functions, components, units of
software modules and the interaction of units with each other were involved.

In general, only the part with a complex authentication architecture was
difficult in testing the system due to the creation of user tokens based on receiving
data about his registration in the system and further saving this data to keep a
certain user in the system. In addition, the ORM Sequelize configuration file was
difficult to test, which is why the creation of tests around such a system was hidden
due to security issues.

An example of testing the backend part of a web service. Testing includes
almost all software files that can be tested. Some of the software components have
little coverage due to the low need for testing software modules that perform a
light load on the system.

Figure 4.10 presents the results of preliminary testing of the back-end part of

the system prototype obtained from frameworks for software testing.

All files
api
shrink-api.ts
controllers
...troller.ts

redis.db.ts

db/models
models.ts

. . . leware/auth
auth.ts
routes
app-routes.ts

Fig. 4.10. “Backend test results”

88

When testing front-end parts, it is necessary to take into account the fact that
separate files with functions that perform business logic on the client side, as well
as user interface components that can also include some simpler functions but
perform the necessary actions to change display information, can be tested in the
application interface. Program files are logically sorted into folders that are
responsible for individual functions in the system.

In this way, it is possible to obtain data that during testing, the software
module that was difficult to verify was the testing of registration and authentication
forms, because they, in addition to the usual logic and requests to the back-end
part, perform authentication logic using Google and also send requests to it to
receive valid tokens for further their confirmation.

Figure 4.11 presents the results of preliminary testing of the front-end part of

the system prototype obtained from frameworks for software testing.

Uncovered Line #s

All files
api
. . . TokenCheck. js
auth
AuthPage.js

components
Footer.js
LinkForm. js
MainPage.js
Navbar.js
RecentLinks.js

|
|
|
|
|
|
|
...rationPage.js . . |
|
|
|
|
|
|
|

------------------- Test
Fig. 4.11. “Frontend test results”
We have two minimum condition during testing of the front-end part. First is

the processing of the most important modules that are responsible for the security
of all web service operations. Secondly is the processing of the minimum half 50%
of the entire system with tests coverage both separate and integration tests (for the

interaction of these modules).

89

Conclusion

In this section, the final part of the work on software development using the
methodology of code generation by artificial intelligence was considered. A
detailed description of the design and development aspects of the software
prototype as a whole was made.

Also considered what is the software architecture and the requirements for it
when choosing an architecture according to the system to be developed with
presentation of the main software modules of the system.

Made description of the final requirements for the appearance of the system
interface, including the most important pages that will be used by users.

After constructing the prototype of the link shortening service, software
testing of the entire system, i.e., two parts of the service, was also created.

Separately created unit and integration testing of the front-end part, its react
components and functions. The unit and integration testing of the front-end part, its

service parts and function APIs have been created.

90

CONCLUSIONS
In conclusion, the integration of artificial intelligence (Al) techniques,

including IntelliSense, Code Formatter, ChatGPT, and GitHub Copilot, in
development software systems offers tremendous potential for improving the
efficiency and effectiveness of the code creation process. The combination of these
Al-driven tools provides benefits in code comprehension, automated refactoring,
and documentation generation.

By leveraging IntelliSense, development can gain a deeper understanding of
complex code structures, identify relationships between software components, and
obtain contextual suggestions for code completion. This enhances code
comprehension and reduces the manual effort required for analyzing and
understanding intricate codebases.

Code Formatter automates refactoring tasks, making legacy codebases more
maintainable and aligned with coding best practices. It improves code readability,
structure, and modularity, thereby facilitating the code creation process and
enabling developers to work with cleaner and more organized code.

ChatGPT proves valuable in generating comprehensive and up-to-date
documentation during code generation. It assists in documenting code logic,
identifying system dependencies, and providing explanations and summaries. This
Al-powered documentation generation saves time and effort, ensuring that crucial
information about the software system is captured accurately.

GitHub Copilot, with its intelligent code generation capabilities, expedites
the development process by suggesting relevant code snippets, functions, and
patterns based on observed context. This Al-powered tool assists during
development in identifying critical functionality and accelerates the understanding
of complex code structures within the software system.

However, it is important to consider the challenges associated with Al-
driven code generation. Ensuring the availability of accurate and representative
training data, addressing biases in Al models, and ensuring the trustworthiness and

reliability of Al-generated code and documentation are critical considerations.

91

Future directions for research and development in Al-driven code generation
include improving Al models' contextual understanding, addressing security and
privacy concerns, and fostering effective collaboration between Al and human
expertise.

In summary, the integration of Al techniques in module development of
software systems has the potential to revolutionize the field, improving code
comprehension, refactoring efficiency, and documentation generation. It enables
code generation to navigate complex codebases more effectively, enhance
maintainability, and gain deeper insights into software systems, ultimately leading

to more efficient and informed software development and maintenance processes.

