MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE
NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering

Software engineering department

ADMIT TO DEFENSE
Head of Department
Oleksiy GORSKI “_ 7
2023

QUALIFICATION WORK

(EXPLANATORY NOTE)
GRADUATE OF EDUCATIONAL MASTER’S DEGREE

)

Theme: “Application for calculating project quality indicators’

Performer: Kolisnyk Ivan Petrovych

Standart controller: c.t.s., Associate Professor, Mykola Fyodorovych
Radishevskyi

Supervisor: c.p.-m.s., s.r.f., Mykhailo Viktorovich Olenin

Kyiv 2023

NATIONAL AVIATION UNIVERSITY

Faculty cybersecurity and software engineering
Department Software Engineering

Degree of education master

Speciality 121 Software engineering
Education-professional program Software engineering

APPROVED

Head of Department
Oleksiy GORSKI “ "
2023

Task
on executing the graduation work
Kolisnyk Ivan Petrovych

1. Topic of the graduation work: «Application for calculating project quality
indicators»
Approved by the rector's order from 20.10.2023 Ne 1967/cr.

2. Terms of work execution: from 05.09.2023 to 31.12.2023.

3. Source data of the work: improved software product using VS Code and
programming languages Typescript and Javascript

4. The content of the explanatory note:
1. Analysis of literary sources and existing analogues
2. Application design
3. Implementation of the application
4. Analysis of project quality and future trends
5. List of mandatory presentation slides:
1. Topic, performer, leader.
2. Existing methods, analysis of shortcomings, setting of the task.
3. Requirements for the software tool.
4. Tool structure, class diagram.
5. Software tool interface.

6. Demonstration of the tool prototype.

6. Calendar plan-schedule

Ne Task Deadline Performan
ce note
1. Familiarization with the statement of the 14.10.2023-
problem and the study of literature 31.10.2023
Writing 1 section, presentation to the
supervisor
2. Preprint of section 1 and auxiliary pages 15.10.2023-
(draft) - title, task, schedule, abstract, list 22.10.2023
of abbreviations, content, introduction,
source list. First standard control.
3. Writing 2 section, presentation to the 22.10.2023-
supervisor 01.11.2023
4. Writing 3 section, presentation to the 01.11.2023-
supervisor 14.11.2023
5. General editing and printing of an 14.11.2023-
explanatory note, graphic material 20.11.2023
6. Passing standard control 20.11.2023-
26.11.2023
7. Development of the text of the report. 26.11.2023-
Creating of graphic material for 27.11.2023
presentation
8. Get feedback from the supervisor, 27.11.2023-
reviews. 13.12.2023
9. Preparation of materials for transmission 13.12.2023-
to the secretary of the DEC (software, 19.12.2023
GM, CD-R with electronic copies of
software, GM, presentations,
supervisors review, review, certificate of
progress, 2 folders, 2 envelopes)
10. | Graduation project presentation 19.12.2023-
31.12.2023

Date of issue of the assignment 05.09.2023 p.

Supervisor:
Task accepted for execution:

c.p-m.s., s.r.f.,, Mykhailo Olenin
Kolisnyk Ivan

PE®EPAT

Hana muruiomMHa poOOTa MpHCBSiUEHA PO3pOOI Ta BIPOBAIKEHHIO
3aCTOCYHKY [UJIi PO3pPaxyHKy SKOCTI Tpoekty. B cydacHomy cCBiTi, 1€
KOHKYpEHIIII Ta IIBUAKICTh PO3BUTKY OI3HECY HECIHPOCTOBHO 3pOCTaIOTh,
yCHillIHA peaji3allis MPOEKTIB cTaja KPUTUYHOIO CKIAJ0BOIO s Oararbox
oprasizailiii. SIKiCTb MPOEKTY € OAHUM 13 KJIIOYOBHX (haKTOPiB, SIKMM BHU3HAYAE
Horo ycmix Ta BIIMBA€E Ha 3aJ0BOJICHHS KJIIEHTIB Ta CTEHKXOJIIEPIB.

Y @it poOOTI pO3MISAAETbCA TMPOLIEC CTBOPEHHA Ta PO3POOKHU
IporpaMHOro 3acoly, SIKMM HaJae MOXKJIUBICTh 00'€KTHBHO OIIIHIOBATH SIKICTh
MIPOEKTY Ha BCIX HOro eramax, BpaxOBYIOUM PI3HOMaHITHI IapaMeTPH, PECYPCH,
1 SIKICHI XapaKTEPUCTUKHU. 3aCTOCYHOK BUKOPHCTOBYE METOAU Ta IHCTPYMEHTH
aHaJi3y JaHUX, CTATUCTUKH, Ta IHPOPMAIIHHUX TEXHOJIOTIM I aBTOMATHU3allii
MIPOLIECY OLIIHKU SAKOCTI ITPOEKTY.

JurmomHa poboTa BKJItOYa€e B ceOe JeTalbHHUM OIS JIITepaTypH, aHalli3
ICHYIOYHX METO/IIB OLIIHKU SIKOCTI IIPOEKTIB, PO3POOKY MpOrpamMHOro 3acoly Ta
HOTO TeCcTyBaHHA Ha TMpPaKTHI. Pe3yapTard JOCHTIKEHHS JIEMOHCTPYIOThH
e(eKTUBHICTh 3aCTOCYHKY 1 MOTO TMOTEHINaN NIl BIOCKOHAJICHHS YIpaBIiHHS
MPOEKTaMU Ta T1ABUILICHHS SIKOCTI IX BUKOHAHHS.

JluniomMHa po6oTa cripsiMOBaHa Ha BAOCKOHAJICHHS MPOIIECIB YIIPABIIHHS
POCKTaMU Ta MOXKE OyTH KOPHUCHOIO SIK JUIsl TPAKTHUKYIOUMX MEHEIKEpiB
MPOEKTIB, TaK 1 JAJIA NOCIHIAHUKIB, IO IIKABIATHCS MUTAHHSAMU YIPaBIIHHS
IPOEKTaMU Ta SKICTIO 1X peaizaiii.

KirouoBi crmoBa: 3acTOCYHOK Isl PO3PaxXyHKY SIKOCTI MPOEKTY, MPOIEC
YIOPaBIIHHS MPOEKTaMH, OLIHKA SKOCTI MPOEKTY, MporpamMHuil 3acid, aHami3

JaHUX, CTaTUCTHUKA.

ABSTRACT

This diploma thesis is dedicated to the development and implementation
of an application for project quality assessment. In today's world, where
competition and the pace of business development are continuously increasing,
the successful execution of projects has become a critical component for many
organizations. Project quality is one of the key factors that determine its success
and influences customer and stakeholder satisfaction.

This work explores the process of creating and developing a software tool
that allows for an objective assessment of project quality at all its stages,
resources, and quality characteristics. The application uses methods and tools of
data analysis, statistics, and information technology to automate the project
quality assessment process.

The diploma thesis includes a detailed literature review, an analysis of
existing methods for project quality assessment, the development of the
software tool, and its practical testing. The research results demonstrate the
effectiveness of the application and its potential to enhance project management
processes and improve project execution quality.

The diploma thesis aims to improve project management processes and
can be valuable for both practicing project managers and researchers interested
in project management and its quality assessment.

Keywords: Application for project quality assessment, project
management process, project quality assessment, software tool, data analysis,

statistics.

Contents

INTRODUCTION ...cuuciiiiiirinnmmnniicisiiininnnmmmmiisissnsmmsemmmmmmisisssmmmsssmmmsssssssssssssssssssssssssssssssnss 8
CHAPTER 1. ANALYSIS OF LITERARY SOURCES AND EXISTING ANALOGUES.. 10
1.1 Review of literary sources and existing analogUeS.....ccoccceeeeeiiiiiessrnsnnneenessiesssssnnnnsennes 10
1.1.1. Analysis of literary sources on project quality managementccoceevevvevevesesieseeeeeenenns 10
1.1.2. Overview of existing software tools for project managementcccecvevveveveseseseeeereenenns 12

1.2, ANAlytics Of the rEJION ciceeeeiiiiiieeiiiete it ssses e ssr e sse e s s s sase e sssssnnesssnnns 20
1.2.1. Classification of quality indicators and their compliance with project goals.........c.ccccccoeeennee. 22
1.2.2. Measurement and tracking of project quality indiCatorscccoevevvinennienenniseeeeeeene 24
1.2.3. Future trends in the analysis of project quality iNdiCators.........c.coeveevireiniinennineeene 25

1.3. Relevance of development in the analysis of project quality indicators.......ccccvveevueeerennne 27
1.4. Changes in the technologies of project quality INAICALOrScccevveerrrisieeeisissieeeriissneenesnne 28
1.5. Use of technologies and t00IScccvvueeiiiiieeiiiiiiieiiiiieeiiineessssnre s sssssse s sesane 30
1.5.1. Technological innovations and their INfIUENCEc.ocvveieiee e 30

1.6. Functional and non-functional reqUIremMeNtS.....ccccvrccrreeeriiiicssisnnreesesssesssssnseesesssssssssanes 33
L0 3T 11 o] o N 34
CHAPTER 2. APPLICATION DESIGNcciiiiiiiiiriiiiiiiiinnininnninnssissssnsnnmmmmmmsssssssssessnnes 36
20 O 111 001 o [o N 36
2.2. Assessment of External and Internal QUAalitY.....cccivieeerrceereeriiiicisssrcnnreeeenissessssnnneesessnenes 36
A N a =] g - O LU T-) Y 38
2.2.2. INTErNAl QUAITTY ...ttt b et s b et b s bbb bbbt b e b e 40

2.3. Product quality assessment algorithmS.....cccceeeeeeeiiceecsiseereeeeesiecessssnneeeeeseesessssnsensesssssenes 43
2.3.1. Overview of the main algorithms for quality asseSSMENtcccecevereeneneinenese e 43

2.4. Choice of technologies and arChiteCtUre........cuvccveiiiiiiseeiiiiiierinniseesssseee e ssaneeses 46
2.4.1. Programming TANQUAGE..........eruetrierieiriertet st stett sttt sttt sttt sbe et bbbt et sbe st st sbene b sbe e s ne 47
2.4.2. DALADASE.ottt bbbt b e bbbt e ae et et e bt shesbeeae et etens 47
2.4.3. APPHICALION AFIVEL ...ttt b e bbbt et et e e e besbesbesaeeaeeneens 47
2.4.3. Languages Request and Data DeSCriPLiONccccceevieriieiiesiereere et 48
2.4.4, Technological innovations and their INFIUENCE ..o 48

2.5. Automation of the analySiS PrOCESS .ueeieerieeerrrcnreeeerreeeeerssssereeeeessessssssnseesesssssesssssnsseesasssanes 49
2.6. Development of an algorithm for calculating project quality....cccccvceeeeeereececsrreeeeeeeennen. 56
(0] 3 Tox 1113 o] o 1T 63
SECTION 3. IMPLEMENTATION OF THE APPLICATIONcccitiirrrrrevenneccenenneennnns 64
201 IR 1 oo [T 1 o o PPN 64
3.2. Implementation of the main functional COMPONENTS.......ceiiiiiiiiiiinicerniiiiinieereeeesneaes 64
3.21 The main modules Of the PrOJECTccviveieieeere et st seens 66

3.2.2 Implementation of the project quality calculation algorithm.............cocoeiiiiiiininineee 72

3.3 Implementation Of the arChiteClUIE ...ciiiiicceerccreeeeriiccccreerrre e eneree e e s s s s s ennnneeeesssanes 74

I U LTl 1 0 (=Y g = (o 76

K TR T 1= 11 o USROS 80

L0 3T 113 o] o N 83
CHAPTER 4. ANALYSIS OF PROJECT QUALITY AND FUTURE TRENDS............... 84
4.1 Classification of software design decisions (SDP) and their compliance with project goals

AT Devsrmination o oveiect goss amdther somelianca with v imlemenied RGP T s
4.2 Interaction between the client and the SEIVEr ... 86
4.3 Scalability and Performance ASSUFANCEccccccerceeereeeersecssssssnneeeesssssessssssnsessesssssssssssnnssenes 88
4.4 Recommendations for Future DeVEIOPMENTeeeeeeeeiricccrrrnereeersisicssssnnnneeeesssessssssnnnseens 91
L0 3T 113 o] o N 93
CONCLUSION ceiiiiiiicciiiiieieesissnisssiiissesesssns 94
REFERENCES ... eiiiiieiiciiiieccssssssssiiiseees s ssssssssssssssss s sssssssssssssssssssssssssssssnnnns 95
o D 97

N N G = N 100

INTRODUCTION

In today's world, characterized by rapid changes and fierce competition,
project management is a key success factor for enterprises and organizations in
various fields of activity. Projects have become not only an effective tool for the
implementation of strategic goals, but also the main way of introducing
innovations, adapting to changes in the market environment and maintaining
competitiveness.

Successful implementation of projects became a prerequisite for
maintaining the stability of enterprises and their further development. In the
conditions of the global economy, it is important not only to complete the
project on time and within the budget, but also to ensure the high quality of the
results, which affects the satisfaction of customers, employees and other
stakeholders .

However, the achievement of high project quality and its control require
effective methods and tools from organizations. The lack of an objective
evaluation and control system can lead to the loss of competitive advantage and
unsuccessful implementation of strategic plans.

The purpose of this thesis is the development and implementation of a
specialized application for calculating project quality. The study is aimed at
solving the problem of evaluating and controlling the quality of projects in all
their aspects, starting from the terms of execution and budget, and ending with
quality characteristics and satisfaction of all stakeholders.

The object of the study is the project management process and the
quality of their implementation in organizations.

The subject of the study is the developed application for calculating the
quality of the project, its capabilities and effectiveness in real conditions of use.

This thesis will consist of several sections, including a theoretical basis,
an overview of existing methods of assessing the quality of projects, details of
the development of a software tool, results of practical tests and conclusions.
The work is aimed at solving current project management tasks and aims to

improve the quality of their implementation.

CHAPTER 1. ANALYSIS OF LITERARY SOURCES AND EXISTING
ANALOGUES

1.1. Review of literary sources and existing analogues

This section provides a detailed analysis of literary sources and existing
software tools for project quality management. This review is an important step
in understanding the current state of the field of project management and
identifying possible solutions and approaches for developing a project quality
calculation application. The importance of the review of literary sources in the
thesis determines the following key aspects :

Expanding knowledge : A review of literary sources allows you to expand
existing knowledge about the chosen topic of research. It helps to get
acquainted with the history of research in this field and to find out which
aspects have already been studied.

Identification of gaps and needs : Analysis of literary sources allows to
identify gaps in scientific knowledge and needs for further research. After
conducting the analysis, it is expedient to identify questions that have not yet
been answered and that can be the object of research.

Choosing the right approach : Reviewing the literature helps determine
which research methods, theoretical approaches, and tools have been used in
previous work. This helps to take the right direction for research and approaches

that will be most effective in your case.

1.1.1. Analysis of literary sources on project quality management

In the context of the thesis, the analysis of literary sources on project
quality management allows to understand the key aspects and methodologies

underlying effective control and quality improvement in project activities.

