
MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE

NATIONAL AVIATION UNIVERSITY

Faculty of cybersecurity and software engineering

Software engineering department

ADMIT TO DEFENSE

Head of Department

 Oleksiy GORSKI

“____” ____________ 2023

QUALIFICATION WORK
(EXPLANATORY NOTE)

GRADUATE OF EDUCATIONAL MASTER’S DEGREE

Theme: “Service-orientedmeans of obtaining the name of a disease usingan

international code”

Performer: Liu Heyan

Standart controller: Doctor of technical sciences, Associate Professor, Mykola

Fyodorovych Radishevskyi

Supervisor: Ph.D, Mykhailo Viktorovich Olenin

Kyiv 2023

NATIONAL AVIATION UNIVERSITY

Faculty cybersecurity and software engineering
Department Software Engineering

Degree of education master

Speciality 121 Software engineering

Education-professional program Software engineering

APPROVED

Head of Department

 Oleksiy GORSKI

“____” ____________ 2023

6. Calendar plan-schedule

№ Task Deadline
Performanc

e note

1. Familiarization with the statement of the

problem and the study of literature

Writing 1 section, presentation to the

supervisor

14.10.2023-

31.10.2023

2. Preprint of section 1 and auxiliary pages

(draft) - title, task, schedule, abstract, list

of abbreviations, content, introduction,

source list. First standard control.

15.10.2023-

22.10.2023

3. Writing 2 section, presentation to the

supervisor

22.10.2023-

01.11.2023

4. Writing 3 section, presentation to the

supervisor

01.11.2023-

14.11.2023

5. General editing and printing of an

explanatory note, graphic material

14.11.2023-

20.11.2023

6. Passing standard control 20.11.2023-

26.11.2023

7. Development of the text of the report.

Creating of graphic material for

presentation

26.11.2023-

27.11.2023

8. Get feedback from the supervisor,

reviews.

27.11.2023-

13.12.2023

9. Preparation of materials for transmission

to the secretary of the DEC (software,

GM, CD-R with electronic copies of

software, GM, presentations,

supervisors review, review, certificate of

progress, 2 folders, 2 envelopes)

13.12.2023-

19.12.2023

10. Graduation project presentation 19.12.2023-

31.12.2023

Date of issue of the assignment 05.09.2023 р.

Supervisor: Ph.D, Mykhailo Olenin

Task accepted for execution: Liu Heyan

ABSTRACT

Explanatory note to the topic «Service-orientedmeans of obtaining the name of a

disease usingan international code.»

The object of research is - The name of a disease is obtained by an international

code. This means that a specific international code can be provided to the system to

obtain the official name of the disease associated with that code. This method is

commonly used in healthcare information systems and the health field to quickly

and accurately identify and retrieve the names of specific diseases for diagnosis,

reporting, and documentation. This helps medical professionals and health

institutions to use uniform standards to describe and track diseases, thereby

facilitating the standardization and comparison of global health data.

The purpose of the thesis - The main development objective of the development

is to provide a standardized way to enable users to query and obtain the

corresponding disease name through the International disease Code, supporting the

medical information system to enable medical professionals to quickly find and

identify diseases based on the International disease Code for diagnosis and

treatment. It is used in disease statistics and epidemiological research to help health

departments and disease control agencies track and analyze diseases in different

regions and populations. In the field of health insurance, it is used to process

claims, authorizations and reimbursements and to identify the illness of the insured

through an international disease code. It is used in medical research, academic

research and clinical trials to more easily identify diseases and related information.

Support data exchange between different healthcare information systems to ensure

that healthcare information can be shared seamlessly.

Development type - is usually a service-oriented architecture or a more modern

microservices architecture. This service architecture is characterized by the

partitioning of functions into small independent services that can communicate

with each other and provide interfaces to the outside world over a network. This

service can communicate using standard Web protocols, such as HTTP, and can be

deployed and extended independently, helping to improve the flexibility and

maintainability of the system.

Therefore, the type of development of this project falls under the category of

service-oriented architecture or microservice architecture, which aims to provide

users with a service to obtain disease names through international disease codes.

This service can be integrated with other applications or systems to obtain

information about diseases.

Hardware and software – PC with Windows 11 or Win10 operating system;

environment for object-oriented programming VS Code. The use of artificial

intelligence methodology is impossible without an Internet connection

The predicted assumption about the development of tools - The predicted

assumption about the development of tools can involve a number of aspects,

depending on the tool being developed and the application area.

Market demand:

Prediction: Whether the market demand for new tools will grow steadily or

whether there will be high demand in a specific period of time.

Assumption: User or industry demand for this tool is based on a specific issue or

trend, such as digital transformation, health concerns, or environmental

sustainability.

Technology Trends:

Prediction: Will technological developments have a significant impact on the

functionality, performance, or safety of the tool?

Hypothesis: The success of the tool may depend on its integration with the latest

technological trends, such as artificial intelligence, iot, or blockchain.

Regulations and Compliance:

Prediction: Will the regulatory environment impose restrictions or requirements on

the development and use of tools?

- Assumption: Compliance with regulations and compliance standards is required

to ensure the legality and security of the tool.

Business model:

Prediction: How will the tool's business model generate revenue? License fees,

subscription models, advertising, etc.?

Assumption: Different business models may work for different types of tools and

markets.

User experience:

Prediction: Will the quality of the user experience affect tool adoption and user

retention?

- Assumption: Optimizing the user interface, response time, and availability may

be the key to success.

Sustainability:

- Forecast: How sustainable and long-term is the tool?

Assumption: Sustainability strategies, including funding, talent, and growth plans,

may influence the future of the tool.

TABLE OF CONTENT

catalogue
LIST ACRONYMS AND ABBREVIATIONS ... 8

INTRODUCTION ... 10

CHAPTER I ... 12

Analyze the main features of a web service that obtains disease names based on

international codes. Implementation of major web functions. .. 12

1.1. Background ... 12

1.2. Research Objectives ... 12

1.3. Introduction to the basics of ICD11 .. 13

1.3.1. Overview of the service ... 13

1.1. 1.3.2. ICD-11 API ... 16

1.4. Practical studies of use. .. 17

1.4.1. Overview ... 17

1.4.2. Requirements ... 18

1.4.3. Development and usage issues .. 18

1.5. Develop ideas with expected implementation features .. 20

1.6. Content that may need to be refined after development and subsequent content

modules that need to be maintained .. 22

1.6.1. Testing and validation ... 22

1.6.2. Documentation and support ... 23

1.6.3. Choice of development tools ... 25

1.7. Programming language .. 26

1.8. Challenges ... 27

CHAPTER 2 ... 30

Requirements for the code generation system and improvements to the web page module 30

2.1. Web Design Requirements ... 30

2.2. Specific requirements for database in the development of ICD11API 32

2.2.1. Capabilities for backend part of web app applications 32

2.2.2. Capabilities for frontend part of web app applications 34

2.3. Non-functional optimization of the ICD11API .. 36

2.3.1. Requirements for backend part of web app applications 36

2.3.2. An introduction to the non-functional usability of the ICD11API 37

2.4. Detailed Description ... 38

2.4.1. Capabilities for backend part of web app applications 38

2.4.3. Requirements for backend part of web app applications 44

2.4.4. Requirements for frontend part of web app applications 45

Conclusion .. 49

CHAPTER 3 ... 50

3.1. Database selection and structure of the API system of ICD11 50

3.2. Flow chart of registration and cooperation of users with different identities 52

3.3. ICD11API WEB side background database overview and database key data

components schematic ... 53

3.4. ICD11API WEB side key entity class diagram .. 54

3.5. Establish a physical layer connection ... 56

conclusion ... 58

CHAPTER 4 ... 60

4.1. The development of ICD11 coding API display system is briefly introduced 60

4.2. ICD11API WEB side results display and source code display 61

4.3. Web results display and function detailed introduction ... 75

Conclusion ... 85

CONCLUSIONS .. 87

LIST OF REFERENCES .. 89

APPENDIX A. .. 91

APPENDIX B. .. 93

8

LIST ACRONYMS AND ABBREVIATIONS

ICD-11: International Classification of Diseases, 11th Revision (ICD-11) - An

international standard developed by the World Health Organization (WHO) for

diagnosing diseases and health statistics.

ICD-11-CM: International Classification of Diseases, 11th Revision, clinical

Modification For clinical diagnosis and reporting in the United States.

ICD-11-AM: International Classification of Diseases, 11th Revision, Australian

Modification (ICD-11) International Classification of Diseases, 11th Revision,

Australian Modification (ICD-11) For clinical diagnosis and medical statistics in

Australia.

Mortality and Morbidity Statistics: ICD-11 for Mortality and Morbidity

Statistics - A specific version of ICD-11 for recording and reporting statistics on

mortality and morbidity.

ICD-11-CM/PCS: International Classification of Diseases, 11th Revision, Clinical

Modification/Procedure Coding System (International Classification of Diseases,

11th Revision, Clinical Modification/Procedure Coding System) Clinical Modified

Edition/Operational Coding System) - a set of standards used for medical

diagnostics and medical operational coding in the United States.When

programming, you often come across abbreviations and acronyms. Here are some

common programming abbreviations and what they mean:

HTML: HyperText Markup Language - The markup language used to create web

pages.

CSS: Cascading Style Sheets - Used to define the style and layout of a web page.