92

LIST OF REFERENCES
1. Beiqi Zhang, Peng Liang, Xiyu Zhou, Aakash Ahmad, «Practices and Challenges of Using
Github Copilot: An Empirical Study», March 2023,
[Electronic resource] - Mode of access:
https://www.researchgate.net/publication/369266175 Practices_and_Challenges_of Using_G
itHub_Copilot An_Empirical_Study

2. Mateusz Jaworski, Dariusz Piotrkowski, «Studios of software developers experience using the

Github Copilot Tool in the software development process», January 2023, [Electronic
resource] - Mode of access:
https://www.researchgate.net/publication/367088653 Study of software_developers%27_ex

perience using the Github Copilot Tool in the software development process

3. Burak Yetistiren, Eray Tiiziin, Isik Ozsoy, «4ssessing the Quality of GitHub Copilot’s Code
Generation», November 2022, mocunanss [Electronic resource] - Mode of access:
https://www.researchgate.net/publication/363267006_Assessing_the_Quality of GitHub_Co

pilot%27s Code Generation

4. Meiyappan Nagappan, N. Asokan, «Is GitHub's Copilot as Bad As Humans at Introducing
Vulnerabilities in Code», April 2022, [Electronic resource] - Mode of access:
https://www.researchgate.net/publication/359890768 Is GitHub%27s_Copilot_as Bad As

Humans at Introducing Vulnerabilities in Code

5. Tosh Velaga, «Code generation Resources for ChatGPT» Dec 12, 2022 [Electronic resource]
- Mode of access:
https://medium.com/@toshvelaga/reverse-engineering-resources-for-chatgpt-bd69155bh2423

6. Aleksandar Milenkoski, «Problems Chatgpt Chan Solve for Code Generation and Malware
Analyzis» December 2022, [Electronic resource] - Mode of access:

https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-

malware-analysts/

7. Psaboxkine FO.M., «IHxenepis nporpamuoro 3abe3neueHHs» HAY, 2015 —184c.;

8. Kpamap FO.M., Psabokins F0.M., Ky3nenos C.B., Mapuenko O.1., IIporpamue 3a0e3nedyeHHs
aBToMaTH30BaHux cucteM, HAY 2006 —38c.;

9. PanmimeBcbkuit M.®D., Ps6okiap FO.M., OmuiHtoBaHHSI 00'€KTHO-OPI€HTOBAHUX IPOTPAMHUX
cucTeM Ha eTari nmpoektyBanHs, HAY 2009 — 6c¢.;

10. Cunopos M.O., Beryn 1o inxenepii nmporpamtoro 3abesnedenns, HAY 2010 —112c.;

93

https://www.researchgate.net/publication/369266175_Practices_and_Challenges_of_Using_GitHub_Copilot_An_Empirical_Study
https://www.researchgate.net/publication/369266175_Practices_and_Challenges_of_Using_GitHub_Copilot_An_Empirical_Study
https://www.researchgate.net/publication/367088653_Study_of_software_developers%27_experience_using_the_Github_Copilot_Tool_in_the_software_development_process
https://www.researchgate.net/publication/367088653_Study_of_software_developers%27_experience_using_the_Github_Copilot_Tool_in_the_software_development_process
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/363267006_Assessing_the_Quality_of_GitHub_Copilot%27s_Code_Generation
https://www.researchgate.net/publication/359890768_Is_GitHub%27s_Copilot_as_Bad_As_Humans_at_Introducing_Vulnerabilities_in_Code
https://www.researchgate.net/publication/359890768_Is_GitHub%27s_Copilot_as_Bad_As_Humans_at_Introducing_Vulnerabilities_in_Code
https://medium.com/@toshvelaga/reverse-engineering-resources-for-chatgpt-bd69155b2423
https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-malware-analysts/
https://www.sentinelone.com/labs/11-problems-chatgpt-can-solve-for-reverse-engineers-and-malware-analysts/

APPENDIX A.
ADDITIONAL PICTURES

Help me i need idea how can i improve created backend APl app by changing the type of db
MySQL to PostgreSQL, by using Sequelize. Project technology stack is: Typescript, Node.js

Migrating your backend APl app from MySQL to PostgreSQL using Sequelize is a good idea, 04 &

and it can be done relatively smoothly. Here are the steps to help you improve your

application:

1. Backup Data: Before making any changes, make sure to create a backup of your MySQL
database. This is crucial to ensure you don't lose any data during the migration process.
2. Install Sequelize and Sequelize CLI:
) Copycode

npm install sequelize sequelize-cli pg pg-hstore

3. Create a PostgreSQL Database: Set up a PostgreSQL database if you haven't already. You
will need the connection details (e.g., host, port, username, password, database name) for
Sequelize configuration.

1. Create Sequelize Models: Sequelize allows you to define models that represent you -
- Regenerate

MySQL tables. You can use the “sequelize-auto” tool o generate models based on your
existing MySQL database schema.

arduino [j Copy code

npx sequelize- -d your_old_mysql_db -h mysql_host -u mysq

. Modify Sequelize Config: Update your Sequelize configuration to point to the PostgreSQL
database. The configuration is typically found in a file like “config/config. json”. Replace
the MySQL configuration with PostgreSQL configuration.

json t] Copy code

6. Migrate Data: Use Sequelize migrations to transfer the data from MySQL to PostgreSQL.

Create a migration script that reads data from your MySQL database and insertsiti 'S Regenerate