10

Literature sources such as " Project Management Body of Knowledge (PMBOK

Guide) ", " Quality Management for Projects and Programs " by Lewis R.
Ireland and " Project Quality Management: Why, What and How " by Kenneth
H. Rose act as key sources for understanding these aspects. The main
conclusions from the analysis of these sources are as follows:

1. Relevance of project quality management : Literary sources
convincingly emphasize that project quality management is a relevant and
Important component of modern project management. Quality maintenance
affects the success and competitiveness of projects and organizations in general.

2. Basic framework from the PMBOK Guide : The PMBOK Guide
defines standard project management processes and provides basic principles of
guality management. This framework was created by the Project Management
Institute (PMI) and reflects modern approaches to quality management in
projects.

3. Practical tips and tools : Literary sources provide practical tips and
tools for achieving high quality in projects. These recommendations apply to
both general strategies and specific quality management methods.

4, Individual approach : It is important to understand that each project
has its own unique characteristics and requirements for quality management.
Literary sources emphasize that an individual approach and adjustment of
quality management processes are key success factors.

5. Continuous improvement : Project quality management is not a
static process, but a continuous cycle of improvement. To achieve high quality,
it is necessary to constantly analyze and improve processes.

Based on the analysis of these literary sources, it can be concluded that
effective project quality management requires the integration of basic
principles, practical recommendations and tools provided by these sources.

Next, the design of a project quality calculation application should take these

11

principles into account and allow for customization according to the unique

needs of each project.

1.1.2. Overview of existing software tools for project management

In the context of the diploma thesis, the analysis of existing software tools
for project management serves to evaluate the available solutions and identify
possible analogues for the development of one's own application for the

calculation of project quality.

Fig. 1.1. Microsoft Project

Microsoft Project is a widely used project management software tool
known for its ease of use and scalability. It provides a convenient platform for
planning, executing and monitoring projects of various sizes and complexities.
However, its primary focus is on project management tasks, and tracking quality
metrics may require additional customization. While it does provide some
customization options, they may not be as powerful as dedicated quality
management programs. Real-time monitoring capabilities for quality metrics are
limited. However, it is worth considering due to its effective pricing, flexible

licensing options, and availability of resources for user support and training.
12

Advantages of Microsoft Project:

. Ease of use: Microsoft Project is known for its user-friendliness, which
makes it accessible to most users, including those without deep
knowledge of project management.

. Scalability: This software tool can be used to manage projects of various
sizes and complexities, making it an excellent choice for a wide range of
organizations.

. Project planning and tracking: Microsoft Project provides powerful tools
for planning and tracking projects to help ensure their successful
completion.

. Flexible Licensing Options: The program has a variety of licensing
options, allowing organizations to choose the one that best suits their
needs and budget.

. User support and training: Microsoft provides resources for user training
and support, which facilitates the implementation of the application in
the organization.

Disadvantages of Microsoft Project:

. Focused on project management: The main focus of this software is on
project management, and it may require additional customization to track
quality metrics.

. Limited customization options: Customization options for quality metrics
in Microsoft Project may be limited compared to specialized quality
management programs.

. Real-time monitoring: The program is limited in its ability to monitor
quality indicators in real-time, which can make it difficult to immediately
analyze and respond to changes.

. Specialization: Deep implementation of quality management may require

the use of specialized programs.

13

Despite these shortcomings, Microsoft Project remains a valuable project
management tool with support for planning and tracking, but more detailed
quality management may require additional customization or the use of

additional tools.

+¥ wrike

Yl Scoro

smartsheet
/2/smonday con

Fig. 1.2. Project management software
Project management software with customizable reporting is designed to
streamline project management and provides excellent options for customizing
quality metrics. It enables users to define and track project metrics effectively,
which is valuable for organizations with unique quality requirements. Systems
of this type often provide real-time reporting and messaging, enhancing project
quality monitoring. Integration capabilities may vary between products and
scalability depends on the specific solution. Support costs and resources can
also vary between vendors, so organizations should evaluate their individual
needs.
Advantages of Project Management Software with Custom Reporting:
1. Customization of quality metrics: One of the key benefits of this
software is the ability to customize quality metrics, allowing

organizations to create custom metrics and track their performance.

14

2. Real-time and notifications: Real-time reporting software provides up-to-
the-minute information and alerts that improve project quality
monitoring and enable quick response to changes.

3. Flexibility of use: Systems of this type are often very easy to use and can
be adapted to the needs of a particular organization.

4. Custom Quality Reporting: The software enables you to create custom
quality reports that help you better understand and analyze project

quality.

Disadvantages of Project Management Software with Custom Reporting:

1. Variety of Integrations: The integration capabilities of this software may
vary between products, which may make it difficult to interact with other
systems and tools.

2. Scalability depends on the solution: The complexity of scaling this
software can vary depending on the specific solution, and large projects
may require detailed scaling planning.

3. Different costs and support resources: The cost and availability of
support resources can vary from one vendor to another, requiring
additional analysis and selection of the best option for a particular
organization.

In general, project management software with the ability to customize
reporting provides a wide range of opportunities to control the quality of
projects, but requires careful selection and configuration to achieve optimal

results.

Spider
Strategies

Analytics

15

Fig. 1.3. Tools for creating and analyzing dashboards and analytics

Tools for creating and analyzing dashboards and analytics are featured in

customization, offering a high level of flexibility in creating individual reports

and visualizing quality indicators. They are known for their strong integration

capabilities, allowing for seamless aggregation of data from various sources,

including project management tools. Real-time monitoring and instant

notifications are considered to be one of their strengths, making them ideal for

real-time project quality monitoring. However, cost may vary between tools and

compliance and security features may vary, requiring individual evaluation.

Advantages of Dashboard and Analytics Tools:

. Customization and Customization: Tools for creating and analyzing
dashboards and analytics are highly customizable, allowing users to
create customized reports and visualizations of quality metrics that meet
the unique needs of the organization.

. The power of integration: These tools allow you to seamlessly aggregate
data from various sources, including project management tools, making
it easier to gather and analyze information.

. Real-time monitoring: The ability to provide real-time data allows you to
quickly respond to changes and improve the quality of the project during
its execution.

. Data integration power: Dashboard and analytics tools provide powerful
data integration capabilities from multiple sources, enabling holistic
analysis and decision-making.

Disadvantages of Dashboard and Analytics Tools:

1. Cost Variation : The cost of these tools can vary significantly among

different products, which can impact an organization's budget.

16

2. Compliance and security features : The level of compliance and security
features can vary from one tool to another, requiring careful analysis and
consideration of the organization's requirements.

Overall, dashboarding and analytics tools are powerful tools for
monitoring and analyzing project quality, but organizations should carefully
consider their cost and security and compliance capabilities before choosing a

specific tool.

>3 arena, M

MasterControl

Fig. 1.4. Quality management software (QMS)

Quality Management Software offers ease of use for quality management
and usually has robust compliance and security features, making it an excellent
choice for regulated industries. It provides comprehensive support and training
resources for effective use of the program. However, the customization options
for project quality measures may be limited and may require adaptation to scale
project quality measures. Integration with project management tools may be less
versatile than other solutions.

Advantages of Quality Management Software (QMS):

1. Ease of Use: Quality Management Software is noted for its ease of use
for quality management, which makes it attractive to a wide range of
users.

2. Compliance and Security Features: This software typically has robust
compliance and security features, making it an excellent choice for
organizations operating in regulated industries where compliance is

critical.

17

3. Support and training: Quality management software usually provides
comprehensive support and training resources for users to help them use
the software effectively.

Disadvantages of Quality Management Software (QMS):

1. Limited Customization: Customization options for project quality
metrics can be limited, which can make it difficult to adapt the program
to the specific needs of an organization.

2. Project quality scalability: Scaling project quality metrics may require
additional program adaptation.

3. Integration with project management tools: Integration with other project
management tools may be less versatile than in other solutions, which
may limit data sharing and collaboration with other programs.

Overall, Quality Management Software is a valuable tool for ensuring
compliance and security in quality management, but organizations should
carefully consider its customization and integration capabilities before choosing

this software tool.

(o) funnel s pyromic

Fig. 1.5. Business Intelligence tools

Business Intelligence tools offer extensive customization options for
defining and tracking project quality metrics. They are known for their strong
integration capabilities that allow seamless aggregation of data from different
sources. They can provide real-time monitoring with customization. However,
cost may vary among BI tools and compliance and security features may vary,
requiring individual evaluation.

Advantages of Business Intelligence (BI) Tools:

18

. Extensive customization options: Business Intelligence tools are noted

for their extensive customization options for defining and tracking
project quality metrics, allowing users to create customized reports and

metrics.

. Integration Capabilities: They are known for their strong integration

capabilities that allow seamless aggregation of data from various

sources, including project management tools.

. Real-time monitoring: Bl tools can provide real-time monitoring with

customization, making them ideal for real-time project quality

monitoring.

Disadvantages of Business Intelligence (Bl) Tools:

. Cost: The cost can vary among different Business Intelligence tools and

can be significant, depending on the scope of features and the amount of

data to be processed.

. Compliance and Security Features: Compliance and security features

may vary among BI tools, requiring additional consideration and
evaluation from a security and compliance perspective in a specific
organization.

Overall, Business Intelligence Tools are powerful tools for analyzing and

monitoring project quality, but organizations should carefully evaluate cost and

integration capabilities before choosing the right Bl tool.

Table 1. Evaluation summary table

Settings for Integration Monitoring | Convenience | Scalability Cost Compliance
quality metrics | possibilities | inreal time | for the user and security
Microsoft 3 2 3 4 3 3
Project
Project 4 3 4 4 2 3
Management
Software
with Custom
Reporting

19

Dashboard
and
Analytics
Tools

Quality
Management
Software

Business
Intelligence

After a comprehensive analysis of existing analogues, it became obvious
that each of these software tools has its own set of shortcomings and limitations.
These limitations include varying levels of customization capabilities,
integration challenges with existing systems, limited real-time monitoring
capabilities, and potential costs.

In light of these limitations, our project aims to solve these problems by
developing a new application. Our goal is to create an application that will not
only overcome these shortcomings, but also provide a comprehensive solution
for calculating project quality indicators. Through customization, continuous
integration, real-time monitoring and cost efficiency, our new application will
be designed to meet the unique needs and challenges faced by organizations in

the field of project quality management.

1.2. Analytics of the region

In the dynamic and ever-changing landscape of project management,
achieving successful results has become more than just a task of meeting
deadlines and budgets. This involves a comprehensive understanding of the
factors that determine quality, aligning project objectives with stakeholder
expectations and maintaining consistently high standards. This is where project

quality indicators (QPI) play an important role.

20

Resource
Conflict
Resource
Conflict

Quality

Project
Metrics

The number The number
of time and of errors and
budget customer

changes To-ime complaints
completion and

planned hours
vs. actual time
spent

Fig. 1.6. Project quality indicators

Project management systems are an important aspect of modern project
management practices. They provide a structured framework for evaluating and
measuring the quality of project processes, outcomes and overall performance.
KPIs are not just metrics, but pointers that guide project managers and teams on
the path to excellence, pointing out areas that need attention and improvement.

The purpose of the analysis is a deep study of the world of NAPs, a
comprehensive understanding and analysis of their various aspects. We hope to
equip project managers, stakeholders, and quality assurance professionals with
the knowledge and insights needed to realize the full potential of FP. By
uncovering the intricacies of FP analysis, we enable organizations to make
informed decisions, minimize risks, and optimize project quality.

In today's highly competitive business environment, the relevance of PES
Is extremely important. They act as a chain for project success, acting as early
warning systems for potential problems and barometers of project status. PNWSs
play a key role in:

1. Satisfying Stakeholder Expectations: By aligning project outcomes with

stakeholder expectations, PAPs promote transparency and build trust.

21

2. Ensure project success : PMPs act as signposts, helping project teams
navigate the complex landscape of project management with precision
and confidence.

3. Support these high quality deliverables: Through continuous monitoring
and analysis, SMPs contribute to the delivery of high quality project

deliverables, reducing defects and rework.

1.2.1. Classification of quality indicators and their compliance with project

goals

Process metrics measure the effectiveness and efficiency of project
management processes and work processes. They provide information on how
effectively project management practices are being performed. Examples

include:

Schedule Adherence : Measuring adherence to the project schedule,
identifying delays and evaluating their impact on the project schedule.

Budget Compliance : Assessing whether the project meets budget
constraints and identifying financial deviations.

Product indicators emphasize the quality and characteristics of the project
results. They measure the quality of end products or project outcomes.
Examples include:

Defect density : A measure of the number of defects or problems per unit
of project output that indicates product quality.

Customer Satisfaction Assessments : Gathering feedback from end users
or clients to gauge their satisfaction with project outcomes.

Project management indicators focus on project management
performance and strategies. They provide information about the overall status of
the project. Examples include:

22

Risk Management Effectiveness : Assessing the effectiveness of risk
identification, mitigation strategies, and risk responses.

Requirement Change Approval Time : A measure of the time it takes to
approve and implement change requests, which affects project flexibility.

Each type of PAP plays an important role in monitoring and evaluating
the quality of the project:

Process indicators : These provide information about the effectiveness of
project management practices. For example, the detection of budget deviations
using budget adherence metrics can trigger corrective actions, such as changes
in resource allocation or scope of work.

Product metrics : These help ensure that the project's final deliverables
meet quality standards. Detecting high defect densities early in a project allows
teams to quickly address quality issues, preventing costly rework and improving
overall project quality.

Project management metrics : They provide a comprehensive view of the
project's status. Effective risk management, as indicated by risk management
effectiveness, helps predict and mitigate problems, reducing project bottlenecks
and increasing overall quality.

To illustrate the meaning of each type of PAP, consider real-life scenarios:

1. Process indicator : In the construction project, the PPAs that reflect
adherence to the schedule showed constant delays in the delivery of
materials. Early corrective actions, such as streamlining the supplier
selection process, reduced project delays and improved quality.

2. Product Performance : A high density of defects was found in the
software development at the early stage of testing. The team quickly
conducted code reviews and implemented rigorous testing protocols,
resulting in a significant reduction in defects and improved customer

satisfaction.

23

3. Project Management Indicator : In a complex infrastructure project,
effective risk management, as indicated by the successful identification
and mitigation of potential risks, has ensured that project objectives are
met on an ongoing basis. Stakeholders were well informed and satisfied

with the progress of the project.

The SMP closely matches the project objectives, including time, cost, scope

and quality:

1. Time: Schedule-related SOPs help identify delays early on, ensuring
project milestones are completed as planned.

2. Costs: KPIs, such as budget adherence metrics, help control project
costs, meet cost targets, and prevent budget overruns.

3. Scope: Product metrics ensure that project deliverables meet predefined
scope requirements, reducing scope creep and improving project
compliance.

4. Quality: PPAs in all categories contribute to improving project quality by
facilitating problem identification, corrective action, and project
stakeholder satisfaction.

Beyond improving project productivity, PPMs also serve as important

communication tools, promoting stakeholder engagement and satisfaction

throughout the project lifecycle.

1.2.2. Measurement and tracking of project quality indicators

Effective measurement of project quality indicators (PQISs) is the basis for
ensuring project success and maintaining high quality standards. Various
measurement methods and tools are available for project managers and quality
control professionals. An understanding of these techniques is essential for

accurate analysis of the PAP.