JS: JavaScript - a scripting language for web page interaction and dynamic

content.

API: Application Programming Interface - A specification that allows different

software to communicate and interact with each other.

SQL: Structured Query Language - A language used to manage and query

databases.

9

IDE: Integrated Development Environment - An integrated development tool that

provides coding, debugging, and build tools.

OOP: Object-Oriented Programming - A programming paradigm that emphasizes

the concepts of objects and classes.

URL: Uniform Resource Locator - An address used to identify the location of

resources on the Internet.

HTTP: Hypertext Transfer Protocol (HyperText Transfer Protocol) - A protocol

used to transfer data over the Web.

FTP: File Transfer Protocol (FTP) - The protocol used to transfer files on the

network.

DNS: Domain Name System - The system used to translate domain names into IP

addresses.

JSON: JavaScript Object Notation - a lightweight format for data interchange.

API: Application Programming Interface - An interface that allows different

software components to communicate with each other.

SDK: Software Development Kit - A collection of tools, libraries, and

documentation for developing a piece of software.

GUI: Graphical User Interface - A user interface for interacting with a computer

through graphical elements such as buttons and Windows.

MVC: Model-View-Controller - A design pattern used to organize the structure of

an application.

DBMS: Database Management System - Software used to manage a database.

CMS: Content Management System - Software used to create and manage the

content of a website.

IoT: Internet of Things (iot) - refers to the network of physical devices and objects

that connect and interact.

SSH: Secure Shell - A protocol used to secure remote access to computers on a

network.

10

INTRODUCTION

Project Overview: Service-orientedmeans of obtaining the name of a disease

usingan international code is a project designed to provide disease name query

services for the medical industry and related fields. The goal of this project is to

provide the medical field with a useful tool to help professionals more easily

access disease information and is expected to have a positive impact in the fields of

medicine, research and health management. It allows users to quickly obtain the

corresponding disease name via international disease codes such as ICD-10 or

other standard codes. This service will be provided through a network interface

(API) so that other applications and systems can easily integrate and access disease

information.

Project objective: The main objective of the project is to provide a

convenient, efficient and standardized way to query disease names against

international disease codes. This helps medical professionals, health information

systems, health research organizations and insurance companies, among others, use

disease coding more effectively in a variety of applications.

Main functions:

1. Provide an easy-to-use API that returns the corresponding disease name

by entering the international disease code.

2. Database management: Store the mapping relationship between disease

codes and names to ensure the accuracy and real-time data.

3. Security: Use encrypted communications and authentication to protect

user data.

4. High performance and scalability: able to handle a large number of

queries and provide fast responses.

5. Documentation and support: Provide detailed documentation and support

to help developers integrate the service.

Audience: Key audiences for the project include medical professionals,

health information system developers, disease statisticians, medical researchers,

health insurance companies, and health care decision makers.

Technical architecture: The project will use a modern service-oriented

architecture with RESTful apis for communication. The data will be stored in a

relational or NoSQL database and deployed on a cloud server to ensure scalability.

Business model: The project's business model may include both free and

11

paid subscription plans, with paying users enjoying more advanced features and

support.

Regulatory compliance: The project will comply with regulatory and

compliance requirements related to the privacy of medical information and

personal data to ensure the security and privacy of user data.

Future plans for the project include expanding support for additional disease

coding standards, improving the quality and timeliness of data, and providing more

advanced features such as historical data tracking and multilingual support.

12

CHAPTER I

Analyze the main features of a web service that obtains disease names based

on international codes. Implementation of major web functions.

1.1. Background

The ability to obtain disease names according to the International

Classification of Diseases codes plays an important role in the field of medicine

and health information management. The development prospects of this function

include improving the accuracy of medical diagnosis, promoting medical research

and health statistics. With the proliferation of digital medical records, this feature

is expected to play a greater role in medical information systems to provide

patients with more accurate medical services.

Contextually, the International Classification of Diseases (ICD) is a globally

recognized standard for identifying, tracking, and counting a wide range of health

problems and diseases. By associating diseases with unique codes, ICDs provide a

common language for medical professionals, researchers, and health policymakers,

facilitating the sharing and comparison of global health information. Therefore, the

ability to obtain disease names according to international codes is part of the more

efficient information management within this system of standards.

1.2. Research Objectives

By achieving these goals, you can ensure that your web application meets the

needs of your users and maintains the maintainability of your system while

providing accurate information, including:

● Accuracy and up-to-dateness: Provide an accurate and up-to-date system to

ensure that users can obtain the most up-to-date disease information in line with

the International Classification of Diseases standard.

● Ease of use: Develop a user-friendly interface that enables medical professionals

and other interested personnel to easily enter or query ICD codes to obtain the

corresponding disease names.

13

● Reliability and stability: Establish a stable and reliable system to ensure

consistent service under various network conditions, and avoid system failures

or interruptions as much as possible.

● Security: Ensure the privacy and security of information entered and obtained by

users, and take appropriate security measures, such as data encryption and

authentication.

● Cross-platform and scalability: Design your system to accommodate different

platforms and devices, while being scalable so that you can easily add new

features or upgrade your system in the future.

● Internationalization & Localization: Consider global use, support multi-language

and multi-regional needs, and ensure that the system can meet the needs of users

in various cultures and contexts.

● Integration: Integrate with other medical information systems or health

management platforms to provide more comprehensive medical information

support.

1.3. Introduction to the basics of ICD11

1.3.1. Overview of the service

 ICD-11 API Web refers to a web-based programming interface that allows

developers to access and interact with data and functionality related to the

International Classification of Diseases (11th Revision) (ICD-11) via the Internet.

ICD-11 is a standard classification system for diseases and health-related issues

published by the World Health Organization (WHO).

ICD-11 is a redesigned classification system that better supports data collection in

IT systems, and has the advantages of being more systematic and interoperable than

previous coding systems. It can not only inherit the expression of the previous ICD-

10 for diagnosis and other information, but also connect with ICF, ICHI and other

coding systems. It refers to the concept and method of SNOMED, deconstructs

information such as diagnosis to more refined information, and reliably realizes

information sharing between people and between humans and machines.

It can express: Illness, Service Contacts, Episode of Care, Course and other

information. The main features of ICD-11 are "Extended" and "Combinatorial".

"Extension" refers to an extension in the sense that comes with additional code (i.e.,

extension code). The extension code itself does not contain diagnostic information,

but does describe additional information about the disease/health condition. By

14

setting the extension code, the coding surge caused by adding dimension codes to

the classification is avoided, and the classification is more flexible. When you want

to express the diagnostic information in a simpler and more flexible way, you can

use the "&""/" operator to "combine" the ICD-11 diagnosis code together to form a

diagnostic statement to better express the clinical information.

Fig. 1.1. “World Health Organization (WHO) presentation page on ICD11”

 The ICD-11's new technical architecture makes coding even simpler. The

digital fabric allows coding tools to be embedded into local digital medical records

and IT systems using a local version of a WHO-provided system or a web-based

version (known as an application programming interface or API). Clinicians can

search for diagnoses using natural language or preferred terms, thus associating

them with the correct technical codes (without requiring the clinician to memorize

these codes). Its integration with existing digital medical record systems combines

recording with coding, reducing the number of steps required to obtain a complete

record, improving user compliance, and reducing the cost and time of training. The

core content of the ICD-11 ontology can be quickly expanded to include new

terms, synonyms and concepts in all language versions, or to improve user guides.

The customized version of the specialty facilitates its use in the field of a specialty

(e.g. mental health department). For the use of paper medical records, paper

indexes or related subsets can provide a quick lookup of the code.

15

Fig. 1.2. “Reference Guide for ICD11 (WTO)”

 ICD-11 is rich in content.

ICD-11 covers 54,000 concepts of entities, which can be diseases, disorders, causes

of trauma, signs and symptoms, etc., and each entity has 13 dimensions of attributes

to describe, representing system structure, clinical manifestations, causal attributes,

etc.

The international code mentioned in this article is the International Classification of

Diseases (ICD) code, which is the basis for health statistics and maps the human

condition from birth to death: injuries or illnesses we encounter in our lives and

anything that could lead to death, are encoded. Moreover, the ICD captures some of

the factors that affect health, or external causes of death and morbidity, giving a

holistic view of all aspects of life that have an impact on health.

The ICD-11 API Web service allows developers to retrieve disease codes,

descriptions, classifications, and more from the ICD-11 database for use in a variety

of applications, websites, and systems. This API allows medical professionals,

researchers, and developers to integrate ICD-11 standard medical data into their

applications to aid in areas such as diagnostics, statistics, research, and health

management.

Through the ICD-11 API Web, users can programmatically access ICD-11 data to

better understand and utilize this globally accepted medical classification system.

This helps promote standardization and interoperability of healthcare data, as well

as improve disease management and health research on a global scale.

16

1.1. 1.3.2. ICD-11 API

The ICD-11 API (Application Programming Interface) is a programming

interface that allows developers to access and integrate data and functionality from

the International Classification of Diseases, Release 11 (ICD-11) into their

applications, websites, or systems, and is an international standard classification

system for standardizing the recording of medical diagnoses and statistical diseases.

This API enables developers to programmatically interact with ICD-11's databases

and services, allowing ICD-11's standard disease coding and related information to

be used in a variety of application scenarios.