24

Key performance indicators (KPI) are quantitative metrics that directly
reflect the achievement of key goals. They offer a targeted way to measure
project quality. For example, a software development project might use KPIs
such as defect density or code review effectiveness to measure quality.

Metrics are numerical measurements used to evaluate specific aspects of
project quality. Metrics can be quantitative or qualitative and often include data
such as the number of defects, customer satisfaction ratings, or project duration.

These tools can automate data collection, analysis, and reporting. Examples

include project management software with built-in quality measurement
features and specialized quality management software. Choosing Appropriate
Measurement Methods Choosing the right measurement methods depends on
project characteristics such as size, complexity, and industry standards.
Recommendations for selecting appropriate measurement methods include:

1. Understanding project objectives: Align measurement methods with
project objectives and quality objectives.

2. Assess data availability: Assess the availability of relevant data for each
method.

3. Consider the type of project: Recognize that different types of projects
may require different measurement approaches. For example,
construction projects may rely more on on-site inspections, while
software development projects may use automated code analysis tools.
By carefully analyzing these factors, project managers and quality control

professionals can select measurement methods that provide meaningful
information about project quality while minimizing unnecessary complexity and

effort.

1.2.3. Future trends in the analysis of project quality indicators

25

With the constant development of technology, the landscape of project
quality analysis (QIA) is preparing for significant transformations. Emerging
technologies, including artificial intelligence (Al), data analytics, and machine
learning, are poised to play a key role in the development of PFS analysis.

Al, thanks to its ability to process huge amounts of data and identify
patterns, has enormous potential in the analysis of PFS. Machine learning
algorithms can analyze historical project data to predict future quality issues.
For example, Al-based models can predict possible volume spills or resource
constraints, facilitating proactive quality management.

Data analysis tools are becoming increasingly sophisticated, allowing for
deeper insights into project quality. Modern data visualization techniques can
reveal hidden trends and relationships between NAPs, which contributes to
more informed decision-making. For example, data analytics can identify the
root causes of recurring quality issues.

Incorporating advanced analytical tools into the analysis of PFS has the
potential to significantly improve accuracy and predictive capabilities. By
leveraging big data and Al, organizations can:

1. Predict quality trends: Al-based models can predict future FFP trends,

helping project teams prepare for potential quality issues.

2. Detect problems at an early stage: Advanced analytics can identify
warning signs of quality deviations, enabling rapid intervention and risk
mitigation.

3. Adaptive quality strategies: Data-driven insights can define adaptive
guality strategies based on real-time metrics.

In this analysis, we explored the multifaceted world of project quality
indicators (PQIs) and their important role in project management and quality
control. SOPs serve as compasses that guide project teams toward excellence by

providing insights into project quality.

26

As technology evolves, the incorporation of advanced analytics and
emerging technologies such as Al and data analytics promises to revolutionize
the analysis of PFS. These advances will improve accuracy, predictive
capabilities, and overall project quality.

In addition, the concept of continuous improvement emphasizes the
dynamic nature of the analysis of the PES. Organizations that commit to
developing their NAP analysis practices over time can reap significant benefits

In terms of project success, stakeholder satisfaction, and overall quality.

1.3. Relevance of development in the analysis of project quality indicators

In the ever-changing landscape of project management, ensuring high-
quality project outcomes becomes the primary goal. Project Quality Measures
(PQMs) play a key role in this endeavor, serving as beacons that guide project
managers and teams to excellence. The concept of development is at the center
of an effective analysis of the PAP.

The purpose of this project is to investigate the importance of continuous
development in improving the effectiveness of the analysis of the NAP. Project
quality indicators are not static; they must evolve to stay relevant in a world
where project dynamics, methodologies and technologies are constantly
changing.

In an era characterized by technological innovation, changing project
paradigms, and evolving stakeholder expectations, project managers and quality
assurance professionals must remain vigilant. PPEs that were effective
yesterday may no longer serve their purpose today. Stagnation can result in a
deterioration in project quality, increased risk, and stakeholder dissatisfaction.

Staying relevant means committing to constant learning, adaptation and
development. This means adopting new measurement methods, tools and best

practices, as well as building a culture of continuous improvement where

27

feedback is welcomed, innovation is supported, and the FFP is subject to

improvement to fit a dynamic project environment.

1.4. Changes in the technologies of project quality indicators

The scope of Project Quality Indicators (PQISs) never remains the same; it
Is always in a state of constant transformation. This constant variability is due to
many factors, including technological changes, development of methodologies
and changes in industry standards. In this chapter, we will explore how the NAP
Is constantly changing and how this has a profound impact on the relevance of
development in NAP analysis.

Advances in technology have a significant impact on the way projects are
carried out and, therefore, on the way quality is measured. Example:

1. 10T integration: The introduction of the Internet of Things (loT) into
various industries has led to the emergence of FPGASs, which deal with
the analysis of data collected by the 10T and provide insights into the
actual execution process of the project.

2. Blockchain : In industries such as supply chain management, the use of
blockchain technology has led to the creation of PDSs that measure the
accuracy and security of data throughout the supply chain.

The development of project management methodologies, such as Agile and
Lean, has led to the emergence of new approaches to quality management.
Changing methodologies:

1. Agile Metrics: Agile Metrics specific to Agile methodologies have
emerged, focusing on aspects such as sprint speed, roll rate, and backlog
status.

2. Lean Six Sigma Metrics: In Lean Six Sigma projects, the NAPs are

focused on process efficiency, loss reduction, and defect prevention.

28

Industries are often adapting to changing standards and regulations, resulting
in the need to develop SOPs that meet these new requirements. Example:
1. Compliance with quality standards: SOPs related to compliance with

quality standards such as ISO 9001 are becoming increasingly important

2. Sustainability Metrics: Growing concern about environmental aspects is
leading to the emergence of PES, which measure the environmental
Impact of projects .

The dynamics described above emphasize the importance of development
in the analysis of the FP. As NAPs evolve to encompass new aspects and
criteria, it becomes critical to ensure that the measurement methods, tools and
software used for NAP analysis keep pace with these changes.

Development plays a key role in the evolution of the PAP. It covers the

creation and improvement of:

1. New Metrics: Development of new PPS metrics designed for specific
project types and industry requirements provides accurate measurement
of the quality of modern projects .

2. Measurement tools: Tools that automate data collection, analysis, and
reporting are becoming an integral part of working with the increasing
complexity of FAP analysis .

Software solutions : The development of specialized software solutions for
the analysis of PAP simplifies processes, improves data visualization and
supports real-time monitoring.

Development efforts are not only innovation, but also adaptability. The
PES must be able to flexibly respond to the unique needs and challenges of each
project. Development ensures that FPs remain effective tools for driving

projects to success .

29

1.5. Use of technologies and tools

The modern world is rapidly developing, and technological advances are
becoming a major force in improving project quality management. In this
chapter , we take a closer look at the impact of technological innovations such
as Avrtificial Intelligence (Al), machine learning , and data analytics . Some of
these innovations include exciting capabilities that increase accuracy, efficiency,

and predictability in quality management.

1.5.1. Technological innovations and their influence

Acrtificial Intelligence (Al) is opening up new horizons in the field of
analysis of PNPs, providing the opportunity to process large volumes of data
and identify complex patterns that previously remained imperceptible to human
understanding. The benefits of Al for PAP analysis include:

1. Predictive Analysis : Al-based models predict potential quality issues
based on historical data, allowing proactive measures to be taken to
prevent them. For example, Al can predict the likelihood of schedule
delays or budget overruns by analyzing past project performance.

2. Anomaly Detection: Al systems are effective at detecting anomalies in
data streams in real time, making them indispensable for detecting
unexpected quality deviations in the early stages of a project.

Technological advances in the field of data analytics provide an opportunity
to gain a deeper understanding of the quality of the project and improve the
analysis of the PAP:

1. Advanced Visualization: Data analytics tools create sophisticated visual

representations that reveal hidden trends, relationships , and anomalies
among PFS. These visualizations facilitate informed decision-making by

the project team.

30

2. Root Cause Analysis: Data analytics helps pinpoint the root causes of
recurring quality problems, enabling targeted corrective action. For
example, it may discover that a certain process systematically leads to
defects.

Technology development efforts play a key role in improving the accuracy,

efficiency, and predictability of FAP analysis:

1. Improved Accuracy: Developments in technology are increasing the
accuracy of PNAS analysis by:

a. Automated Data Collection: Technology automates data collection,
which reduces the risk of human error and ensures the accuracy of
information.

b. Advanced Algorithms : Machine learning algorithms can analyze large
data sets to identify patterns and anomalies that may go unnoticed by
humans, resulting in more accurate PAPs.

2. Increased efficiency: Efficiency is another key aspect in which
technology-driven development proves beneficial :

a. Real - time monitoring: The technology allows for real-time
monitoring of FAP, providing immediate alerts on the detection of
quality deviations . This efficiency allows project teams to respond
quickly.

b. Data processing: Modern technologies quickly process large
volumes of data, which allows for faster analysis and reporting of
FP.

3. Predictability: Developments provide the analysis of the NAP with the
ability to predict:

a. Predicting quality trends: Machine learning models predict future
Q&A trends, enabling project teams to prepare for potential quality

ISsues.

31

b. Detection of the first indicators: Technology can detect the first
signals of deviations in quality, which allows you to proactively
minimize risks before they escalate .

As the importance of PAP analysis continues to grow, specialized tools and
software become necessary. This chapter discusses the importance of creating
such tools and provides examples of specialized FP analysis software that
simplifies data collection, analysis, and reporting. The importance of specialized
tools :

1. Automation: Specialized tools automate the collection of PFS data from
various sources, reducing the time and effort required to collect
information manually.

2. Data integration: These tools facilitate the integration of data from
different stages and sources of the project, which allows you to get a
comprehensive overview of the quality of the project .

3. Real - time monitoring: Many specialized tools for the analysis of
FPGAs offer real-time monitoring capabilities, ensuring that quality
deviations are detected immediately .

Examples of specialized security software for the analysis of PAP :

1. Health Management Software: These comprehensive solutions provide a
set of tools for HRM analysis, automating data collection, analysis and
reporting processes .

2. Dashboard and visualization tools: Specialized data visualization
software allows you to create dynamic dashboards that provide an on-
the-fly view of PFS information.

3. Personalized reporting solutions: Some tools allow you to customize
reports tailored to specific project requirements and stakeholder needs.

The use of specialized software for the analysis of PFS not only simplifies
the analytical process, but also helps project teams to make informed decisions
quickly and efficiently, which improves the quality management of the project.

32

1.6. Functional and non-functional requirements

Functional and non-functional requirements are a key element in any

project specification, including an application for calculating project quality.

1.

Introduction design parameters: The system must allow the user to
introduce the main one’s project parameters, such as duration, budget,
scope works etc.

Calculation of the main one’s indicators quality: The system must
conduct calculations based on entered parameters and determine Indexes
project qualities such as level satisfaction client, costs, term Indexes etc.
Generation of reports: The system must provide possibility generate
reports that contain calculation data and analysis quality of the project.
Saving and loading data: The user must have the possibility to save data
projects and download them for future editing.

Support multi-level of users: The system must support different access

levels for users, depending on their roles (administrator, user, guest).

Non-functional requirements:

1.

Speed: The system must have high speed and low response time for
users.

Security: Provide protection from unauthorized access to data and
privacy information users.

Reliability: The system must be resistant to failures and recover in case
crashes

Comepatibility: Provide compatibility systems with different operating
systems and browsers.

Interface user: The system must have a convenient and intuitive clear
user interface.

33

Functional requirements determine which functions or capabilities should
be provided by the system, while non -functional requirements relate to quality
and characteristics of the system, such as speed, security, and reliability. They
are both important for successful development and implementation of your

calculation application quality projects.

Conclusion

In this section analysis was carried out literary sources and existing ones
analogues, aimed at clarifying the state of the investigated problems and
detection available solutions and approaches to calculation quality of the
project.

The relevance of the work topic is confirmed by significant literary
sources and practical applications in the field of project management. Quality
measurement and analysis are important aspects of project management, and
they are becoming increasingly important in today's environment.

From the analysis of articles and publications, it became clear that there
are different methods and approaches to the calculation of project quality,
including quantitative and qualitative methods. This indicates the need to
develop a comprehensive tool that can take into account various aspects of
quality.

Many of the existing counterparts use modern technologies, such as
artificial intelligence and data analytics, to improve the efficiency of the
calculation of project quality. This indicates the importance of using modern
tools in the development of an analytical application.

However, the analysis also revealed that many of the existing solutions
have their limitations and drawbacks. This opens up an opportunity for further
improvement and development of a more effective tool for calculating project
quality.

34

Therefore, the analysis of literary sources and existing analogues
emphasized the relevance and importance of developing an application for
calculating project quality, which will take into account various aspects of
quality and use modern technologies to achieve more accurate and reliable

results in the field of project management.

35

CHAPTER 2. APPLICATION DESIGN

2.1. Introduction

The second section of the thesis is devoted to the design of the
application, intended for calculating the quality of the project. In light of the
constant growth in the importance of effective project management and high
competition in the development market, the development and implementation of
tools aimed at objective and comprehensive assessment of project quality is
becoming an extremely urgent task.

The purpose of this application is to provide means for objective
measurement of key indicators of the quality of the project, which will ensure
efficiency and stability in the process of its implementation. The starting point
for designing this application is an in-depth analysis of user needs and
requirements to assess the quality of the project from different perspectives.

During this section, important design aspects will be considered, such as
choosing an architectural solution, defining functionality and requirements,
technical design, architectural design , external and internal quality parameters .

The purpose of this section is to reveal all aspects of designing an
application for calculating project quality and to further create a tool that meets
modern requirements and contributes to improving the quality of development

and project management processes.

2.2. Assessment of External and Internal Quality

This subsection examines in detail two critically important aspects that
determine the overall quality of software - External and Internal Quality. The

main focus is on the use of international standards, in particular ISO 25010 and

36

ISO 9126, which provide the most comprehensive and standardized approach to

determining the quality of a software product.

Ana by =a bty Testabdiity
Changeability

Stabaty

Attractiveness
Operabiifty

Ressounost tiliss tion
Thm e e haviaur

Leam Sty
U mace i noclia bl

Syt by
Interop-Sfandity

+ Compllance

Reguiarity

Audaptability
Aoouracy — .
- placeabdity
Instala bty
Co-exkstence
Fault talerance Maturity

Recoveratdity

Fig. 2.1. 1SO 9126

External quality determines how users perceive and interact with the
software. This aspect is important because it affects the real impression and
satisfaction of using the product. The use of the ISO 25010 standard in this
context provides a systematic and structured approach to the assessment of a
number of parameters:

1. Suitability: This parameter determines how well the application meets

the requirements of the user and the environment of use. If the program
meets expectations and demonstrates correct operation, this has a
positive effect on the user's overall impression of the product.

2. Accuracy: Determines how accurate the program provides performance

results. This is especially important for applications where accuracy is

critical, such as financial or scientific applications.

37

3. Interoperability: This parameter determines how easily the program can

interact with other systems and programs. Ensuring a high level of

interoperability makes the product more versatile and convenient to use.

4. Security: This parameter determines how protected the program is from

unwanted attacks and data leaks. Ensuring a high level of security is

critical to maintaining the confidentiality and integrity of information.

5. Functionality Compliance: This parameter determines how well the

program functions meet the requirements. Ensuring a high level of

functionality compliance allows users to make the most of the product's

capabilities.

external and internal
quality

functional efficiency / e o S ~ e i =
[suitability performanoeJ compatibility { usability J{ reliability security maintainability portability }
v v v v v v
o A kil learnability N N\ (B N B
operability
functional +
completeness Lol apapggggsaifﬂri\;ss maturity confidentiality i?:éﬁ:;’lli‘g adaptability
co-existence il fault tolerance integrity Z
fnctonsl fesource recognizability | | ocoverapilty | | non-repudation| | (€StDitY installability
Someciness Atikzatiory interoperability + authenticity 3
user error SR A modularity i
functional capacity protection avallability accountabikty reusability replaceablity
appropriateness
user interface
I\ J\ P aestheties” I\ N J\ J

Fig. 2.2. 1SO 25010

A detailed examination of these parameters together with the application

of the appropriate formulas and metrics of ISO 25010 will provide a

comprehensive picture of the external quality of the software product and allow

an objective assessment of its effectiveness in performing user tasks.

2.2.1. External Quality

Se

External quality is determined by evaluating how users perceive and

interact with the software. Standards such as ISO 25010 (software quality

38

standard) and 1SO 9126 (product quality standard) are used to measure this
aspect.
External Quality parameters:
1. Suitability: Determines how well the application meets the requirements
of the user and the environment of use.
Standard: I1SO 25010

Formula:

Number of correct functions

Suitability =

x100% (1)

Total number of functions

2. Accuracy: Evaluates the degree of compliance of the program's
performance with the expected results.
Standard: ISO 25010

Formula:

Number of tests
Accuracy = !

x100% (2)

Total number of tests

3. Interoperability: Determines the possibility of interaction of the program
with other systems and programs.
Standard: 1SO 25010

Formula:

The number of interacting functions (3)

Interoperablllty - Total number of functions

4. Security: Determines the program's level of protection against unwanted
attacks and data leaks.
Standard: 1SO 25010

Formula:

Security = Number of detected vulnerabilities ()
y Total number of tested vulnerabilities

5. Functionality Compliance: Determines how well the program functions

meet the requirements.

39

Standard: 1SO 25010

Formula:

Number of functions that meet the requirements

Compliance with functionality = Total number of functions

()

2.2.2. Internal Quality

Internal quality is determined by the technical characteristics of the
software and its ability to easily adapt to changes. 1ISO 25010 and ISO 9126
standards are also used to assess internal quality.

Internal Quality parameters:

1. Maturity: Determines how stable the application is and meets user
expectations.
Standard: 1SO 25010

Formula:

Number of justified use cases

Maturity = (6)

Fault Tolerance: Determines the program's fault tolerance and its ability to

Number of justified use cases

recover from failures.
Standard: 1SO 25010

Formula:

- t .l
Tolerance for mistakes = system failure @)

total system operating time

2. Recovery (Recoverability): Determines the speed and efficiency of
program recovery after errors occur.
Standard: 1SO 25010

Formula:

system recovery

Recovery = (8)

total system downtime

40

3. Reliability Compliance: Determines how well the program meets
reliability requirements.
Standard: I1SO 25010

Formula:

T Number of reliable components
Correspondence reliability = ! P (9)
Total number of components

These formulas provide specific numerical scores for each quality parameter
that can be used to objectively evaluate the relevant aspects of the

software.
2.2.3. Calculation of the overall assessment of the quality of the project

Various indicators reflecting various aspects of its functioning are used to
carry out a comprehensive assessment of the quality of the project. One of the
approaches to the aggregation of these indicators is the use of the arithmetic
mean method.

The overall assessment of the quality of the project (Q) is calculated as

the arithmetic mean of individual quality indicators (Indicator 4.):
n
1
Q = Ez Index;
i=1
(10)

where n is the number of quality indicators. Each of these indicators can
determine a separate aspect of the project's functioning, such as suitability,
accuracy, interoperability, security, compliance with functionality, etc.

This approach allows for a numerical assessment of the overall quality of
the project, making it easier to compare different aspects and identify areas for

further improvement.

Practical Example: Assessment of External Quality

41

Let's say we have a software product that has 25 functions, and during
testing it turns out the following:
1. The number of correctly performed functions: 20
2. Total number of tests: 30
3. Number of interacting functions: 18
4. Number of detected vulnerabilities: 2
5. Number of eligible functions: 22
Now let's use the previously described formulas to calculate the
indicators:
1.Suitability (Suitability):

Eligibility =22 x 100% = 80%
2.Accuracy (Accuracy):
Accuracy :g x100% = 83.33%
3.Interoperability (Interoperability):
Interoperability =§ x100% = 72%
4.Security:
Security :é x100% = 40%
5.Functionality Compliance (Functionality Compliance):
Compliance with functionality :% x100% = 88%

Determination of the overall assessment of the quality of the project (Q):

1
Q =2 (80% + 83.33% + 72% + 40% = 88%)

1
Q =: x(36333%)

Q=72.67%

42

This example demonstrates how to apply formulas to specific numerical
values to obtain quality score estimates. This can serve as an illustration of how

you would calculate and interpret the results in the context of real software.

2.3. Product quality assessment algorithms

2.3.1. Overview of the main algorithms for quality assessment

Method of Analogies (Analogy-Based Estimation)

Historical projects "

are searched, | The estimatad sffort valus

and the most | of the new cases rouses

similar are | the affort values of Solution adaptation aftempls
to minimize the ermor of

fetrieved. | the similar cases.
| the reused offort valua.

| Is the output of the soiution
| adepiation process.

ETnﬂuiinm . Estimated
| wffort by using Effart
| e @

Fig. 2.3. Method of analogies
This method uses historical data and analogies to predict project quality.
The idea is to compare the current project with previous similar projects and
take their results into account when forecasting costs and quality.
1. Advantages:
a. High accuracy in the presence of a sufficient number of analogues.
b. Easy interpretation of results.
2. Disadvantages:
a. Requires significant amounts of historical data.
b. Limited in effectiveness in the absence of analogues or a large

difference between projects.
Method of Machine Learning (Machine Learning-Based Estimation)

43

¢ Reduce | Compare
|
|

raining loss

) p—

v
S e
R I = i <2 A E
| LS o Y -
e §EEe i
' - "’g
| -
i
} Learning module
|

Fig. 2.4. Method of Machine Learning
Applying machine learning algorithms to create models that can predict
project quality based on input parameters. Can use different algorithms such as
linear regression, decision trees, neural networks and others.
1. Advantages
a. Adaptability to different types of projects and the ability to take
into account complex relationships between indicators.
b. Ability to take into account heterogeneity and non-linearity of
data.
2. Disadvantages:
a. Requires sufficient training data and processing.
b. The results are not always interpretable, especially for complex

models.

Bayesian Networks

44

P(rls) o< P(r) Y P(s|w) > P(c)P(wlc, r)

Fig. 2.5. Bayesian Networks
The use of probabilistic models and graphic structures to determine the
probabilities of relationships between various project quality parameters. The
model is presented in the form of a graph, where nodes are parameters, and
edges are probabilities.
1. Advantages:
a. Ability to consider uncertainty and relationships.
b. Effective management of model complexity.
2. Disadvantages:
a. High complexity of modeling and requirements for computing
resources.

b. Requires expert knowledge to configure probabilistic parameters.

Data Analysis Using KPI (Key Performance Indicators)

45

specific = g

e

/—\ -
weasuvable S| | K’P‘
velevant
| /.\ ..

attainable Pevr§ormance
indicator

time-bound

Fig. 2.6. Key Performance Indicators
Determination and analysis of key performance indicators of the project
to assess the level of achievement of the set goals and requirements. KPIs can
include performance indicators, tasks, deadlines, and others.
1. Advantages:
a. Ease of implementation and adaptation to various projects.
b. Allows you to focus on specific key aspects.
2. Disadvantages:
a. Dependence on the correct definition of KPIs and their adequacy.

b. Limited in determining relationships between parameters.
The choice of a specific algorithm should be determined by the specifics
of a specific project, the availability of data, and the purpose of quality

assessment. A combination of different methods often allows to achieve better

results.

2.4. Choice of technologies and architecture

46

2.4.1. Programming language

9.

C# (Development of Server Part and API):

Usage: The C# programming language is chosen to develop the backend
of the application and create the API.

Platform: The use of .NET Core guarantees platform independence and
high performance.

TypeScript (Development of the Client Part of the User Interface):
Usage: TypeScript is used to develop the client side of the user interface.
Benefits: Provides strongly typed programming, improves reliability and
development productivity.

CSS (Web Elements Styling and Display):

Usage: The CSS language is used to style and display web elements.
Advantages: Provides a convenient and attractive visual part of the
application.

HTML (Structuring and Display of Web Pages):

10.Usage: The HTML language is used to structure and display web pages.

11.Advantages: Provides logical and hierarchical organization of web

2.4.2.

1.

2.

application content.

Database

sql.js (Representation of Relational Databases in the Browser):

Usage: The sql.js library is used to present relational databases in the
browser.

Advantages: Provides the ability to perform database queries directly in

the browser.

2.4.3. Application driver

Dotnet Core (Blazor) (Server Part of the Application):

47

1. Usage: Dotnet Core using Blazor is used as the backend of the
application.
2. Functionality: Ensures execution of logic on the server and processing of

requests from the client side.

2.4.3. Languages Request and Data Description

FlowerBI.Engine is used for automated generation of SQL queries and
their execution. Provides a flexible and efficient mechanism for obtaining data
from the database on the client side.

This technology allows creating dynamic and high-performance web
applications, ensuring efficient interaction between the client, server and

database.

2.4.4. Technological innovations and their influence

The project relies on a client-server architecture for effective coordination

between critical components.

’ Client [

Fy

Logical laver

Dizplay afweb Weab -URL

Content
Browser

F 3

Web contentresponse Fequest ofweb.page with TEL address

v

i e Eal T Fequest of wab content
~)] Web Server
{ World Wide Web 7 4

- F Eezponze by web sar
— - sponse by web server
[e

—

Feguest for Data Fezponse
(1if meeded) Dat

Database

Server
Data layer

48

Fig. 2.7. Client-server architecture

The main components of this architecture are as follows:

Client Part (UI)

1. Technologies: TypeScript and React.

2. Functions: Display and interaction with the user. Using the chart.js
library for data visualization.

Server Part (Dotnet Core/Blazor)

1. Technologies: .NET Core, Blazor.

2. Functions: Processing of requests from the client side and execution of
application logic.

Database

1. Technologies: sql.js.

2. Functions: Data storage and processing in the form of relational
databases.

FlowerBIl.Engine

1. Technologies: Used for automated generation of SQL queries and their
execution.

2. Features: Flexible and secure data request from the client to the database.

The client side interacts with the Blazor server using FlowerBIl.Engine to

generate and execute SQL queries on sql.js.

Using adaptation techniques to ensure the correctness and compatibility

of SQL queries generated for Microsoft SQL Server with sql.js using its own

syntax. This approach is necessary to ensure the correct execution of requests in

accordance with the requirements set by the platforms used in the project.

This approach allows effective interaction between the client, server and

database, ensuring the compatibility of tools and technologies in the project.

2.5. Automation of the analysis process

49

Automation of the analysis process within the project includes the use of
specialized tools and algorithms for effective collection, processing and
determination of key indicators of project quality. The main aspects of

analyzing automation can be divided into several key components

2.5.1. Data Collection and Processing

Within the project concept, an automated data collection and processing
process is a key component to ensure effective project analysis and
management. The process is carried out with the help of specialized tools and
mechanisms that interact with various sources of information. Let's take a closer
look at this process:

1. Data Collection:

a. Databases: The automated system interacts with various databases
such as SQL Server to obtain up-to-date information. Queries are
generated by FlowerBIl.Engine to retrieve the required data.

b. Log files: Information can also come from log files that record
events and system status.

2. Data processing:

a. Filtering: The received data goes through a filtering process to
select only the necessary information. This may involve selecting
specific columns or rows from large datasets.

b. Aggregation: Some data may be aggregated to create aggregate
statistics that facilitate analysis.

c. Noise removal: To improve the quality of the analysis, noisy
information that may arise from errors or anomalous values is
processed.

3. FlowerBI.Engine integration:

50

a. Generating SQL queries: FlowerBI.Engine is used to automatically
generate SQL queries, which allows you to efficiently retrieve data
from databases according to specified parameters.

b. Execution of SQL queries: Generated SQL queries are executed to
obtain relevant information.

4. Ensuring Data Integrity:

a. Validation and correction: Before processing, data can be validated
to detect possible errors. The system can automatically correct
some small errors or prompt a message about the need for
intervention.

5. Integration with Other Components:

a. Integration with Ul and Other Systems: Processed data is
integrated with other system components, such as the client part
(UI) or monitoring systems.

The automated process of data collection and processing simplifies
interaction with information, providing fast and accurate analysis of large

volumes of data for making effective decisions in real time.

2.5.2. Metrics and Key Indicators

Automated analysis determines a number of key metrics and indicators of
the quality of the project, which allow you to objectively assess its effectiveness
and compliance with the assigned tasks. These metrics include, but are not
limited to:

1. Effectiveness of the Code:

a. Overall productivity: Determined by the speed of execution of
basic operations and tasks in the system.
b. Resource Optimization: Evaluates how efficiently server resources

are used when processing requests.

51

2. Server load:
a. Number of simultaneous requests: Determines how many requests
the server can handle simultaneously without losing performance.
3. Interface Response Time:
a. Average Response Time: Measures the time it takes to process and
display user requests.
b. Page Load Time: Determines how quickly web pages and the user
interface load.
4. Stability and Reliability:
a. Error Rate: Measures the number of errors or exceptions that occur
during system operation.
b. Disaster Recovery: Determines the time and effectiveness of
system recovery after errors or failures occur.
These metrics provide a clear picture of the project in terms of its
performance, stability, and responsiveness to user requests, allowing you to

quickly identify, analyze, and resolve potential issues.

2.5.3. Weighted Approach and Evaluation Algorithms

The automation of determining the overall quality of the project is based
on a weighted approach, which involves the use of evaluation algorithms that
take into account weighting factors for various indicators. Each parameter has
its own weighting factor, which determines its influence on the final evaluation
result.

Assessment algorithms include:
1. Effectiveness of the Code:
a. Weighted Performance Factor: Determines the importance of the
code's performance in the overall score.

2. Server load:

52

a. Concurrent Requests Weighting Factor: Determines the impact of

the number of concurrent requests on the overall score.
3. Interface Response Time:

a. Response Time Weighting Factor: Considers the importance of

user interface response speed.
4. Stability and Reliability:

a. Error Rate Weighting: Determines the importance of system

stability and absence of errors.
5. General Architecture of the Project:

a. Weight Coefficient of the architectural approach: Takes into
account the importance of the selected architectural solution for
the project.

This approach allows you to systematize and take into account various
aspects of the development, providing an opportunity to accurately determine

the quality of the project and identify priority areas for further improvements.