Fig. 1.3. “A general introduction to the API”

According to the tip, the main functions usually provided by the current ICD-11 API

include but are not limited to the following:

The first is the data retrieval function, where ICD-11 allows developers to retrieve

information related to a disease based on a specific ICD-11 code or other identifier,

such as the corresponding name of the disease, a detailed description of the disease,

and other attributes of the disease. Then there is the classification browsing

function, ICD-11 provides the ability to programmatically browse the ICD-11

classification system to view individual disease categories and subcategories. There

is also a search function, which allows developers to perform advanced searches to

find disease codes related to keywords, symptoms, or other queries. And to keep up

to date and synchronized, we assume to include information about ICD-11 updates

and changes in order to keep the application up to date with the latest standards.

ICD-11 also has an integrated support feature that provides technical support and

17

documentation for integrating ICD-11 data into healthcare information systems,

health applications, research tools, and more.

Developers can use the ICD-11 API to create medical applications, data analysis

tools, clinical information systems, and more to better manage and leverage ICD-

11's standardized medical information. This helps foster innovation and data

exchange in healthcare. To use the ICD-11 API, you usually need to register and

obtain an API key in order to access the relevant services.

1.4. Practical studies of use.

1.4.1. Overview

The development of the ICD-11 API can provide broader and more practical

support for your healthcare services and information management, enabling more

precise, efficient and advanced medical practice:

The ICD-11 API provides easy access to the latest ICD information to

provide reliable data support for medical practice, research and decision-making,

using the API to quickly and accurately identify and obtain information on specific

diseases, helping to improve the accuracy of clinical diagnosis, through the API,

you can analyze and count disease data, providing an important data foundation for

public health research, integrating the ICD-11 API into your medical information

system can make the system more comprehensive and flexibleand improve work

efficiency, provide detailed information about ICD-11 coding to help healthcare

institutions and decision-makers make more informed decisions, improve medical

services and health policies, through the use of ICD-11 APIs will comply with

international medical standards and help ensure smoother collaboration with other

medical institutions and research teams, develop ICD-11 APIs to make healthcare

information systems easier to use and flexible, thereby improving the user

experience (doctors, researchers, etc.), The API is developed to keep the ICD-11

standard up to date and keep the system up to date with the latest medical

knowledge.

18

1.4.2. Requirements

1. Access rights: Developers need to register or obtain access to ICD-11 APIs. This

typically involves requesting access keys or credentials from the API provider in

order to access ICD's API services.

2. Technical requirements: Ensure that our computer or application meets the

technical requirements of the API provider. This may include support for specific

operating systems, programming languages, network protocols, or other technical

standards.

3. Terms and Conditions: You need to agree to the ICD-11 API Terms and

Conditions. These agreements typically include provisions regarding data use,

privacy, compliance, and access control.

4. API documentation: Read the documents and instructions provided by the API

provider to understand how to use the API correctly, including request format,

response format, endpoint and other information.

5. Authentication and authorization: When using the API, it is often necessary to

authenticate and provide appropriate authorization credentials as required by the

API provider to ensure that only legitimate users can access the API.

6. Purpose of Use: Ensure that the use is consistent with the design purpose and

lawful use of the API and does not violate any regulations or policies.

7. Security considerations: Take appropriate security measures when using the API

to protect the security of data and systems.

8. Maintenance and monitoring: After using the API, it is often necessary to

maintain and monitor the application regularly to ensure its proper functioning and

performance optimization.

We need to visit the official website of the ICD-11 API or contact the API provider

for detailed information on how to register, gain access, and properly use the API, as

these requirements may vary depending on the specific provider and service of the

ICD-11 API. However, following the API provider's guidelines and regulations will

help ensure that we can successfully use the ICD-11 API Web service.

1.4.3. Development and usage issues

While developing the ICD-11 API, there are a variety of issues and challenges

that can be encountered, and we will focus on those that cover the technical aspects.

The Coding Rules of ICD-11 are a set of guidelines and specifications for assigning

unique codes to various health problems and diseases. ICD-11 uses a multi-axis

structure that includes the primary diagnosis, associated etiology, symptoms,

pathology, and social context. These axes allow for a more detailed description of

19

the patient's health problems. ICD-11 uses a linear coding system, which means that

each code is unique and can accurately represent a particular health problem. The

code is usually composed of letters and numbers in the form "A00.0". Primary

diagnostic code: The primary diagnostic code is used to indicate the primary cause

or primary disease that causes a patient to seek medical attention. This is often the

most important diagnosis a doctor records at a patient's visit. Additional codes: In

addition to the primary diagnostic codes, ICD-11 allows additional codes to be

provided for related causes, symptoms, complications, etc. This helps to give a more

complete picture of the patient's health problems. In some cases, two codes can be

used at the same time to represent a disease or health problem to provide more

information. For example, it is possible to encode both the anatomical site and the

cause of a disease. Usage Specifications: Medical professionals need to follow ICD-

11 coding rules to accurately record patient diagnostic information. This helps

ensure consistency and comparability of medical data. The ICD-11 coding system is

regularly updated to reflect the latest advances and discoveries in medical science.

This helps keep the coding system accurate and useful.

Fig. 1.4. “Classified versions supported by ICD11”

Overall, the ICD-11 coding Rules are a set of standardized guidelines designed to

help medical professionals and health organizations accurately record and exchange

disease data to support effective medical diagnosis, health policy, and statistical

analysis.1. Data quality issues: Medical data is often complex and may have

inconsistencies, missing data, or erroneous data. Ensuring the accuracy and

completeness of data can be a challenge.

2. Privacy and compliance: Handling medical data requires compliance with strict

privacy regulations such as HIPAA, and ensuring data security and compliance can

require complex technical and policy measures.

20

3. Data standardization: ICD-11 uses specific criteria to represent disease and

health-related information. Standardizing data to ICD-11 format can require

significant data cleansing and conversion efforts.

4. Performance issues: If the API needs to process large amounts of medical data,

performance can become an issue. Performance optimization and caching strategy

considerations are required.

5. Security issues: Handling medical data requires strict security measures,

including access control, data encryption, and security audits. Protecting data from

malicious attacks can be a challenge.

6. Multilingualism and localization: If your API will be available to users on an

international scale, you need to consider multilingual support and localization

issues, including translation and cultural differences.

7. Version control: If the ICD-11 standard changes, you need to ensure that the API

can support multiple versions and that the upgrade does not break existing

integrations.

8. Documentation and support: Providing clear, accurate API documentation and

providing support is key, but it can also require a significant investment of time and

resources to maintain documentation and provide support.

10. Regulatory Review: In some regions, medical APIs may be subject to regulatory

review to ensure they comply with regulatory requirements. This can lead to

additional complexity and time costs.

11. Testing and Validation: Ensuring the accuracy and performance of APIs requires

extensive testing and validation, including testing for functionality, performance,

security, and privacy.

1.5. Develop ideas with expected implementation features

The user interface design of ICD-11 disease classification coding system involves

several key aspects, and the following are my ideas and ideas

1. Search function: Search function is the core of ICD-11 user interface. Users

should be able to enter keywords, such as disease names, symptoms, or codes, into

the search box to find relevant information. The search function should have auto-

completion to help users find the information they need more quickly. This is

important for medical professionals in the actual diagnosis and documentation

process.

2. Browsing function: Users should be able to browse the classification structure of

ICD-11. This means providing a hierarchical menu or tree structure so that users can

click on different categories and subcategories to gain insight into relevant

21

information. This is very helpful for users to understand the relationships between

diseases and the hierarchy of classifications.

3. Detailed information: For each code and classification, the user should be able to

obtain detailed information. This may include a complete definition of the code,

relevant causes, symptoms, clinical criteria, and treatment recommendations. This

helps medical professionals understand the characteristics of a particular disease or

health problem to support better diagnosis and treatment decisions.

4. Multi-language support: ICD-11 is an international standard, so the user interface

should provide multi-language support. This allows users to access the system from

different countries and regions to meet the needs of global users. Multilingual

support helps ensure that all users can understand and use the coding system.

5. Interactivity: The user interface should have a certain degree of interactivity,

allowing users to perform various actions. This may include saving the code of

interest, adding comments, exporting the code as a document, or sharing

information. This increases user flexibility and personalizes the experience.

6. Version control: If the ICD-11 coding system is updated frequently, the user

interface should provide different versions of the coding system so that the user can

view the data of the old version and understand the changes of the latest version.

This is very useful for research and data comparison.

7. User assistance and training: Provide users with help documents, training

materials and online support to help them understand how to properly use the ICD-

11 coding system. Training materials can include video tutorials, FAQs, and user

manuals to reduce the learning curve.

8. Filtering and sorting: Users should be able to sort and filter codes according to

different criteria to meet their specific needs. This is useful for quickly finding

specific types of coding or data analysis.

9. Data import and export: The user interface should support the import and export

of data so that users can easily integrate the ICD-11 encoding system into their

healthcare information system. This facilitates the exchange and integration of data.

10. Accessibility: Ensure that the user interface is easy to access, including user

friendliness for people with visual impairments or other special needs. This includes

providing high contrast options, screen reader compatibility and other accessibility

features.

11. Security: Protecting the privacy and security of user data is very important.

Ensure that the user interface meets data privacy regulations and only allows

authorized users access to sensitive information.