2.5.4. FlowerBl.Engine integration

Analysis automation includes the use of FlowerBl.Engine, which
acts as a key component for generating SQL queries and executing them. This
engine is implemented to ensure flexibility and efficiency of data retrieval from
the database, taking into account various parameters coming from the client part
of the system.

Key aspects:
3. SQL query generation: FlowerBl.Engine automatically generates SQL
queries based on input parameters received from the client side. It allows
you to create dynamic and optimized queries according to specific user

requirements.

53

4. Efficient execution of queries: The engine is optimized for efficient
execution of queries on the database. He takes into account the
peculiarities of the used database and tries to make maximum use of its
capabilities to quickly obtain results.

5. Flexibility in parameter handling: FlowerBIl.Engine can handle a variety
of query parameters such as filters, aggregations, and sorting. This
provides users with the ability to obtain diverse and detailed information
from the database.

6. Compatibility with different data sources: FlowerBIl.Engine can interact
with different data sources, such as SQL Server databases, thanks to its
flexibility and adaptability to different data schemas.

7. Use in the client side: The results obtained from FlowerBIl.Engine can be
easily displayed and used in the client side of the project for further
visualization and analysis.

FlowerBIl.Engine is woven into the architecture of the project, which allows
for automated acquisition and analysis of data using a robust and optimized
approach. This creates a platform for effective analysis and use of key project
quality metrics and indicators.

Visualization and reporting in the project are provided through the use of
the chart.js library, which allows automated creation of visual reports and
graphs for convenient display and analysis of analysis result:

1. chart.js library: The project uses the chart.js library to generate various
types of graphs and charts, such as line charts, pie charts, bar charts, and
others.

2. Automated visualization system: The project's analytical system
automatically generates visual reports based on the received analysis
results. This allows users to quickly and efficiently perceive a large

amount of information by displaying it in a convenient form.

54

3. Various types of graphs: The chart.js library provides the ability to use
various types of graphs depending on the specific needs of the user and
the nature of the data.

4. Interactivity: The graphs created can be interactive, allowing users to get
more details and interact with the data directly on the graphs.

5. User-friendly interface: The automated system provides a user-friendly
interface for interacting with visual reports, making it easier to
understand and interpret results.

Visualization and reporting are integrated into the project architecture,
enabling the automatic generation of high-quality and informative visual reports
to support effective analysis and decision-making.

The automated analysis process includes a monitoring and alerting
system aimed at constant tracking and control of the project status. The main
aspects of this process are defined as follows:

1. Monitoring system:

a. Continuous Monitoring: Provides continuous monitoring of key
parameters and system elements such as server load, database
health, interface response speed and other important metrics.

b. Regular Updates: Provides regular and automatic updates on the
status of the project, allowing you to quickly identify changes and
potential problems.

2. Notification:

a. Critical Anomalies: The system automatically detects critical
anomalies or system malfunctions.

b. Threshold Values: Definition of threshold values for parameters,
when exceeding which alerts are generated.

c. Multiple Channels: Provides the ability to send alerts through
multiple channels such as email, instant messaging, etc.

3. Responding to Anomalies:

55

a. Automatic Response: In some cases, the system can automatically
perform certain actions to correct detected anomalies.
b. Decision Support: Provides a user-friendly interface for analyzing
alerts and making decisions.
The automated system of monitoring and alerts allows for prompt
response to changes and maintaining a high level of project efficiency. This
approach helps avoid potential problems, improves system performance, and

provides real-time reliability.

2.6. Development of an algorithm for calculating project quality

The process of developing algorithms for evaluating the quality of a
project in our application is based on the specific needs and characteristics of
the project. Details of this process are provided below:

1. Functionality:

a. Description: Determined based on project specifications and
functional requirements. This includes key aspects of the
application, such as data processing capabilities, interactivity of
the interface, and the provision of necessary operations.

b. Metrics:

I. Functionality coverage.
Ii. Compliance with specifications.
2. Reliability:

a. Description: The system's resistance to possible errors and its
ability to avoid an emergency stop are evaluated. It is important
that the system correctly responds to errors and ensures continuous
operation.

b. Metrics:

I. Number and severity of detected errors.

56

Ii. Stability of system operation during various loads.
3. Efficiency:

a. Description: Measurement of the speed of operations and resource
loading is carried out for efficient use of the system. Ensuring
optimal performance plays an important role in determining
efficiency.

b. Metrics:

I. Speed of execution of basic operations.
Ii. Resource utilization during large computing tasks.
4. Convenience Use:

a. Description: The intuitiveness of the interface, its
comprehensibility and suitability for a wide range of users are
analyzed. It is important that users learn and use the system easily.

b. Metrics:

I. Training time for new users.
Ii. User satisfaction with the interface.

These criteria determine the main aspects of the quality of the project and
serve as the basis for further quality calculation algorithms, allowing to
objectively determine and improve the operation of the application in the
context of its requirements and use:

1. Functionality:
a. Mathematical Model: F(Q) =);wi*M;, where F (Q) -
functionality, w ; - weighting factor, M ; - metric i.
2. Reliability:
a. Mathematical Model: R(Q) =1 — M, where R (Q) -

Ntotal

reliability, Nerrors - the number of errors, Ntotal - the total number
of operations.

3. Efficiency:

57

a. Mathematical Model: E(Q) = %* N %, where E (Q) -

efficiency, T - execution time, Ri - use of resource i.

4. Convenience Use:

1

a. Mathematical Model: U(Q) = + ——— where U (Q) -

Tiearn Sinterface

ease of use, Tlearn - learning time, Sinterface - user satisfaction
with the interface.

These mathematical models formalize the relationship between quality
criteria and measurable metrics, which allows for numerical evaluation and
comparison of project quality levels based on collected data and observations.

The weighted approach is a strategic method of determining the
importance and influence of various criteria on the overall quality of the project.
This approach is used to objectively determine how each criterion contributes or
can affect the success of the project:

1. Step 1: Definition of Quality Criteria: Each aspect we want to evaluate is
defined as a separate quality criterion. In our case, it is functionality,
reliability, efficiency and ease of use.

2. Step 2: Formalization of Criteria: Each quality criterion is transformed
into a mathematical model with defined metrics and measurement
parameters. For example, functionality can be measured by the number
of implemented functions, and reliability by the number of detected
errors.

3. Step 3: Determination of Weighting Criteria: Each criterion receives its
own weighting factor, which indicates how important it is to the overall
quality of the project. Weighting factors can be determined based on the
priorities and importance of aspects for successful implementation.

4. Step 4: Assign Weights to Criteria: These weights are assigned according
to their impact on the overall quality of the project in the context of our

application.

58

5. Step 5: Calculating Overall Quality: After that, each aspect of quality is
evaluated using appropriate metrics and weighting factors. The overall
quality of the project is calculated as a weighted sum of scores for all
criteria.

Application of the Weighted Approach:

1. Provides objectivity in determining the importance of quality aspects.

2. Allows you to take into account different levels of influence on the
success of the project.

3. Helps to focus efforts on the main aspects that determine quality.

Weighted Approach for the Project:

1. Functionality: Weight Coefficient: we,,,. = 0,4 || 40%

2. Reliability: Weight Coefficient: w,..;; = 0,3 || 30%

3. Efficiency: Weight Coefficient: w.sr = 0,2 || 20%

4. Convenience Use: Weight Coefficient: w,.,, = 0,1 || 10%

These weights are determined based on the priorities and importance of
each criterion for the successful implementation and use of the project. They
reflect the importance of each quality aspect and are taken into account when
calculating the overall quality score.

Complex quality analysis algorithm (AlgorithmQA) is a universal tool
that allows you to systematically and objectively determine the level of quality
of a project, taking into account its various aspects.

Steps of the algorithm:

1. Functionality assessment:

a. Testing coverage metric (TestCoverage): Calculation of the
percentage of code coverage by tests .

b. Test success metric (TestSuccess): Determination of the
percentage of successfully completed tests.

2. Reliability assessment:

59

a. Error count metric (ErrorCount): Counting the number of detected
errors in the system .
b. Stability metric: Analysis of the system's ability to recover from
errors.
3. Evaluation of effectiveness:
a. Performance metrics: Measurement of execution time of key
operations.
b. Metrics in the use of resources (ResourceUsage): Analysis of CPU
and memory usage.
Ease of use rating :
1. User Interface (Ul) Metrics: Evaluation of the ergonomics,
comprehensibility , and usability of the interface.
2. Calculation of total quality (Total Quality) :
a. Use of weighting factors for each quality criterion.
b. Total Quality =

w1 * TestCoverage + w2 * TestSuccess + w3 * ErrorCount + w4 * Stability + w5 * Perforamnce + w6 * ResourseUsage + w7 * u
wl+ w2+ w3+ w4+ w5+ w6+ w7

Each quality criterion is assigned a weighting factor (w), which

determines its impact on the overall quality rating.

Weighting factors are chosen based on the importance of each criterion
for a specific project. Provides an objective assessment of various aspects of
project quality. Considers a variety of criteria covering all key aspects of
development. The weighting factors can be adjusted depending on the
requirements and features of a specific project. Easily add or modify quality
criteria as requirements or development strategy changes.

This algorithm allows you to obtain numerical indicators that summarize
various aspects of project quality, helping the development team and
management to make informed decisions to improve the product.

The developed algorithms are subjected to extensive testing, covering a

variety of usage scenarios, including typical and edge situations.

60

Test scenarios are aimed at compliance of algorithms with defined quality
criteria.

The test results are converted into numerical indicators that reflect the
performance of each algorithm according to defined metrics.

The team analyzes the results, checking the compliance of each algorithm with
the specified criteria. According to the results of testing and analysis, correction
of weighting coefficients is possible to maintain adaptability to specific project
conditions. If necessary, algorithms can be modified or improved to achieve
better compliance with quality criteria.

Validation and evaluation becomes a cyclical process that allows you to
continuously improve algorithms and keep them relevant in a changing
environment.

The algorithm is determined not only by its effectiveness, but also by its
ability to constantly improve and adapt to new requirements and challenges.
Validation and evaluation is an important stage of this process, which ensures
not only compliance with defined standards, but also the highest level of quality
and user satisfaction.

Identification of optimization opportunities — Analysis of test results and
identification of areas where improvements or optimizations are possible is
carried out .

Gathering feedback and suggestions — The team analyzes feedback from
users, internal suggestions and notes from testers for possible changes or
improvements:

1. Prioritization — Each adjustment is evaluated based on its importance and

potential impact on algorithm performance and project quality.

2. Demining — Modifications are made to the software code of the

algorithms to match identified optimization opportunities.

3. Retesting — Updated code is retested to verify performance and

determine whether the goals of the adjustments were met.

61

Implementation from mines — In case of successful completion of testing
and positive results, changes are implemented in the main code of the
algorithms.

Post-Adjustment Monitoring — After changes are implemented |,
monitoring is done to determine the impact of the adjustments on overall quality
and performance.

Mine Documentation — Any changes made are documented to ensure
clarity and ease of understanding of the development of the algorithms and their
history of adjustments.

The possibility of adjustments in the QA algorithm is a necessary
component to ensure the relevance and compliance of the project to changing

conditions and user requirements.

62

Conclusion

The chapter carefully considered and developed the key aspects of a
system aimed at assessing and monitoring project quality. The main conclusions
of this section. The selected technology stack, including TypeScript and React
for the client side, .NET Core/Blazor for the server side, sql.js for the database,
and FlowerBIl.Engine for the automated generation of SQL queries, ensures an
efficient and flexible system architecture.

The application uses a client-server architecture to ensure efficient
Interaction between various components, in particular, client and server parts.
An automated analysis process has been developed and described in detail,
including data collection and processing, definition of metrics and key
indicators, weighting approach and evaluation algorithms. FlowerBl.Engine is
used to automatically generate and execute SQL queries, providing flexible and
efficient data request from the client to the database. Using the chart.js library to
visualize the analysis results in the form of reports and graphs, which makes it
easier for the user to understand the data. The automated analysis process
includes a monitoring system that provides regular updates on project status and
the ability to automatically alert you of critical anomalies or violations.

Algorithms have been developed that take into account various criteria
and metrics for objective assessment of project quality.

All these aspects and components of the system interact to create a tool
that provides a convenient and effective mechanism for evaluating the quality of

projects in real time.

63

SECTION 3. IMPLEMENTATION OF THE APPLICATION

3.1. Introduction

In this section, we will dive deeper into the implementation process of
our analytical application aimed at evaluating the quality of software code. Let's
take a detailed look at the architecture and key components of our application,
including modules for syntax analysis, integration with other tools, and
visualization of results.

In the following presentation, we will focus on the implementation of
algorithms used to evaluate the quality of software code. Let's analyze the code
examples for clarity of these algorithms and study their influence on the
evaluation of code quality.

The main goal of this section is to create an efficient and powerful tool
that will help developers and development teams improve the quality of their

software product and reduce the number of errors

3.2. Implementation of the main functional components

In this subsection, we will consider in detail the implementation of the
main functional components of the system. Before moving on to specific
modules, let's review the general structure of the project.

The structure of the FlowerBI project is as follows:

64

> OPEN EDITORS
~ FLOWERBI
vscode
3 quality-calculator
[client
e node_modules
packages
apply-version.js
build-libs.sh
clean-packages.sh
package.json
publish.sh
& yarn.lock
docs
3 server/dotnet
Vs
Demo
3 FlowerBl.Engine
bin
JsonModels
nupkg
obj
QueryGeneration
Schemas
FlowerBl.Engine.csproj
FlowerBl.Engine.Tests
FlowerBl.Tools
apply-version.js
Directory.Build.props
FlowerBl.sIn
push.sh
logo.png
logo128.png
PowerBl.md
release.sh

1 .nojekyll

Fig. 3.1. File structure of the project

Packages — This folder contains packages used in the client side of the

project. External libraries and tools are organized in this directory.

65

apply-version.js — Script for applying the project version. Used for
automated version control.

build-libs.sh — Script for building libraries. Responsible for assembling
the necessary libraries in the client part.

clean-packages.sh — Script for cleaning packages. Ensures cleanup of
redundant artifacts and unused packages.

package.json — Configuration file for managing packages and setting
dependencies in the client side.

publish.sh — Script for publishing the project. Used to publish the client
side.

yarn.lock — A file that contains information about the versions and
dependencies of the packages used in the project.

Demo — This folder contains the demo files and examples used for the
demonstration .

FlowerBIl.Engine.Tests — Here are the tests for the engine of the FlowerBI
system. Tests help verify engine functionality and prevent errors from occurring.

FlowerBIl.Engine — A module that implements the main functionality and
business logic of the FlowerBI system on the server side.

FlowerBl.Tools — A tools module that contains additional tools for
development, testing and administration.

Directory.Build.props — A project configuration file that contains build
and dependency settings for all projects in the solution.

FlowerBl.sIn — A solution file that combines all projects into a single
project for easy management and development.

apply-version.js — Script for applying the version of the project on the

Server.

3.2.1 The main modules of the project

App.tsx

66

App.tsx X

quality- ator > client > packages > d src App.tsx > (@] reports
t React, { useState } f

./App.css";
t { BugReporting } f
{ VisualProps } fri
usePageFilters }
useFilterPane, FilterPan ne";
Chart, ArcElement, CategoryScale, LinearScale, BarElement, PointElement, LineElement, Legend, LineController} from "c
t { localFetch } frc
ort { BugsGrid } from

= usePageFilters
eFilterPane(pal

report = reports [reportName

className="r
v classNam

re s.map(n
v key={n
className={"item ${n =
onClick={() setRepo

Fig. 3.2. Code from the App file.tsx
The App.tsx report file is the main component of the FlowerBl
application that implements the main user interface. Let's take a look at the main
parts of this component:
, { useState }

{ , g,

{ }

{ usePageFilters }

{ useFilterPane,
{

{ localFetch }

{ }

Fig. 3.3. Main imports
This code snippet imports the necessary dependencies and components,

such as the Chart.js library, report components, filters, and more.

67

.Tegistry. (

.defaults.font.family = H

.defaults.plugins.legend && .defaults.plugins.legend.labels)

.defaults.plugins.legend.labels.usePointStyle = ;

.defaults.maintainAspectRatio =

Fig. 3.4. Registration of Chart elements . js

This block of code registers various Chart.js elements, configures the font
and some styles for plotting the graphs.

App component is a functional component that uses the useState hook to
manage the currently selected report. The component renders a list of reports,
the main content with the selected report and filters.

The entire component is wrapped in a div with the "reports-site” class,
which sets general styles for the application.

Program.cs

19(] args
eateDefault(args);

builder.RootComponen ! ;

builder.RootComponen <! L H

builder.Services.AddTransient(sp => new | pClient BaseAddress = new Uri(builder.HostEnvironment.BaseAddress i

v app = builder.Build();

JsRuntime = app.Services.GetRequiredSer:

JsRuntime.InvokeAsync<str >("no

app.RunAsync();

IJSRuntime JsRuntime;

: dateTime.ToUniversalTime

e.Id.SetConverter(AsUtc);
rstDayOfMonth.SetConverter(AsUtc);
rstDayOfQuarter.SetConverter(AsUtc);
ignedDate.SetConverter(AsUtc);

Fig. 3.5. Program . cs

68

The Program.cs file is located in the server folder and is the entry point
for starting the server part of the WebAssembly application. Let's review the

main elements of this file:

FlowerBI.Engine.JsonModels;

Microsoft.AspNetCore.Components.Web;

Microsoft.AspNetCore.Components.WebAssembly.Hosting;
Microsoft.Extensions.DependencyInjection;
Microsoft.JSInterop;

System;

System.Net.Http;

System.Text.Json;

System.Text.Json.Serialization;
System.Threading.Tasks;

Fig. 3.6. Basic imports for a file
This section lists the required namespaces and imported classes for
working with .NET and ASP.NET Core.

Task (string[] args)
builder = WebAssemblyHostBuilder.CreateDefault(args);
builder.RootComponents.Add<App>();
builder.RootComponents.Add<HeadOutlet>();

builder.Services.AddTransient(sp => HttpClient { BaseAddress =

app = builder.Build();

JsRuntime = app.Services.GetRequiredService<IJSRuntime>();

JsRuntime.InvokeAsync<string>();

app.RunAsync();

Fig. 3.7. Program class
This Main method is the entry point for executing the application. Some
key stages are:
1. Defined by WebAssemblyHostBuilder .

2. Added root components to be displayed in index.html .
69

3. Configurable HttpClient .
4. The application starts.

IJSRuntime JsRuntime;
Schema Demo = Schema(:0f (DemoSchema.BugSch
DateTime (DateTime dateTime)
=> dateTime.Kind == DateTimeKind.Unspecified
? DateTime.SpecifyKind(dateTime, DateTimeKind.Utc)

: dateTime.ToUniversalTime();

0

ISglFormatter Formatter = new SglLiteFormatter();

[JSInvokable]

Task<string> (string queryJson)

Fig. 3.8. Fields and class methods
5. This code snippet defines various fields and methods:
6. JsRuntime : Static field to access IJSRuntime through all static methods.
7. Demo : A schema used for data parsing.
8. AsUtc : method to convert dates to UTC format.
9. Formatter : an object for formatting SQL queries.
10.Query : A method that is called from JavaScript and executes an SQL
guery on the server.

70

Database.ts

m = Math.floor(d.getMonth() / 3) * 3;
turn formatDate(new Date(d.getFullYear(), m, 1));

start0fMonth(d: Date) {

Fig. 3.9. Database
file is responsible for initializing and configuring the database for the

client side of the application. Let's look at the main elements of this file:

Fig. 3.10. allocDb function

An asynchronous function that initializes the database and calls setupDb to set

up the underlying data.

71

allocDb> |

(!'db) {
db =

db;

Fig. 3.11. Field and function for accessing the database
A variable that represents the database. The lookup database type is
defined using ReturnType. An asynchronous function to get a database that is

initialized if it has not yet been created.

3.2.2 Implementation of the project quality calculation algorithm

sle CalculateFunctionalityMetric()

ble functionalityScore = (dc elprojectData.SuccessfullyImplementedFeatures / projectData.TotalFeatures;

ctionalityScore;

ouble CalculateReliabilityMetric()

ble reliabilityScore = 1 - ((double)projectData.CriticalBugs / projectData.TotalTests);

return reliabilityScore;

ouble CalculateEfficiencyMetric

nseTime / projectData.MaxResponseTime) ;

return efficiencyScore;

ble CalculateUsabilityMetric()

ble usabilityScore = (double)projectData.UsersWithoutAssistance / projectData.TotalUsers;

return usabilityScore;

Fig. 3.12. Implementation of the algorithm
The constructor accepts an object of the ProjectData class , which

represents project data.

72

public (ProjectData data)

{
projectData = data;

Fig. 3.13. QualityCalculator constructor
The CalculateFunctionalityMetric , CalculateReliabilityMetric
CalculateEfficiencyMetric , CalculateUsabilityMetric methods define metrics

for functionality, reliability, efficiency, and usability, respectively.

private double ()

{
double functionalityScore = (double)projectData.SuccessfullyImplemen

return functionalityScore;

Fig. 3.14. Example of method implementation
The CalculateOverallQuality method uses metrics and their weights to

calculate the overall quality of a project.
c double
double functionalityWeight =
double reliabilityWeight =
double efficiencyWeight =

double usabilityWeight =

double overallQuality =

functionalityWeight * CalculateFunctionalityMetric() +
reliabilityWeight * CalculateReliabilityMetric() +
efficiencyWeight * CalculateEfficiencyMetric() +
usabilityWeight * CalculateUsabilityMetric();

overallQuality;

Fig. 3.15. Calculation of the total quality

The class contains properties that represent project data, such as the

number of features, successfully implemented features, number of tests, number

73

of critical errors, and others. A constructor sets the values of class properties

using parameters.

3.3 Implementation of the architecture

1. Client part (client):
a. Project structure:
2. SrIc:
a. Reports: Contains components responsible for displaying analysis
results.
b. App.css : Styles for the main component.

I. App.tsx : The main component of the application, in which
interaction with the user and display of analysis results takes
place.

Ii. FilterPane.tsx : A component for displaying and managing
filters.

Ii. BugsGrid.tsx : A component for displaying a bug grid.
c. flowerbi:
I. flowerbi-syntax-analysis.ts : Code syntax analysis module .

3. public:

a. index.html : The main HTML file that includes the React root

component (#root or other defined value).

b. Interaction:
4. The client part interacts with the user through the App.tsx component .
5. Analysis results are displayed using components in the Reports folder .
6. Interaction with the server occurs through HTTP requests to obtain data

for analysis.
a. Server part (server):

b. Project structure:

74

7. server:

a. Demo: Contains files related to the demo part of the server.

b. FlowerBIl.Engine:

I. Includes classes and functions used to calculate project
quality metrics.

c. FlowerBl.Tools:

I. May contain additional data processing tools.
8. server.ts:

a. The main file of the server part, where server configuration,
processing of HTTP requests and interaction with the client takes
place.

Interaction:
1. The server part processes HTTP requests from the client and interacts
with the database and other tools to calculate project quality metrics.
2. Data received from the server is transmitted to the client for display via
HTTP requests and interaction mechanisms.
This project structure facilitates ease of extension, testing, and code base
management. Each module is responsible for its own part of the functionality,

which simplifies system maintenance and development.

75

3.4 User Interface

Main Page (App.tsx)

Sroject Quality Calculation x 4+ ~
c localhost C &m0 v %O A
Project Dashboard Entered date from 2022-11-12 to 2023-11-12 Eilters
ity Assessmel N . N
(sl AR Included Projects Test Quality Metrics Project Quality Metrics
@ Froject 3 @ Project_ 6 @ Project 5 @ Test Success @ Test Coverage @ usability @ Stabilty @ Functionaiity @@ Efficiency @ Reliability
@ Project 1LLC @ Project 2, Inc. @ Errors Tracker "
Project_4 14
.
12
m I
8 I I
6
) I
0
Brand Alignment Consistency ~ Performance Accessibilly Adaptability Design
Calculation Quality History Project Quality Calculations
jalityMetrics Count % of Count
(O custom @ Al projects u
14 Functionality & 0%

Usability 7 o%
, Stability 3 0%
12 Efficiency 1 0%
Reliability 1 0%
10 Total 20,12 84%
8
6 :
Fixed Quality Metrics
4
QualityMetrics Count % of Count
2 Stability & 0%
Efficiency a4 0%
o | L Functionality 4 o%
Reliability 1 0%
5 5) 5 5) 5 5 w 5) 5
0% o7 o o o7 S o o7 S o o7 o Usability 1 0%
WP ™ T T gatT e W e g 0B i ges? -
Total 16,10 100%

Fig. 3.16. Main user interface
The user can choose from various reports presented on the main page
(Project Dashboard, Quality Assessment, etc.).

Project Quality Metrics

(X o @ sy @ stavny @ @ Eticionsy @ Rosabily
'
Brand Algnmont Consisioncy Perormance Actessbty Adaptabilty Design
jon Quality History Project Quality Caleulations
QualityMetrics Count % of Count
G (A8 profects i

Fig. 3.17. Overview of statistics for the first project with the use of filters

76

Buttons or other elements can be used to switch between different reports.

An expandable and collapsible filter panel is displayed.

3 Project Quality Calculation x +
c localhost: B b o & O W

Entered date from 2023-08-17 to 2023-11-13

Project Dashboard

Quality Assessment Included Projects

.%.-WH

o
13.11.2023 =]

o
‘est Quality Metric ty Metric:
@ Test su nctionalty @) Reliabilty @) Efciency
November 2023
M T W T F s §
& 7 &8 9 10 1 12
. 20 21 2 23 24 25 26
7 om0 1 2
Clear oday

ity Calculations

Count % of Count

Fig. 3.18. Use of date filters

The user can select and configure various filters for data analysis. An area
where analysis results are displayed as graphs, charts, or other visual elements.
User can choose filters from different categories like date, status, type etc. After
selecting the filters, the user clicks the "Apply" button to apply them to the

analysis. Button to reset all selected filters and return to the initial state.

77

& Project Quality Calculation X + o
C @ localhost C®hd o *0OR :

Project Dashboard Entered date from 2023-08-17 to 2023-11-13 Filters

Quality Assessment

5
3

5
3

o

Reliability

41 Stability
Efficiency

5
3

47 Stability
Efficiency

8383823383838 238388 238383
ettt sttt st Al A A AU AU At At AL SO At s AL A MU AU AU AU AL At At AL St A A AL A st A st o
s agatataiataleiagaiat g alagad st atagadatagadat asf st el g af el agaq g ag adad od st ag n e ad AL 0 A0 08

. >

Inc.

Fig. 3.19. Table with metrics management for project evaluation

The type of quality metric that this assessment evaluates (Stability, Reliability,
Efficiency, Functionality, Usability). The name of the project for which the
quality assessment is being performed. Additional information or
recommendations related to quality assessment. Evaluation of project stability,
accompanied by recommendations. Evaluation of project reliability,
accompanied by recommendations. Evaluation of project efficiency,
accompanied by recommendations and guidance on trends and patterns.
Evaluation of project functionality, accompanied by key findings and
recommendations. Evaluation of the usability of the project, accompanied by
opportunities and recommendations.

Based on various quality metrics, each project is evaluated, where specific
aspects for improvement are indicated. Additional guidance and improvement
opportunities for each project arising from its quality analysis. General
recommendations that can emerge from the analysis of several projects and

quality metrics.

78

The user can select a specific metric (eg stability, reliability, efficiency,
functionality, usability) to be evaluated. In the interface, the user can turn
various metrics on and off according to his needs and evaluation goals. If
necessary, it is possible to set the weight of each individual metric to take into
account their impact on the overall score. The user can choose a specific project
for which the evaluation will be carried out according to the chosen metric. The
system uses the data on the selected metric to perform an analysis of a specific
project, taking into account the set weights and parameters of the metric. The
evaluation results are displayed on the user interface for viewing. Detailed
information on each metric and overall score is available for detailed review.
The user can change the evaluation parameters, including the metric
weights, and restart the evaluation based on the chosen metric. The system can
store evaluation results and provide reports for further analysis. Providing the
ability to review the history of evaluations and parameter changes for each
project. The system is designed with flexibility in mind so that the user can
easily select, adapt and switch between different metrics. This approach allows
users to simplify the evaluation of projects according to specific criteria, setting
the appropriate parameters to obtain objective and useful information about the

quality of the project.

79

Project Quality Metrics
. e e Functionality . [e aa
4.0
3.0
25
2.0
15
1.0
0.5
0
P?(io(“\a(\ﬁe COnS‘S\g:\C\' N - N\gnm(:r“ Desia" N:Cesﬁ\m\\w ,m\oa(\\ah“\\\"
g (0
oje sality Calculations
Project Quality Calculatior

QualityMetrics Count % of Count

Functionality 6 0%
Usability 5 0%
Stability 3 0%
Efficiency 1 0%
Reliability 1 0%
Total 16,10 100%
Fixed Quality Metrics
QualityMetrics Count % of Count
Stability 4 0%
Efficiency 2 0%
Functionality 1 0%
Total 7,6 100%

Fig. 3.20. Evaluation by the selected metric

3.5 Testing

Testing is the process of verifying a software product in order to identify
errors, analyze its compliance with requirements, and ensure its quality. Testing
involves running a program or system to identify potential problems and
confirm that it is working correctly.

Purpose of testing:

1. Error Detection: Identifying and correcting errors in program code and
logic.

2. Confirmation of Fidelity: Confirmation that the program or system is
working correctly and meets the requirements.

3. Quality Assurance: Ensuring the high quality of the product before its

release.
80

Gesture testing is a testing method that uses real data and database

operations to verify the correctness of the system as a whole. In this project, a

library for gesture testing of databases is used, which allows you to check the

correctness of the interaction with the database and the compliance of the logic

of business processes. Adds data to all database tables and checks the

correctness of receiving this data. Changes existing data in all tables and checks

the correctness of the update. Deletes data from all tables and checks the

correctness of the deletion. Checks the correct operation of foreign keys and

ensures the correct connection between tables.

Checks the functionality of associative tables and their correct interaction.

Measures the execution time of basic operations to evaluate system

performance. It is used to confirm the compliance of the database scheme with

the requirements and the correctness of the interaction.