22

User interface design is crucial to the successful application of ICD-11 coding

system. A user-friendly, fully functional, and easy-to-navigate interface will help

healthcare professionals use the coding system more effectively, thereby improving

medical diagnostics, data management, and health policy making.

The development of the ICD-11 API Web can facilitate digital transformation in the

medical and health sector, improve the availability and accessibility of medical

information, and contribute to better medical care, disease surveillance and global

health research. This has potential benefits for medical professionals, researchers,

developers and patients alike.

1.6. Content that may need to be refined after development and subsequent

content modules that need to be maintained

1.6.1. Testing and validation

Once the ICD-11 API has been developed, thorough testing and validation is

required to ensure that the API functions properly and performs well, while meeting

the expected requirements and standards. Here are some of the key aspects to test

and validate and how to test them:

Functional testing: Ensure that the basic functionality of the API is functioning

properly. This includes testing that requests and responses from each API endpoint

work as expected, including error handling for normal requests and exceptions.

Integration testing: Test the integration of APIs with other systems or services to

ensure that the individual components work together. This can be done by

simulating communication with other systems.

Performance testing: Evaluate the performance of your API, including response

time, throughput, and load capacity. Commonly used performance testing tools

include Apache JMeter, LoadRunner, etc.

Security testing: Conduct security testing, including vulnerability scanning,

penetration testing, and cross-site scripting (XSS) checks to ensure that APIs are

free of potential security risks.

Reliability testing: Testing the stability and reliability of APIs, including long-

running, high-load testing to ensure that APIs function properly in a variety of

situations.

Load testing: Test the performance of an API under high load conditions to

determine its scalability and performance limits. This helps determine if horizontal

scaling is required.

23

Data conformance testing: Ensure that the API returns consistent results for the

same request and does not cause data inconsistencies or conflicts.

Version control testing: If your API supports multiple versions, test compatibility

between different versions to ensure that older versions of the client still work

correctly.

Document validation: Ensure that API documentation behaves consistently with the

actual API. This includes verifying that the request and response are as described in

the documentation.

Privacy testing: Ensure that APIs follow privacy regulations when handling

sensitive data and do not disclose the privacy information of patients or users.

Anomaly testing: Test the behavior of your API under unusual conditions, such as

network failures, database failures, or other error conditions.

Cross-platform testing: Test API compatibility across different operating systems,

browsers, and devices to ensure broad client support.

Regression testing: After making changes or fixes, run regression tests to ensure that

new code does not introduce new issues or break existing functionality.

User Acceptance Testing (UAT): Hand an API to the end user or a team on behalf

of the user to have them verify that the API meets their needs and expectations.

Performance monitoring: Set up performance monitoring and logging in production

to monitor how your API is running at any time.

Testing methods can include manual testing, automated testing, and the use of third-

party testing services, depending on the size and requirements of the project. Testing

is a critical step in ensuring API quality and reliability and should not be

overlooked.

1.6.2. Documentation and support

API documentation design:

Clear entry points: Define the entry points (endpoints) of the API, stating the

purpose and function of each endpoint. Provide a concise URL and description of

the HTTP method for each endpoint.

Request and response examples: Sample requests and responses are provided for

each endpoint so that developers understand how to structure requests and process

responses.

Parameter description: For each endpoint, detail the supported parameters,

including path parameters, query parameters, request headers, and request body

24

parameters. Provide the data type, optional values, default values, and example

values for each parameter.

Error handling: Describes possible error status codes and error messages, and

provides workarounds. It is recommended to provide a list of common errors and

solutions.

Authentication and authorization: Explains the authentication and authorization

mechanisms of the API, including how to obtain access tokens or API keys, and

how to use them.

Limits and quotas: If there are access limits or quota limits, clearly describe those

limits and how to request higher limits.

Versioning: If we plan to support multiple API versions, please provide

information about your versioning strategy so that developers can choose the

appropriate version.

Data model and field description: Provide a clear description of the data model and

fields returned by the API, including the name, data type, meaning, and example

values of each field.

Providing clear, comprehensive API documentation and multiple support channels

can help developers use and integrate APIs more easily. Documentation should be

easy to understand and contain enough examples and information to answer

common questions from developers. Respond to issues and feedback in a timely

manner, and actively improve APIs and documentation to improve the user

experience.

Regarding support, we can make the following decisions to increase effective use

and praise:

Email support is essential, by providing a dedicated email address for developers to

send questions, feedback, and request help. Make sure to respond to emails in a

timely manner. Add an online community to create an online community or forum

where developers can exchange experiences, ask questions, and get answers. It is

also possible to set up an FAQ page, by building an FAQ page with FAQs and

answers, where developers can find answers without having to wait for a support

response. And add live chat support, allowing developers to communicate with the

support team in real time. Actively update the documentation regularly, starting

with ensuring that the API documentation is always up to date. Then update the

documentation whenever the API changes, and send notifications to developers.

Tutorials and samples for users: Tutorials and sample code are provided to help

developers get started and use APIs faster. To plan regular webinars or trainings,

hold regular webinars or online trainings to help developers gain insight into the

advanced features and best practices of the API. With social media, use social

25

media platforms to stay in touch with developers and share important updates and

resources.

1.6.3. Choice of development tools

When developing the ICD-11-API Web, we need to use a range of tools to

streamline the development process, improve efficiency, and ensure the quality of

the API. You can choose the following steps and methods for development

Programming languages and frameworks: Choose back-end programming languages

and frameworks based on our preferences and needs, such as Python (Django or

Flask), Node.js (Express.js), Ruby (Ruby on Rails), etc. These tools provide basic

web development functionality.

Database Management System: Choose the right database for our data storage

needs, such as PostgreSQL, MySQL, MongoDB, etc. The database is used to store

and retrieve ICD-11 data.

API frameworks: Use mature API frameworks to simplify API creation and

management, such as the Django REST framework (Python), Express.js

Middleware (Node.js), Ruby on Rails (Ruby), etc.

Document Generation Tools: Use tools to automatically generate API

documentation so that developers can understand the endpoints, parameters, sample

requests, and responses of the API. Some commonly used tools include Swagger,

OpenAPI, API Blueprint, etc.

Version control system: Use a version control system such as Git to track and

manage versions of your code. This helps with multi-person collaboration and

maintainability of the code.

Integrated Development Environment (IDE): Use the appropriate IDE to write,

debug, and test code. Some popular IDEs include Visual Studio Code, PyCharm,

WebStorm, etc., depending on the programming language we choose.

Testing tools: Use unit, integration, and performance testing tools to ensure the

stability and usability of your APIs. For example, you can use unittest for Python,

Mocha and Chai for Node.js etc.

Security tools: Use tools to scan and detect potential security vulnerabilities in APIs

to ensure the security of your data. Some tools include OWASP ZAP, Nessus, and

others.

Monitoring tools: Set up a monitoring system to monitor the performance and

availability of your APIs in real time. Tools such as Prometheus and Grafana can

help us monitor and visualize performance metrics.

26

Deployment and hosting services: Choose the right cloud hosting platform or server

to deploy our APIs. AWS, Azure, Heroku, etc. are some of the commonly used

hosting options.

1.7. Programming language

There are many programming languages that can be used to develop the ICD11-API

Web, but I think python and Node .js may be the better choice at the moment, and I

have summarized a few advantages and disadvantages

Merit:

 - Easy to learn and use: Python is considered to be an easy to learn and get

started programming language with a clear syntax and a large number of

development libraries.

 - Lots of libraries and frameworks: Python has a rich ecosystem, including

Django and Flask frameworks for web development, as well as libraries for data

processing and analysis (e.g. NumPy, Pandas).

 - Strong community support: Python has a large global developer community

that makes it easy to find resources to solve problems.

 -Shortcoming:

 - Relatively low performance: Python is generally slower than some compiled

languages and is not suitable for some applications that require high performance.

2. Node.js (JavaScript)：

 -Merit:

 - High performance: Node .js runs on non-blocking I/O and is suitable for

handling high concurrent requests, so it performs well for real-time applications and

APIs.

 - Front-end consistency: If we already develop the front-end using JavaScript,

using Node.js can achieve front-end consistency.

 -Shortcoming:

 - Callback hell: The asynchronous programming model can lead to complex

nested callbacks, known as "callback hell."

27

 - Not suitable for CPU-intensive tasks: Node .js is suitable for I/O intensive

tasks, but may not be the best choice for CPU-intensive tasks.

1.8. Challenges

 When developing and using ICD-11 API Web services, may encounter some

common issues and challenges:

1.Data acquisition and updating: Access to ICD-11 data may require specific

authorization, and data may need to be regularly updated to reflect the latest

standards.To ensure that can obtain data lawfully and to establish an update

mechanism.

2.Data quality and consistency: Data quality and consistency are critical to

healthcare data.Ensure the accuracy of ICD-11 data and deal with possible errors

or inconsistencies.

3.Security and privacy: Handling medical data involves sensitive information, so

strict security measures must be taken to protect the data. Ensure that data

transmission and storage are encrypted and comply with relevant privacy

regulations.

4.Performance: Large scale data queries and high concurrent access may affect

API performance. Optimize database queries, use techniques such as caching and

load balancing, and handle high load situations.

5.Authentication and authorization: Design and implement effective authentication

and authorization mechanisms to ensure that only legitimate users can access

sensitive medical data.