These tests allow you to guarantee the correctness and stability of the

database during the development process and after the release of the product.

TESTING

TEST EXPLORER

93/94

FlowerBl.Engine.Tests
FlowerBI.Eng

FlowerBl.Engine Tests.ConversionT eratesYamiFromRefl
FlowerBl.Engine Tests.ConversionTests GeneratesYamlFromReflection
FlowerBl.Engine Tests ConversionTests.GeneratesTypeScriptFromYaml
FlowerBl.Engine Tests.ConversionTests GeneratesTypeScriptFromYaml
FlowerBl.Engine Tests ConversionTests.GeneratesCSharpFromYami 1€
lowerBI.Engine.Tests.ConversionTests.GeneratesCSharpFromyYami
IntegrationTests
FlowerBJ.Engine Tests.IntegrationTests.SqlAndDapperWithL istFilter

FlowerBl.Engine Tests.IntegrationTe ndDapperWithListFilter
FlowerBl.Engine Tests.IntegrationTests.SqlServerCalculations 1.0m:
FlowerBl.Engine Tests.IntegrationTests.SqlServerCalculations

JsonTests
FlowerBl.Engine Tests.JsonTests.BooleanFilterCore
FlowerBI.Engine Tests.JsonTests.BooleanFilterCore

rBI.Engine Tests.JsonTests.BooleanFilterNewtonsoft

rBI.Engine Tests.JsonTests. BooleanFilterNewtonsoft
FlowerBl.Engine Tests.JsonTests.NumberFilterCore 1
FlowerBl.Engine Te: NumberFilterCore

rBl.Engine Tests.JsonTests. NumberFilterNewtonsoft
FlowerBl.Engine Tests.JsonTests.NumberFilterNewtonsoft

FlowerBl.Engine Tests. JsonTests.StringFilterCore

FlowerBl.Engine Tests.JsonTests. StringFilterN
rBI.Engine Tests.JsonTests. DateFilterCor
rBl.Engine.Tests.JsonTests.DateFilterN
rBl.Engine Tests.JsonTests. DateFilterNewtonsoft
FlowerBl.Engine Tests.JsonTests.InFilterCore
FlowerBI.Engine Tests.JsonTests.InFilterCore
QueryGenerationTests 2
FlowerBl.Engine Tests QueryGenerationTests. AggregationCountDistinct
FlowerBl.Engine Tests QueryGene regationFunctions
FlowerBl.Engine Tests QueryGenerationTests. AggregationFunctions
rBl.Engine Tests.QueryG iculationsAndindexedOrderBy
rBl.Engine Tests.QueryGenerationTests CalculationsAndindexedOrderByFullJoins
s QueryGenerationTests. DoubleAggregation
FlowerBI.Engine Tests. QueryGenerationTests.RejectsBadColumnName
NET TEST EXPLORER

ST RESULTS

Test run at 11/13/2023, 1:05:07 AM
FlowerBl.Engine Tests.JsonTests. DateFilt
s.Conv CSharpFromYaml
ypeScriptFromYaml
YamiFromReflection
FlowerBI Engine Tests IntegrationTests.SqlAndDapperWithListFilter
Flower8I.Engi culations
FlowerBL.Engi
FlowerBl.Engine.Tests.
FlowerBl.Engine
FlowerBl.Engine.Te
FlowerBl.Engine.Tests.
FlowerBI.Engine Tests.
FlowerBI.Engine Tests.JsonTests.StringFilterCore
owerBl.Engine Tests.JsonTests. StringFilterNewtonsoft
sts.AggregationCountDistinct

ine.Tests.QueryGenerationTests.BitFilters

jerBl.Engine.Tests. QueryGenerationTests.CalculationsFullJoinsAndMultiSelect

FlowerBl.Engi ts.QueryGenerationTests.DoubleAggregationDifferentFilters
FlowerBI.Engine.Tests.QueryGenerationTests.DoubleAggregationFullJoin

werBI.Engine Tests QueryGenerationTests.DoubleAggregationMultipleSelects

rerBl.Engine Tests.QueryGenerationTests.DoubleAggregationOrderBy
FlowerBI.Engine.Tests.QueryGenerationTests. DoubleAggregationTotal:
FlowerBI.Engine Tests.QueryGenerationTests.ExtraFilters
FlowerBl.Engine Tests.QueryGenerationTests. FilterByPrimaryKeyOfOtherTable
FlowerBI.Engine Tests.QueryGenerationTests.ManyToMany
FlowerBL.Eng} ts.QueryGenerationTests. ManyToManyConjointWithComplicatedSchema
FlowerBI.Engine. QueryGenerationTests.ManyToManyWithComplicatedSchema

werBl.Engine.Tests.QueryGenerationTests.MoreThanOneJoinDependency
FlowerBI.Engine.Tests.QueryGenerationTests. MultipleManyToMany

werBl.Engine Tests QueryGenerationTests. MultipleManyToManyWithSpecifiedJoins
FlowerBI.Engine Tests.QueryGenerationTests.MultipleManyToManyWithSpecified JoinsAndMultiple JoinDependencies
FlowerBI.Engine.Tests.QueryGenerationTests.NoAggregation
FlowerBl.Engine Tests.QueryGenerationTests.NoAggregationAllowingDuplicates
FlowerBJ.Engine Tests.QueryGenerationTests. RejectsBadColumnName
Flower8).Engi s QueryGenerationTests. RejectsMalformedColumnName
Flower8l.Engine.Tests.QueryGenerationTests.SingleAggregationFull Join

werBl.Engine Tests.YamiSchemaTests.ColumnTypeCanBeNullable
FlowerBI.Engine Tests.YamiSchemaTests.ColumnTypeMustNotBeEmpty
FlowerBl.Engine.Tests.Y: maTests.ColumnTypeMustNotHaveMoreThanTwoElements
Flower8!.Eng YamiSchemaTests.DbNamesCanBeOverridden

s YamiSch

FlowerBI.Engine.T naTests.ldisOptional

lowerBI.Engine.Tes MinimalSchemaPasst

Fig. 3.21. Project testing

81

In the process of testing the project, 93 out of 94 tests were successfully
passed. This indicates a high degree of reliability and correctness of the
functional implementation. These results ensure that the project's database and
business logic work correctly and efficiently.

One of the tests (No. 42) failed. The reason may be related to incorrectly
set data when experimenting with dates . Additional analysis and debugging will
be conducted to correct the situation and improve the test implementation.

The overall test result is positive, and the vast majority of tests were
successful. This indicates the high quality and readiness of the project for use in

real conditions.

82

Conclusion

In the "Application Implementation” section, the project was carefully
considered , including the architecture, the calculation of the quality of the
project, the user interface, and testing.

The project is distinguished by a clear organization of the code into client
and server parts, as well as other modules. The project quality calculation
algorithm is implemented using metrics such as functionality, reliability,
efficiency, and usability, integrating them into an overall quality indicator.

The structure and components of the user interface interact with the
backend, displaying the results of the analysis and quality metrics of the project.
Chart.js library is used for data visualization.

To ensure stability and quality, the application was tested using gesture
tests. Most of the tests were successful, confirming the reliability of the system.
Recommendations for further improvement can improve the overall quality and

competitiveness of the project.

83

CHAPTER 4. ANALYSIS OF PROJECT QUALITY AND FUTURE
TRENDS

4.1 Classification of software design decisions (SDP) and their compliance

with project goals

The project uses a variety of software design solutions (PSDs), each of
which has its own unique features and purposes. For the convenience of their
classification and determination of compliance with the goals of the project, we
will consider the main software design solutions and their characteristics.

Responsible for code syntax analysis in JavaScript and TypeScript

programming languages.

Source
Program Parse tree
—— —
get next token
© gurugd.com

Symbol Table

Intermediate
Representation

Fig. 4.1. Analyzer logic
Project goals:
1. Improving the quality of source code analysis.
2. Ensuring the accuracy and speed of detection of syntax errors.
Analyzer logic contains an integration module used for code validation
with ESLint and code formatting with Prettier.

84

git Q

[—) Push i
Code = [z
— Developer
Source type: Git Source type: Binary
v
Registry
Source @_ﬁ_ o [omie] <—
Build =]

|ma e Bunder
q O Image

New FIS image

Deploy

Fig. 4.2. Integration of tools

The document outlines components within a project. FlowerBIl.Engine
involves calculating project metrics. FlowerBl.Tools offers supplementary data
processing tools. Chart.js creates interactive charts. Sgl.js executes SQL queries
in the browser. Blazor aids in building web apps using C#/.NET.

Each of the software design solutions performs specific functions and is
aimed at achieving certain project goals. A review of implemented RCPs allows
you to determine their compliance with the tasks and helps to ensure effective

use within the project.

4.1.1 Determination of project goals and their compliance with the

implemented RCP

One of the key goals of this project is to provide effective analysis and
visualization of statistical data that are in the SQL Server database. The project
is being developed for users who work with various aspects of this data and
need a quick and convenient tool for obtaining insights. The main goals of the

project and their compliance with the implemented software design solutions

85

(PSD) are described below. The document discusses specific project goals and
their corresponding solutions. For visualizing statistical data, Chart.js offers a
solution by making graph and chart creation accessible.

To execute SQL queries in the browser, Sqgl.js simplifies database
interaction by enabling direct query execution.

Efficient server-side development and interaction are achieved through
Blazor, utilizing C# and .NET.

Flexibility and speed in development are achieved by combining Chart.js,
Sql.js, and Blazor into a cohesive tool stack.

Blazor also enables swift adjustments and improvements based on user
feedback, supporting rapid enhancement processes.

Overall, the project aims to effectively analyze and visualize statistical
data. Chart.js, Sql.js, and Blazor play crucial roles in achieving these
objectives.Each component corresponds to a specific purpose of the project,
allowing to achieve the overall goal of creating an effective and convenient tool

for users.

4.2 Interaction between the client and the server

HTTP (Hypertext Transfer Protocol) and its secure variant, HTTPS, serve
as the primary communication protocols between the client and the server. They
facilitate the transfer of hypertext documents over the Internet, crucially utilized
for API calls and data transmission between client and server.

JSON (JavaScript Object Notation) acts as the format for data exchange
between the client and the server. It presents data in a readable format for both
humans and computers, enabling structured data transfer through objects,
arrays, strings, numbers, and logical type values. JSON formatting simplifies

data processing and parsing during transmission between client and server.

86

REST (Representational State Transfer) stands as an architectural style
for constructing web services, focusing on effectiveness and scalability. Its
principles involve unified resource handling through URLs and interaction
using standard HTTP methods (GET, POST, PUT, DELETE) alongside non-
standard methods, allowing client state storage on the client side. REST is
employed to create an API that facilitates client-server interaction via standard
HTTP requests and responses.

These protocols and formats collectively establish standardized and
efficient interactions among the project's components. They streamline data
processing and exchange between different elements of the project, ensuring
standardized communication and enhancing overall efficiency.

In the project, interaction between the client and the server is carried out
using HTTP requests, which are transmitted via the HTTP or HTTPS protocols.
Below are details on how these queries are used in the system:

1. GET requests:
a. Used to receive data from the server.
b. Often used for reading data and selectively obtaining resources.
2. POST requests:
a. Used to send data to a server for processing or storage.
b. Used to create new resources.
3. PUT requests:
a. Used to update existing resources on the server.
b. All resource data must be included in the request body.
4. DELETE requests:
a. Used to delete resources on the server.
b. Designed to delete a specific resource by its identifier.
5. Data formats:
a. The data passed in the request or response body is usually
presented in JSON format for ease of reading and processing.

87

1. Protocols and formats:

The project's interaction relies on the utilization of HTTP/HTTPS
protocols and JSON data exchange formats. HTTP/HTTPS serve as the
principal protocols governing the communication between the client and server
within this project.

The general interaction between the client and the server is carried out
using these HTTP requests, which allows for efficient exchange of data and
interaction with different parts of the system.

The project's server-side operations rely on dotnet core and C#
technologies. This involves server logic implemented in C# using dotnet core
for handling HTTP requests, interacting with the database, and computing
project quality metrics. Additionally, dotnet core serves as the foundation for
server functionalities, while C# is utilized for logic implementation. The project
manages data storage and retrieval for calculations and quality metrics,
computes quality metrics based on incoming data, provides server responses in
JSON format for simplified client-side processing, features a client interface
developed with TypeScript/React for displaying server responses, and employs
Chart.js for effective data visualization.

The general interaction between the client and the server is implemented
in accordance with modern standards, which ensures efficient data exchange

between various components of the project.

4.3 Scalability and Performance Assurance

The developed project uses various scaling strategies to ensure an
effective response of the system to the growth of data volume and user traffic.
This includes horizontal and vertical scaling, separation of tasks, use of
application layers, and other aspects.

1. Horizontal Zoom:

88

a. The system is built taking into account the possibility of horizontal
scaling, which allows you to expand computing and storage
resources by adding new servers to the pool.

b. Using load balancers to distribute traffic between servers and
maintain system stability when the number of simultaneous
requests increases.

2. Vertical Zoom:

a. Using powerful servers and their expansion capabilities to optimize
performance within a single physical server.

b. The ability of the system to adapt to an increase in the amount of
resources on one server by optimizing its configuration.

3. Division of Tasks:

a. Clear definition of functional areas and division of tasks between
different components of the application.

b. Using a microservices architecture to separate functions into
independent services, which simplifies development and scaling.

4. Add-on Layers:

a. Using a layered architecture to highlight functional blocks and
divide them into different levels.

b. Layers such as user interface, business logic, and data access can
scale independently, making development and optimization easier.

5. Auto Scaling:

a. Using tools and services that allow you to automatically scale
resources according to system needs.

b. Setting up automatic scripts to respond to changes in the volume of
processed traffic.

These strategies interact to create a flexible and efficiently scalable

system that can meet user needs and evolve as the project grows.

89

Together, these strategies are aimed at ensuring optimal performance of
data processing and improving the speed of interaction between the system and
users.

Application of caching to reduce server load on repeated requests. Using
local caching capabilities on the client side to save data and optimize the
interface. Dynamic adaptation of caching strategies depending on the
characteristics of specific tasks and operations.

The implementation of caching and preloading in the developed project
allows to significantly improve the efficiency and response of the system to
increased load, providing the end user with fast and uninterrupted access to the
necessary resources.

In the developed project, significant attention is paid to performance
monitoring and optimization to ensure stable and efficient operation of the
system in real time. The main aspects of this point are presented below.

Logging of events to identify problems and analyze user actions. Using
special metrics to evaluate the performance of the server, database, and other
system components. Monitoring the actual use of the application by users to
collect performance data.

Systematic analysis of server and database load to detect periods of
increased load. Analysis and optimization of complex or resource-intensive
queries to the database.

Periodic analysis of caching efficiency and correction of strategies
depending on changes in the system.

Measurement and analysis of system response time to user requests.
System monitoring to detect and analyze errors that may affect performance.
Setting up a notification system for quick response to anomalies and load.
Regular introduction of updates to optimize the interface and functionality.

Definition of a notification system for prompt response to increased load or

90

failure. Using automated scaling tools to adapt the system to increasing data and
user traffic.

Performance monitoring and optimization are implemented in the
developed project in order to ensure stable and productive operation of the

system in conditions of growing data volumes and user traffic.