6.Documentation and user support: Provide clear and detailed API documentation

and set up support channels to answer user questions and solve problems.

7.Compliance: Compliance with regulatory and legal requirements, especially

when it comes to medical data. Understand international and domestic regulatory

requirements for medical data.

28

8.Monitoring and troubleshooting: Set up a monitoring system to monitor the

performance and availability of APIs in real time. Develop a troubleshooting

plan for possible issues.

9.Data Update Management: Manage updates to ICD-11 versions and data to

ensure APIs are up to date with the latest standards.

10.User feedback and improvement: Collect user feedback, consider user needs,

and continuously improve the API to meet user expectations.

11.Caching and data storage: Consider how to efficiently cache data to reduce the

burden on the database, and choose the appropriate data storage scheme.

These issues need to be carefully considered during the development, deployment,

and maintenance of APIs. Work with relevant medical and legal professionals to

ensure that our APIs meet industry standards and regulatory requirements while

providing high-quality medical data services.

Conclusion

 The development of ICD-11 Web has brought a more convenient, accurate

and globally standardized way of disease information management to the medical

field, which will help promote the development of medical science and technology,

and promote the development of medical practice and health decision-making in a

more advanced and collaborative direction.

As a global medical standard, CD-11 provides a unified disease classification

system for the medical field, and the development of its web version will help to

promote and apply this standard more widely, ICD-11 Web provides a convenient

way for medical professionals to accurately consult and understand information on

various diseases, supporting the improvement of medical practice, and providing

ICD-11 Web enables medical institutions and health decision-makers to make

more informed decisions based on accurate disease data, To promote the

optimization of public health and medical policies, the development of ICD-11

Web promotes the analysis and research of health data on a global scale, and

provides support for international health cooperation.

29

ICD-11 Web has been developed with an emphasis on internationalization,

making the system easily accessible to users around the world by supporting multi-

language and multi-regional needs, overcoming technical challenges in the

development process, such as real-time data updates, multi-language support,

security, etc., to help improve the reliability and performance of the system.

30

CHAPTER 2

Requirements for the code generation system and improvements to the web

page module

2.1. Web Design Requirements

1. Home/Overview:

Provide a brief introduction and description of the ICD-11 classification system.

An overview of the main functions and uses of the API.

Provide a quick entry or search box for quick access to data.

2. Search function:

Allows users to search for information about ICD-11 by keyword, disease name, or

code.

Provide advanced search options, such as filtering, sorting, etc., so that users can

accurately find the information they need.

3. Browse by category:

Shows the hierarchical structure of the ICD-11 classification system, enabling

users to browse disease information by chapter, block or category.

Provides interactive collapsible/expandable structures to give users a deeper

understanding of categories.

4. Details page:

Provide detailed information about each disease or disease group, including

coding, definition, clinical description, etc.

Display other information related to the disease, such as clinical guidelines,

treatments, etc.

5. API Documentation:

Provide detailed API documentation, including request examples, parameter

descriptions, response formats, etc., to help developers use the API properly.

May also include information on authentication and authorization to ensure secure

use of the API.

6. Data export/download:

31

Allows users to export specific ICD-11 data to files (e.g. CSV, JSON, etc.).

Provide download links or API endpoints for easy access to large volumes of data.

7. User authentication and authorization:

If necessary, implement user authentication and authorization mechanisms to

ensure that sensitive information is only available to authorized users.

8. Interactive charts and statistics:

Display charts and statistics of ICD-11 data so that users can intuitively understand

the incidence, correlation, etc., of different diseases.

9. Comparison of historical versions:

If applicable, provide a historical version comparison function for ICD-11 so that

users can understand the changes between different versions.

10. Feedback and support:

Provide a feedback channel for users to report problems and make suggestions.

Provide support information, including FAQs, contact details, etc.

11. Multi-language support:

Support multi-language interface, so that users of different regions and languages

can easily use the web page.

12. Mobile adaptation:

Ensure that web pages are mobile-friendly and provide a good mobile user

experience.

32

Fig. 2.1. “Detailed introduction and requirements of wto ICD11API ”

2.2. Specific requirements for database in the development of ICD11API

Use an appropriate data model to represent the various concepts and

relationships of ICD-11. This may include diseases, symptoms, diagnostic codes,

etc., compliance with ICD-11 standards, ensuring that the database structure is

compliant to the specification for interaction and integration with ICD-11 data,

considering the performance requirements of the database, especially for large-

scale queries and data retrieval. The use and optimization of the index is a key

aspect in the design, with appropriate security measures in place to ensure the

confidentiality and integrity of ICD-11 data. This may include encrypting data,

access control, etc., designing interfaces that comply with RESTful or other API

design criteria so that applications can communicate effectively with the ICD-11

database, and considering how to handle updates and revisions to the ICD-11

standard to ensure that the database remains up to date.

2.2.1. Capabilities for backend part of web app applications

System requirements:

33

1. Clearly defined API endpoints, including data retrieval, search, category

browsing and other functions.

2. Design RESTful apis that are easy to understand and use.

3. Provide sufficient API documentation, including request examples,

parameter descriptions, response formats, etc.

4. Select an appropriate database, such as a relational database (such as

MySQL or PostgreSQL) or a NoSQL database (such as MongoDB), to store

ICD-11 data.

5. Establish the corresponding database table or document model according to

the structure of ICD-11.

6. Considering the scale of ICD-11 data, optimize the query performance of the

database, and use indexes and other means to improve the retrieval

efficiency.

7. Consider the cache mechanism to reduce the burden on the server and

improve the response speed.

8. Implement authentication and authorization mechanisms to ensure that only

authorized users have access to sensitive data.

9. Effectively verify and filter the input data to prevent potential security

vulnerabilities.

10. Build scalable systems that can easily add new features or adapt to larger

amounts of data later.

11. Consider using a microservice architecture to divide the system into separate

services and reduce coupling.

User data requirements:

1. Implement a powerful search engine, allowing users to retrieve ICD-11 data

by keyword, coding and other ways.

2. Provide fuzzy search, automatic completion and other functions to enhance

user experience.

3. Design classification browsing function with hierarchical structure, so that

users can intuitively understand the hierarchical relationship of ICD-11.

34

4. Provide an interactive interface that allows users to expand/collapse

categories.

5. Provide detailed disease information, including coding, definition, clinical

description, etc.

6. Display other information related to the disease, such as treatment options,

related research, etc.

7. Allow users to export specific ICD-11 data to common formats (CSV,

JSON, etc.).

8. Provide download links or API endpoints for easy access to large amounts of

data.

9. Provide statistical information and charts to visually present disease

incidence, correlation and other data.

10. May also include the option to support user-defined statistics features.

11. Set up feedback channels for users to report problems and make suggestions.

12. Provide support information, including frequently asked questions and

contact information..

2.2.2. Capabilities for frontend part of web app applications

User pages:

1. Add interactive elements, such as buttons, drop-down menus, etc., to

improve the user experience.

2. Asynchronous loading is implemented to ensure that pages remain

responsive when data is loaded.

3. Use appropriate colors, fonts, and ICONS to improve page readability and

appeal.

4. Implement a powerful search function that allows users to enter disease

names, codes, or keywords.

5. Provide auto-complete recommendations to help users find the information

they need faster.

6. When you click on a disease or category, detailed relevant information is

displayed, including definitions, symptoms, treatments, and more.

35

7. Use clear layouts and diagrams to make the information easy to understand.

8. Provides a clear navigation structure that makes it easy for users to find the

information they need.

9. Provide help documents or prompts to guide users through the various

features of the application.

System main:

1. Create page layouts, including navigation bars, sidebars, and other elements

to ensure a user-friendly interface.

2. Design your pages with HTML and CSS, ensuring a responsive design to

suit different devices.

3. Integrate ICD11API calls to get disease classifications and related

information.

4. Present the obtained data on a page, for example in the form of a list, table,

or graph.

5. Provides disease browsing by different categories of ICD11.

6. Use intuitive navigation and expandable menus to give users insight into

specific areas.

7. The main language interface is provided to meet the needs of most users.

8. Automatically adjust the content displayed based on the user's language.

9. Make sure the app can be adapted to different devices and screen sizes,

including mobile, tablet and desktop devices.

10. Consider possible error scenarios, such as API calls that fail or no data is

returned.

11. Provide clear error messages and feedback to help users understand

problems and provide solutions.

User side:

1. Consider a user's possible query needs, such as searching for a specific

disease, viewing a specific category, or obtaining relevant statistics.

2. Implement a search function that allows users to easily find and access

information that interests them.

36

3. Filtering and sorting options are provided to enable users to customize their

displayed data according to specific criteria.

4. Allows users to create personal accounts to save preferences, bookmark

important information, or record their search history.

5. Provides setting options, such as theme selection or font size adjustment, to

enhance the user experience.

6. Use charts and graphs to present disease statistics such as prevalence,

geographic distribution, etc.

7. Provides interactive text descriptions that allow users to customize the data

they view.

8. Regularly obtain the latest data from the ICD11API to ensure that the

application reflects the latest International Classification of Diseases

standards.

9. Provide notifications or update alerts to keep users informed of new or

updated content.

2.3. Non-functional optimization of the ICD11API

Non-functional project requirements are those related to the operation and

performance of the system, but do not involve specific functionality or specific

behavior. While these requirements often focus on the performance, availability,

security, maintainability, and so on of the system rather than the specific

functionality that the system provides at the user level, these non-functional project

requirements are critical to ensuring that the system meets user and business

expectations in all aspects. They play a key role in the overall performance and

quality of the system.

2.3.1. Requirements for backend part of web app applications

1. Response time: Set a maximum time for page loading and API response to

ensure users get prompt feedback.

2. Throughput: Specifies the maximum number of users that the system should

support to ensure that the system remains stable as the load increases.

37

3. Data encryption: The HTTPS protocol is required to encrypt data

transmission to protect user privacy.

4. Authentication and authorization: Specify criteria for user access control to

ensure that only authorized users have access to sensitive information.

5. Interface responsiveness: Ensure that the website works properly on

different devices, including mobile, tablet and desktop devices.

6. User friendliness: Set interface design standards to ensure that users can

easily navigate and understand the functionality of the site.

7. Code readability: Emphasize code clarity and comments so that team

members can easily maintain and modify the code.

8. Modular design: Adopt modular design principles to make the system easy

to expand and update.

9. Translation and localization: Specify multilingual support standards to

accommodate global users, especially medical professionals.

10. Test coverage: Set standards for test coverage to ensure system reliability

and stability.

11. Automated testing: Emphasis on automated testing to detect potential

problems early in the development process.

12. Privacy Policy: Sets out the standards for the processing of user data to

ensure compliance with relevant privacy legislation.

2.3.2. An introduction to the non-functional usability of the ICD11API

1. Failover: Implement a failover mechanism to ensure that the system can

switch to the standby device in the event of a server or component failure,

ensuring continuity.

2. Automatic recovery and automatic saving: Set the automatic recovery and

automatic saving mechanism to minimize manual intervention in case of

system failure and improve the self-repair ability of the system.

3. Accessibility Design: Follow accessibility design principles to ensure that the

website is accessible to users with visual, hearing or other impairments

38

4. Keyboard navigation: Provides keyboard navigation options to meet the needs

of users who use a keyboard instead of a mouse to navigate.

5. Clear labels and guidelines: Provide clear labels and guidelines to enable

users to understand the functionality and navigation structure of the website.

6. Information hierarchy: Design a hierarchy of information so that users can

drill down to more details.

7. User input validation: Implement front-end validation of user input to reduce

the negative impact on users due to incorrect input.

8. Friendly Error messages: Provide friendly and clear error messages to help

users understand the problem and provide solutions.

9. Real-time feedback: Provide real-time feedback as the user performs an

action, ensuring that the user knows whether their action was successful.

10. Notification Center: Provides a notification center that displays the status of

important system updates, events, or user actions.

11. Loading time prompt: Provides a loading time prompt during page loading to

let users know the page loading progress.

12. Network Connection status: Provides a reminder of network connection status

so that users know the status of their network connection.

13. Smart Search Suggestions: Use smart search suggestions to help users quickly

find content they might be interested in.

14. Navigation path: The navigation path of the user's current location is

displayed on the page to make it easy for the user to know where they are.

2.4. Detailed Description

2.4.1. Capabilities for backend part of web app applications

System requirements:

1. Design principle: Among many programming language options, Java is chosen

as a programming language with cross-platform characteristics. By simply

installing the Java Virtual Machine (JVM) on a specific platform, Java applications

can be executed on a variety of computers and devices, improving portability. In

addition, Java is an object-oriented programming language that supports object-

39

oriented development principles such as encapsulation, inheritance, and

polymorphism. This helps to write code that is modular, maintainable, and

extensible. In addition, strict type checking at compile time can reduce runtime

errors and improve the stability and reliability of your code. In addition, Java

provides an automatic memory management mechanism (garbage collector), which

relieves developers of the burden of memory management and avoids the problem

of memory leaks. At the same time, extensive and active community support

makes it easy for developers to access support, documentation, and tools, and

facilitates the development of rich third-party libraries and frameworks to improve

development efficiency. In addition, Java also supports multi-threaded application

development to achieve concurrent performance; Has a rich standard class library

to simplify the basic functions of repeated coding; Ideal for powerful solvers for

high applications; Support dynamic loading and dynamic code execution to

increase flexibility and scalability; A large ecosystem of tools, integrated

development environments (ides), frameworks, and libraries facilitates building

applications of all types.

2. Testing: Software testing is essential for users to ensure that the product is

correct, verifying code coverage and helping other developers understand possible

problems and how to resolve them.

3. Code: In the development process of the back-end part of the web, referring to

the mature ICD11 website query mode will shorten the idea and opening time of

the software module.

4. Connection: The connection between the front-end part and the back-end part

enables the online exchange of important case information required by users.

5.API endpoints: The connection data exchange between the server part and third-

party apis is very critical, and third-party products are used to provide link

shortening functions.

6. Code generation: Back-end applications need to obtain pathological codes from

the front end and convert them to shorter international codes for data storage.

40

7. Judgment processing: Select and perform operations according to different user

identities, such as super administrator, doctor or patient permissions, resulting in

differences in page display data and use functions.

8. Data storage: Saving user data is the most important task of software; If not

done properly, users will be reluctant to use pages that may cause data loss.

9. Access to the database must capture the entire array in order to retrieve relevant

information from the database; The system to store/present information by request

needs to be configured to interconnect with doctor-patient interaction/Doctor

interaction to quickly update website pages.

10. The application needs to add a certain amount of encoded data on request, as

well as a database form buffer to store the existing complete name path, subject

classification, etc., and gradually increase the new content over time.

11. If the information is added incorrectly or entered incorrectly or only some

fields are updated, the relevant data needs to be changed; If user-related

information is involved, it must be possible to modify this data in the background.

12. The ability to view information is reflected both in the web interface and in the

user number management section

13. We try to avoid lag when a large number of users are using the application at

the same time because we introduce an additional update record table that is

relatively immediate but not as frequent because the special parallelism

requirements are not met by the slower update method.

User data requirements:

1. Role-Based Authentication: Implement role-based authentication to

distinguish between doctors and patients, ensuring that each user has access

to the appropriate functionalities based on their role.

2. Data Extraction: Develop algorithms to extract relevant information from

user data arrays, allowing for the identification of pathology trends without

compromising user rights. For example, analyze frequent pathology codes

used by doctors to monitor future trends.

41

3. Registration Auditing:Implement an authentication option for user

registration, including an additional verification scheme for users requiring

auditing. This enhances the accuracy of user registration and ensures that

only authorized individuals gain access.

4. dentity Verification: Integrate robust identity verification measures during

the registration process to prevent unauthorized access and maintain the

integrity of user roles within the system.

5. Data Encryption: Utilize strong encryption protocols to protect sensitive

pathological data during transmission and storage. This prevents

unauthorized access and ensures the confidentiality of user information.

6. Access Controls:Implement strict access controls to restrict data access to

authorized personnel only. This helps prevent data breaches and

unauthorized usage.

7. Regular Security Audits:Conduct regular security audits to identify and

address potential vulnerabilities in the system. This proactive approach

enhances the overall security posture.

8. Compliance with Privacy Laws: Ensure compliance with relevant privacy

laws and regulations to safeguard user rights. Clearly define and

communicate the privacy policy governing the handling of pathological data.

9. Backup and Recovery:Establish robust backup and recovery mechanisms to

mitigate the risk of data loss. Regularly test these mechanisms to guarantee

their effectiveness in case of unforeseen events.

10. By incorporating these measures, the web application can provide a secure

and compliant environment for users, protecting their sensitive data while

enabling meaningful analysis for pathology trend monitoring.

2.4.2. Capabilities for frontend part of web app applications:

User pages:

1. Account authentication and Identity selection: Provides the option to select an

identity through account authentication on the registration page, so that the

client can log in using an account that has been created.

42

2. Super administrator page: The super administrator can view all user

information, including identity selection and authentication status, on the

background service page. Present identity verification function to check user

information when necessary or to conduct future statistics and registration of

user information.

3. Login and Registration Panel: The main page of the WEB application can be

accessed only after the user has logged in, otherwise it should be redirected to

the registration panel. Limit the ability of unknown users to interact with the

product and ensure that only registered users can use the WEB.

4. Selection panel and diagnosis code: The main page provides a selection panel

for the user (doctor) to select the condition he has diagnosed. Combined with

the information module, users can quickly select coded information and learn

more about how to register coded information.

5. Send codes to the database API: A button is provided on the home page that

allows users to send pathology codes to the database API. Add additional

supplementary codes to record additional information about the pathology

code.

6. User deletion operations: Allow deletion operations to be performed, but only

for exceptional reasons, and ensure that there is a strict review process. Avoid

improper operations and the risk of obtaining profit or confidential

information.

7. Correct user information: If the user enters incorrect account information,

provide a correction mechanism for the user to correct the true information.

Handles cases where registration information has expired or changed to

ensure that the user's pathology code is kept up to date.

8. Administrator Add users: Allows users to add by contacting the application

administrator, so that users can still use the system even if they cannot create

an account themselves.

System main:

43

1. Since the application does not require a complex architecture, it is

recommended to use the simplest programming language, such as Javascript,

to implement the website quickly and efficiently.

2. Combine the framework with the Javascript programming language to create

dynamic and extensible web pages that are easier to further develop and

improve after the initial release.