4.4 Recommendations for Future Development

This section provides key recommendations for the further development
of the project, aimed at increasing efficiency, expanding opportunities and
ensuring sustainable growth:

Implementation of fully automated testing to ensure high code quality and
effective error detection during development.

Further development of the functionality of the project taking into
account the needs of users and the introduction of new features that make the
product more competitive.

Strengthening measures to ensure the security and privacy of user data,
taking into account modern standards and regulations. Prepare for increased
data and user traffic by developing a scaling strategy and implementing
technologies that allow for efficient system scaling.

Analyzing the use of the user interface to optimize it, improve interaction and
ensure a pleasant user experience.

Experiments with new technologies and libraries to further expand the
technology stack and ensure high performance. Maintaining active
communication with users to identify their needs and suggestions for further
product improvement. Providing opportunities for training and development of
the development team, implementation of modern development methodologies
and best practices. Systematic project documentation and knowledge sharing

across the team to improve understanding of code and workflows.

91

These recommendations are aimed at ensuring the sustainable

development and successful operation of the project in the future.

92

Conclusion

Chapter 4 of the project is devoted to a thorough analysis of quality and
aspects of future development. Below are the key takeaways from each
subsection:

In section 4.1. various software design solutions (PSDs) used in the
project are defined. An overview of their compliance with the defined goals of
the project was carried out, their functionality and impact on the achievement of
general goals were compared.

Also, in section 4.2 p, a detailed analysis of the defined goals of the
project was carried out and the extent to which the implemented software design
solutions corresponded to these goals was assessed. It is determined what tasks
each solution solves and how they contribute to the achievement of the set tasks.

The interaction between the client and the server is discussed in detail in
section 4.3 . Data exchange protocols and formats are described, HTTP requests
are used for effective interaction. Analyzed processing requests and sending
responses, focusing on server-side logic using dotnet core/C# technologies.

In general, the analysis of the quality of the project indicates its
sustainability, high efficiency and readiness for future challenges. The
considered aspects provide a basis for further improvement and development of

the system.

93

CONCLUSION

In this thesis, significant results were achieved, aimed at creating an
innovative tool for calculating and improving the quality of software projects.
The work began with an in-depth analysis of literary sources and an in-depth
study of existing analogues, which made it possible to determine key aspects
and requirements for the developed tool.

The design and implementation of the application are made taking into
account modern architectural solutions and technologies, which ensures its
efficient and stable operation. Algorithms for evaluating the quality of software
projects include various aspects, from ensuring security to performance, which
allows for the detection and elimination of defects in the early stages of
development.

Special attention was paid to integration with other project management
tools, which increases its versatility and applicability in various team structures.
The automated process of quality analysis has become a key feature of the
application, simplifying the work of users and ensuring high productivity.

Testing and validation of the developed tool confirmed its effectiveness
and reliability. The results of the tests showed that the application is an excellent
tool for working with real projects, allowing to increase the quality of the
software and speed up the development process.

The final stage of work determines the prospects for the development of
the application, in particular, the expansion of functionality and optimization of
the interface. The developed tool meets its goals and objectives, and its
implementation in practice can significantly improve the management and

quality of software projects.

94

REFERENCES

. McConnell, Steve. "Code Complete: A Practical Handbook of Software
Construction." Microsoft Press, 2004.

. S. Sommerville, "Software Engineering," Addison-Wesley, 2016.

. Pressman, Roger S. "Software Engineering: A Practitioner's Approach.”
McGraw-Hill Education, 2014.

. Bass, Len, Paul Clements, and Rick Kazman. "Software Architecture in
Practice." Addison-Wesley, 2012.

. Fowler, Martin. "Refactoring: Improving the Design of Existing Code."
Addison-Wesley, 2018.

. Ambler, Scott W. "Agile Modeling: Effective Practices for eXtreme
Programming and the Unified Process." John Wiley & Sons, 2002.

. Cohn, Mike. "User Stories Applied: For Agile Software Development.”
Addison-Wesley, 2004.

. Martin, Robert C. "Clean Code: A Handbook of Agile Software
Craftsmanship." Prentice Hall, 2008.

. Hunt, Andrew, and David Thomas. "The Pragmatic Programmer: Your

Journey to Mastery." Addison-Wesley, 2019.

10.McConnell, Steve. "Rapid Development: Taming Wild Software

Schedules." Microsoft Press, 1996.

11.Brooks, Frederick P. "The Mythical Man-Month: Essays on Software

Engineering." Addison-Wesley, 1995.

12.Gamma, Erich, et al. "Design Patterns: Elements of Reusable Object-

Oriented Software." Addison-Wesley, 1994,

13.Beck, Kent. "Test-Driven Development: By Example." Addison-Wesley,

2002.

95

14.Kerievsky, Joshua. "Refactoring to Patterns.” Addison-Wesley, 2004.

15.Larman, Craig. "Applying UML and Patterns: An Introduction to Object-
Oriented Analysis and Design and Iterative Development.” Prentice Hall,
2004.

16.Schach, Stephen R. "Classical and Object-Oriented Software
Engineering." McGraw-Hill Education, 2011.

17.Martin, Robert C. "Agile Principles, Patterns, and Practices in C#."
Prentice Hall, 2006.

18."IEEE Transactions on Software Engineering," Institute of Electrical and
Electronics Engineers (IEEE).

19."ACM Transactions on Software Engineering and Methodology,"
Association for Computing Machinery (ACM).

20."Journal of Software Engineering Research and Development,” Springer.

96

APPENDIXA.

Worksiation
Web browser
—Keyboard/Monitor—|
User
HTTP/HTTPS connection
Server \Web Server

Ms SQL server
reserve copy

Ms SQL server Service Log file
TCP/IP ™
é T

Program

C") % Interface Lo

Fig. 5.1. System deployment diagram

Presentation level
(Web-interfase)

A

<Interface=
=P External
characteristics

=|nterface=
SR - Internal
characteristics

5

A system deployment diagram visually represents how software
components and hardware devices are distributed across a network or
infrastructure. It illustrates the physical arrangement of these elements and how
they interact within a system.

97

Calculate
Performance

Y

Insert calculation
plug-in into External
Froject

Y

Visiting test
Add N Users into
System

F

Tsyste
loaded
M

es

—

Memory Capacity |
Test B

Resource utilization
fest

Other Test Methods
1

¥

Frepare values to
return

Fig. 5.2. Behaviour calculate performance diagram

—

Check Required
Components

Calculate

Case Performante .
Performance

» Calculate Security

Case: Security

e

i
Other params

¥

Add calculation result

Feturn result list |#——— :
to return list

End

Fig. 5.3. Run calculate methods diagram

99

APPENDIX B.

Listing of the app source code
CalculationJson.cs

using System;
using System.Collections.Generic;
using System.Ling;
namespace FlowerBl;
public class CalculationJson
{

public decimal? Value { get; set; }

public int? Aggregation { get; set; }

public CalculationJson First { get; set; }

public CalculationJson Second { get; set; }

public string Operator { get; set; }

private static readonly 1Set<string> _allowedOperators
=newl[] {"+", ", 1, 22" 1. ToHashSet();

public string ToSql(ISqlFormatter sql, Func<int, string> fetchAggValue)
if (Value !=null)

RequireNulls(Aggregation, First, Second, Operator);
return $"{Value}";
}

if (Aggregation != null)

RequireNulls(Value, First, Second, Operator);
return fetchAggValue(Aggregation.Value);

}

if (First I= null && Second != null && Operator != null)

{
RequireNulls(Aggregation, Value);

if (1_allowedOperators.Contains(Operator))

{
}

var firstExpr = First. ToSql(sqgl, fetchAggValue);
var secondExpr = Second.ToSql(sql, fetchAggValue);

throw new InvalidOperationException($"Operator '{Operator}' not supported™);

return Operator =="/"
? sql.Conditional($"{secondExpr} = 0", "0", $"{firstExpr} / {sql.CastToFloat(secondExpr)}")
: Operator == "??"
? sgl.Conditional ($"{firstExpr} is null”, secondExpr, firstExpr)
: $"({firstExpr} {Operator} {secondExpr})";

100

throw new InvalidOperationException(**Calculation does not specify enough properties");

}

public void RequireNulls(params object[] nulls)

{
if (nulls.Any(x => x 1= null))
{
throw new InvalidOperationException("Calculation has too many properties in same object");
}
}

}

The provided code defines a class named CalculationJson within the
FlowerBl namespace. This class represents calculations in JSON format and
includes properties for values, aggregation, operands, and operators. The ToSql
method converts these JSON-based calculations into SQL expressions, handling
various cases such as decimal values, aggregations, and arithmetic operations. It
validates the provided properties and operators, ensuring supported operations
and preventing division by zero or null-coalescing operations where necessary.
Additionally, the RequireNulls method checks for the presence of multiple non-
null properties within a single object, throwing exceptions when encountered.

ResolvedSchema
namespace FlowerBIl.Yaml,;

using System;

using System.Collections.Generic;
using System.Ling;

using YamlDotNet.Serialization;

public record ResolvedSchema(string Name, string NamelnDb, IEnumerable<ResolvedTable> Tables)

{

public static ResolvedSchema Resolve(string yamIText)

{

var deserializer = new DeserializerBuilder().Build();
var yaml = deserializer.Deserialize<YamlSchema>(yamIText);
return Resolve(yaml);

}

public static ResolvedSchema Resolve(YamlSchema yaml)

if (string.IsNullOrWhiteSpace(yaml.schema))
{

throw new InvalidOperationException("'Schema must have non-empty schema property™);

}

if (yaml.tables == null || lyaml.tables.Any())
{

throw new InvalidOperationException(""'Schema must have non-empty tables property™);

}

/I Validate all columns are [name, type] array
foreach (var (tableKey, table) in yaml.tables)

if (table.id != null && table.id.Count !=1)
{

throw new InvalidOperationException($"Table {tableKey} id must have a single column™);

101

}

if (table.columns !=null)

foreach (var (name, type) in table.columns.Concat(table.id ?? new Dictionary<string, string[]>()))

{
if (type.Length <1 || type.Length > 2)

throw new InvalidOperationException($"Table {tableKey} column {name} type must be an array of
length 1 or 2");

}
}
}
}

var resolvedTables = yaml.tables.Select(t => new ResolvedTable(t.Key, t.Value.conjoint)).ToList();
var usedNames = new HashSet<string>();

var resolutionStack = new HashSet<string>();
ResolvedTable ResolveTable(string tableKey, YamlITable table)

if (IresolutionStack.Add(tableKey))
{

var stackString = string.Join(", ", resolutionStack);
throw new InvalidOperationException($"Circular reference detected: {stackString}");

}

var resolvedTable = resolvedTables.FirstOrDefault(x => x.Name == tableKey);
if (resolvedTable.NamelInDb == null)

resolvedTable.ldColumn = table.id !'= null ? new ResolvedColumn(resolvedTable, table.id.First().Key,
table.id.First().Value) : null;
if (table.columns !=null)

resolvedTable.Columns.AddRange(table.columns.Select(x => new ResolvedColumn(resolvedTable,
x.Key, x.Value)));

resolvedTable.NamelnDb = table.name;
if (table.extends != null)

if (lyaml.tables. TryGetValue(table.extends, out var extendsYaml))

{

throw new InvalidOperationException($"No such table {table.extends}, referenced in {tableKey}");

}

var extendsTable = ResolveTable(table.extends, extendsYaml);

resolvedTable.Columns.AddRange(extendsTable.Columns.Select(x => new
ResolvedColumn(resolvedTable, x.Name, x.YamIType)

{

Extends = x

i
if (extendsTable.IdColumn != null)

resolvedTable.ldColumn ??= new ResolvedColumn(resolvedTable, extendsTable.ldColumn.Name,
extendsTable.ldColumn.YamIType)

{

Extends = extendsTable.ldColumn
%
}

102

resolvedTable.NamelnDb ??= extendsTable.NamelnDb;

}

if ('resolvedTable.Columns.Any())
{

throw new InvalidOperationException($"Table {tableKey} must have columns (or use 'extends’)");

}

resolvedTable.NameInDb ??= tableKey;
if (table.associative != null)

var allColumns = resolvedTable.ldColumn == null
? resolvedTable.Columns
: resolvedTable.Columns.Append(resolvedTable.IdColumn);

foreach (var assoc in table.associative)

{
var resolvedAssoc = allColumns.FirstOrDefault(c => c.Name == assoc);
if (resolvedAssoc == null)

{
throw new InvalidOperationException($"Table {tableKey} has an association {assoc} that is not a
column™);

resolvedTable.Associative.Add(resolvedAssoc);
}
}
}

resolutionStack.Remove(tableKey);

return resolvedTable;

}
foreach (var (tableKey, table) in yaml.tables)

if (string.IsNullOrWhiteSpace(tableKey))
{

throw new InvalidOperationException("Table must have non-empty key");

}

if (lusedNames.Add(tableKey))
{

throw new InvalidOperationException($*More than one table is named '{tableKey}");

}

ResolveTable(tableKey, table);
}

void ResolveColumnType(ResolvedColumn c)

{
var stackKey = $"{c.Table.Name}.{c.Name}";
if (IresolutionStack.Add(stackKey))

{

var stackString = string.Join(", ", resolutionStack);
throw new InvalidOperationException($"Circular reference detected: {stackString}");

}

if (c.DataType == DataType.None)

var (typeName, nullable) = ¢.YamIType[0].Last() == "?" ? (c.YamIType[0][0..”1], true) : (c.YamIType[0O],
false);

103

if (Enum.TryParse<DataType>(typeName, true, out var dataType))

c.DataType = dataType;
}

else

{

var targetColumn = resolvedTables.FirstOrDefault(x => x.Name == typeName)?.IdColumn;
if (targetColumn == null)

throw new InvalidOperationException($"{typeName} is neither a data type nor a table, in
{c.Table.Name}.{c.Name}");
}

ResolveColumnType(targetColumn);
c.Target = targetColumn;
c.DataType = targetColumn.DataType;

}
c.NamelnDb = c.YamIType.Length == 2 ? c.YamIType[1] : c.Name;

c.Nullable = nullable;

}

resolutionStack.Remove(stackKey);

}

foreach (var table in resolvedTables)
if (table.ldColumn !=null)

ResolveColumnType(table.IdColumn);
}

foreach (var column in table.Columns)

ResolveColumnType(column);

}
}

return new ResolvedSchema(yaml.schema, yaml.name ?? yaml.schema, resolvedTables);

}
}

This code defines a record named ResolvedSchema within the
FlowerBl.Yaml namespace. This record represents a resolved schema obtained
from YAML data. It contains properties such as Name, NamelnDDb, and Tables,
representing the schema name, its name in the database, and a collection of
ResolvedTable instances, respectively. The static Resolve methods parse YAML
input into a YamlSchema object and further process it to construct a
ResolvedSchema. It ensures that the provided YAML adheres to specific
structure and constraints, validating properties such as schema existence, non-
empty tables, column structures, associations, and circular references within
tables and columns. The code performs resolution for data types, allowing tables
to extend other tables and incorporates a set of checks for data types and
associations, ultimately returning a ResolvedSchema instance representing the
parsed YAML schema

104