3. Leverage the AI that generates code to accelerate the front-end development

of the application, reducing the effort of developing the complete architecture

from scratch, allowing developers to incrementally supplement the parts that

generate pathology coding.

4. The user will be required to have an underlying pathology code, which will be

converted to their name version.

5. At the same time, codes that can be locked in the same way as the underlying

coding are retained to provide predictive and analytical analysis of the

underlying coding usage.

User side:

1. Create a user-friendly interface that allows users to quickly browse and select

various parts of the application and get the necessary information through

simple interactions.

2. Implement a user authentication system to ensure that users can accurately log

in to their accounts in order to record and interact with their own pathology

codes.

3. Design different access levels for different types of users, provide different

permissions, distinguish access options, and ensure the security of the system.

4. The data is displayed in a structured manner, such as through longitudinal

complexity selection of conditions and coding of condition determination,

helping users to clearly understand the history of the system and providing a

comfortable interactive experience.

44

5. Allows (doctor) users to modify and update data, ensuring that doctor users

do not experience errors or reprocessing when performing operations in the

system, improving the user experience.

6. Providing the web with a clear description of the pathology code selection, or

showing pages that are loading, gives registered users an understanding that

the system needs more time to perform a large number of requests so that the

work continues to perform correctly. Make sure registered users have clear

guidance when they encounter errors so they can operate correctly.

2.4.3. Requirements for backend part of web app applications

1. Ensure the ICD11API is responsive with efficient database and application

caching. Through rational configuration and connection of program

modules, rapid response to user requests is realized, so that users can quickly

browse and obtain necessary information in various parts of the application.

2. For the scalability of the ICD11API, implement policies to migrate the

system to a more efficient server or address possible architectural issues,

taking into account possible performance degradation. By distributing some

parts of the system on different servers, you can cope with the heavy load

that WEB pages can face.

3. Establish a support mechanism for the ICD11API to ensure that the system

can recover quickly in the event of an emergency such as a server restart.

The reliability of the system is critical, as any data error or loss can have a

significant impact on the accuracy and timeliness of the user's pathologically

encoded medical information.

4. The architecture of the ICD11API is implemented to support the flexibility

of easy configuration or addition of software modules. This allows the

system to be modified when the ICD-11 standard is updated or other

requirements change, ensuring long-term maintainability.

5. Security is emphasized in the software module architecture of the

ICD11API, measures are taken to protect against potential hacking attacks

45

and protect the confidentiality of users' medical data. Ensure systems

comply with relevant privacy and security standards.

6. For the ICD11API, Internet access is critical so that medical professionals

can have fast, secure access through the API. Ensure that the API's Web

functionality is complete so that users can effectively use and transform

pathological codes for information interaction.

2.4.4. Requirements for frontend part of web app applications

1. Performance is one of the key considerations in the development of the

ICD11API. Architectural requirements require ensuring that the system is

implemented correctly so that the application can interact error-free between

its software parts. To achieve this, we first need to optimize data interaction

and use efficient algorithms. In the context of the ICD-11 standard, this

involves the rapid processing of medical coding and routing data to ensure

that users can quickly navigate through the system and access critical

information. By establishing an efficient database structure and application

cache, the ICD11API provides fast response times, ensuring that healthcare

professionals can use the system efficiently.

2. The architecture of the ICD11API not only incorporates best build principles

and rules, but also ensures that the system is well scalable. This means that

the system has the flexibility to support, change, and remove parts of the

software without introducing problems. During the evolution of the ICD-11

standard, the system needed to be able to adapt to the introduction of new

coding and routing standards without compromising its performance. By

adopting a flexible architecture and technologies such as cloud computing, the

ICD11API ensures that the system can easily scale to respond to changing

environments as the demands of the healthcare sector grow.

3. The ICD11API is dedicated to providing users with 24/7 reliability. Medical

professionals may need access to coding and routing information at any time,

so the system must be highly available. By implementing redundancy and

failback mechanisms, the ICD11API ensures that the system can recover

46

quickly and reliably in the event of an emergency server restart or other

abnormal situations. This high level of reliability is critical to the real-time

needs of the healthcare industry, ensuring that users can always rely on the

system.

4. The ICD11API has been developed with a focus on maintainability,

especially when it comes to updated versions. By configuring and using the

version control system, the ICD11API is able to quickly switch between old

and new software module versions and efficiently send the new version of the

system to the server. This maintainability ensures that when the ICD-11

standard changes or new medical perceptions emerge, the system can be

updated to maintain consistency with the latest standards.

5. The ICD11API provides users with the ability to access different

authentication options to suit their needs. In a medical setting, safety is

Paramount. The authentication mechanism of the system must be flexible and

maintainable to meet user preferences and security needs. This means that the

ICD11API can adapt to the different security expectations of healthcare

professionals, ensuring that they can access and use the system safely.

6. Since the initial release of the ICD11API uses the system as a simple API,

you need to consider the software modules that will have to change as you

transition to a full-fledged, full-time application. During this transition, the

ICD11API must maintain API compatibility while gradually introducing more

mature features to improve system usability. This ensures a smooth transition

for healthcare professionals as the system evolves and can always rely on the

medical coding and routing information provided by the ICD11API

Interface:

When designing the interface of ICD11API, it is crucial to focus on good

usability, flexibility and performance. The interface is the portal of the system,

which directly affects the user experience, system scalability and overall

performance. To make the system as comfortable as possible, ICD11API needs to

maintain communication with users and developers throughout the interface design

47

and creation process to continuously optimize the interface to adapt to the needs

and changing standards of the medical industry. With such a design, ICD11API

will become a reliable resource in the field of medical coding and disease

classification. Therefore, a simple web application interface needs to be developed,

which needs to be followed up :

1) Authentication and authorization: Implement a robust authentication and

authorization mechanism to ensure that only authorized users can access

sensitive information. Standard authentication protocols can be used to

provide secure access control. In the ICD11API, medical professionals may

need special permissions to access certain coded or classified information, so

a well-designed authorization system is critical.

2) Query parameters and filtering: Provide flexible query parameters and

filtering options to meet the needs of different users. For example, when

querying medical codes, the ICD11API can support filtering by disease name,

code category, or associated label. This design enables users to pinpoint the

information they need.

3) Error handling mechanism: Design robust error handling mechanism to

provide users with clear error information to help them understand and solve

the problem. Good error handling helps to improve the user experience and

reduce user confusion when using the API.

4) Version control: Implement a version control mechanism to ensure that

existing applications can continue to run even after API updates. Include

version information in the URI so that users can choose to use a specific

version of the API. Version control of the ICD11API is a key factor in

ensuring stability and backward compatibility.

5) Documentation and API reference: Provide detailed documentation and API

reference to help users understand the function and use of the interface. Clear

documentation can make it much easier for users to get started and drive

wider API adoption.

48

6) Under the main container there should be a dynamic generated list that

displays all the converted links that the user sent, and so that the next links

sent by him do not erase the previous ones.

7) Current limiting mechanism; Implement appropriate current limiting

mechanisms to prevent abuse and ensure system stability. By setting request

rate limits, the ICD11API can effectively manage high traffic volumes and

maintain high performance.

Design:

Web design involves multiple aspects, from user experience to visual

presentation, that require careful consideration to ensure that the site is easy to

navigate and that users can easily find the information they need. Consider the

user's behavior path, simplify the process, improve user satisfaction, and ensure

that the website can adapt to different devices and screen sizes to provide a

consistent user experience. Choose the right color combination, consistent with the

brand. Provide interactive elements such as buttons, forms, micro-interaction

effects, etc., to enhance the user experience, ensure that users get clear feedback

when interacting with the site, adopt good typography, ensure that text is easy to

read, line spacing and font size are appropriate, responsive design is critical for

mobile device compatibility, optimize the performance of the site, ensure fast load

times. Compress images, use browser cache, and process code properly to improve

user experience and search engine rankings.

Create clear, intuitive navigation menus that make it easy for users to find

the information they need. Consider using breadcrumb navigation and page links to

improve the user's navigation experience. Develop a good content structure, using

elements such as headings, paragraphs, and lists to make the content easy to

understand and scan. Make sure key information is highlighted, do cross-browser

testing, make sure the site works well in all major browsers (Chrome, Firefox,

Safari, Edge, etc.), and optimize the site to improve its ranking in search engines

49

Conclusion

In this section, I highlight the key design requirements for the web

application I want to develop. I have selected and investigated all aspects of the

WEB in advance, divided the main part of the program into WEB page modules,

and the display of the final product will be released at the back.

Through the study of materials, I made it clear that WEB page development

is a complex task involving design, coding and implementation. When conducting

the analysis, we need to consider several aspects, including user experience,

functional requirements, technology selection, and so on. In terms of user

experience, a successful WEB page should be able to provide a concise interface

design, and have a good response speed. Through reasonable layout and intuitive

operation, users can easily find the required information and complete various

interactive actions. We also need to pay attention to page loading time and

compatibility issues to ensure that different devices and browsers can be displayed

normally. In terms of functional requirements, we need to determine the functional

modules needed to be implemented according to the project requirements, and

carry out detailed planning and design.

This includes front-end page presentation, back-end data processing, and

interaction with the database. At the same time, in the development process to pay

attention to code quality and maintainability, the use of appropriate frameworks or

libraries to improve efficiency and reduce the probability of error, in the analysis

of WEB page development, we need to fully consider the user experience,

functional requirements and technology selection and other factors, and flexible

use of relevant knowledge and tools to achieve the expected goals. Only through

in-depth analysis and comprehensive thinking can we provide customers with

high-quality products that meet their expectations.

50

CHAPTER 3

Database annotation of WEB system for ICD11API

3.1. Database selection and structure of the API system of ICD11

In the database of the WEB end system of ICD11API, my idea was to store

the gender information of the patient, the time information, and the information of

accessing the system separately. Later, I found that there were not so many

separate data tables in the development, so I inserted these information into the

large form of the established database. As a sub-table header for data storage,

because the development of the database is based on the premise of network

applications, so the production will be slightly more detailed.This method can

reduce the time to build a large database form and the follow-up work, can work to

a certain extent -- also relative to the same type of data can be stored together, it

would be easier to when looking for a little.

Here I show my database form. The blue database stores the main data content,

which is also the most critical and core data in this project. Since I downloaded it

from China, there will be some Chinese characters. The core data here are: The

patient's ICD11 coded record, that is, the patient's ICD11 coded record, is public to

the patient and the doctor, but private to other patients and other users, and the

patient can save the form of this code to let the doctor record the development of

the disease, so as to better track the pathology in the first time. So it's a very

critical piece of data;Then is the expansion of ICD11 extra code, the main role of

extra code is ICD-11 used to extend the coding, can also be understood as a part of

ICD-10 extended coding. ICD-11 added the additional code function. The

supplementary codes cover several dimensions such as severity, time, anatomy,

description of diagnostic codes, etc. Here I specially made a table to store the

supplementary codes. The ICD11 backbone code is used to indicate a patient's

primary health condition and is a code that can be used alone in a specific linear

combination. The design of the backbone code is to ensure that the most

meaningful minimum information can be obtained from each medical record when

only one code is needed. I also made a separate table to record the storage of the

ICD11 backbone code, but the supplementary code and the backbone code are

different database tables, because in my idea, both can be independently expanded,

and the supplementary code will be updated more frequently. Convenient back end

personnel to schedule data, in the review time will be a little easier.

Then the introduction of the core data is the User's common information, such

as the user's registration information, including the registration name, registration

identity, registration time, registration gender and registration password, these

belong to the basic and public data port content, so I put these data in a whole

independent user form, used to represent the user registration needs to use the data.

It's a little more detailed.

51

Here is the form shown in my database catalog form, the blue form is the key

data form

Key Data form

In this project, I mainly borrowed four functions of the database CRUD,

which are relatively basic but very important functions of the database. Here, I

borrowed the main functions of the database to expand, so as to improve my own

functions. CRUD is often used for anything related to the database and database

design. Many contents of my project benefit from the inspiration and help of

CRUD. In addition to the basic function I use in the operation of the backbone

code and additional code of ICD11API, CRUD is also important for the final

registered users. Without it, it will be a huge workload for users to query personal

information and modify medical information.Most of the ones I've used in this

WEB project allow administrators in the project to add or create new entries,

search for existing entries, make changes to them, or delete them.

The following is a detailed illustration of this function

 C.R.U.D.

52

3.2. Flow chart of registration and cooperation of users with different

identities

Flowchart of registration and work

This figure is to express the work undertaken by users with different identities

in this project. I firmly believe that the improvement of software is the

communication and interaction between users and developers, and mutual learning

and mutual help can make a software gradually flawless. Therefore, users are also

the perfect way that I must consider in the design. Their permissions are also

different, among which the purest users are patients, because they only have the

basic functions of viewing, querying and registration, do not have the ability to

modify the case or improve the ICD11 code library, and do not have the

permission to modify their own case code.

The second identity in this figure is the doctor. The special difference between

the doctor and the patient is that the doctor needs the administrator to review his

identity. Because the doctor has the right to prescribe and prescribe drugs, he

cannot directly register and use his account, and the administrator must open his

53

authority in the background to login. In addition, after landing, they should

participate in the entry of ICD11 code. In the process of ICD11 coding, they

should be familiar with the condition of patients and increase their understanding

and cognition of ICD11. In this way, doctors can also expand and learn in their

professional fields, further extend their understanding of cases, and facilitate the

internationalization of medical treatment. Promote the development of medical

technology, strengthen the pace of medical internationalization, so that medical

code can help patients in other countries to better and more directly understand

their condition.

The last and most important identity is the super administrator, the reason

why he is called the super administrator is because it has all the permissions,

including the review of the conditions of registered users of the above two

identities, including the detailed description and entry of cases, and the

administrator will always monitor and manage the data, but also to ensure the

security of the data. Therefore, the identity of the super administrator can not be

registered directly, and the account needs to be issued after the background audit,

and the account of the super administrator can not select the account, only after the

background editing is sent, in this system by the highest detection and management

of the account is the super administrator account. Because of the particularity of its

account identity, it is the most critical existence in the entire account and the most

core user demand record in the entire system.

It is easy to see from the above introduction that the design I made is basically

carried out around users. Administrators and actual users work together to improve

the ICD11API web page system, so that the system can better learn what each user

needs in the evolution of the system and what the specific needs are.According to

this system, patients can well protect their own information and do not want

anyone other than doctors to know their case information. Moreover, because the

cases are digitized and the ICD11 internationally recognized code is used, I believe

that patients will have better records and more detailed records of their cases, and

doctors will have more communication platforms.

3.3. ICD11API WEB side background database overview and database key

data components schematic

In the component diagram, you can see more detailed statistical relationships

between databases (databases of critical data), as well as the types of data that

databases of critical data store in the system and the names of the data they store.

Through the content components displayed in the database shown in this figure, the

storage location of each data can be identified from the entire system, and the

linear relationship between each data can be roughly estimated. The key

information of each data can be intuitively seen in the first time to grasp the

detailed statistical content of each data.If it can be commercialized in the later

stage of the system, we can try to add some data protection measures here, so as to

protect the key information and key data content in the database. The figure shows

54

the core data graph in the system, and you can see the specific content of the core

data and how each layer is related to each other.

Core data graph

3.4. ICD11API WEB side key entity class diagram

Class diagram is a kind of structural diagram in Unified Modeling Language

(UML), which is used to describe the classes in a system and the relationships

between them. Class diagram is a powerful visualization tool that can graphically

present complex system designs. With graphical representations, developers can

more easily understand the structure, relationships, and design decisions of the

system, and class diagrams are also a modeling tool through which abstract models

of the system can be created. This model not only has a guiding role for

developers, but also can be used as a tool to document and communicate with

themselves, helping them better understand the WEB project and develop the WEB

project.

The main elements in a class diagram are classes, which represent abstract

entities in the system. A class is a way of abstracting a group of objects that have

similar characteristics and behavior. Abstractness means that class diagrams are

concerned with concepts and models, while concreteness is reflected in the fact

that these abstract concepts correspond to concrete objects in a real system. In the

design of this WEB, the balance between abstractness and materiality is very

critical. Abstractness helped me understand the nature of the WEB problem I was

55

developing, while materiality ensured that the model corresponded to the real

system. Through class abstraction, more general and extensible system models can

be built, while materiality ensures that these models have practical meaning in

practical development.

- Use data received during the registration phase or format standard

data fields;

- Changing field contents or even attributes by modifying accepted

data;

- This method is used to obtain certain key fields.

There is also polymorphism, which means that an object can exhibit multiple

forms. In the class diagram I use, polymorphism is usually implemented through

method overloading and overriding. Overloading allows a class to have multiple

methods with the same name but different argument lists, while overloading allows

subclasses to reimplement methods inherited from the parent class.

The advantage of polymorphism here is also to increase the flexibility and

scalability of the system. Through polymorphism, objects of different kinds can be

handled in a unified way, and the specific subtypes can be ignored in the process of

processing. This makes it easier for the system to adapt to changes and new

features. All service classes are divided into interfaces (basic representations

without adding logic) and their implementations (complete descriptions of internal

mechanisms) to facilitate the operation of the WEB system.

The User class is responsible for allowing users to select their own specific

identity in the web application and then waiting for further authentication by the

super administrator (who cannot be registered by the user alone). Each user has the

right to choose their own login and password. In addition, each user is assigned

unique data, including first name, last name, gender, age account name and

password, in the extended use we will use a number of measures to ensure the

security of user information due to the sensitive and private nature of patient

information.

The Case class is responsible for communicating with patients and doctors.

This entity class was created because patients need to provide medical records for

doctors to write prescriptions, which can also be divided into: The backbone code

of ICD11 and the additional code of ICD11, here also schedule the creation,

modification and deletion conditions of user cases, here you can see that each

patient will get its corresponding soldier line data and ICD11 complete code.

The ICD class is the class responsible for recording the details of the ICD11

backbone code statistically, including but limited to the following situations:

1. Super administrator and doctor users need to edit the ICD11 trunk

code

2. The super administrator and the doctor need to synchronize the

update of the ICD11 backbone code with the information on the WEB

56

3. Super administrator and doctor identity users need to modify and

adjust the ICD11 backbone code (mainly delete function), because the

ICD11 code may appear in the input code error may occur, so here we

need to set up such input error content and retrograde change

4. Users with super administrator and doctor status need to edit the

ICD11 backbone code5. Information on the registration of the modifier

(function as originally envisaged)

In the entity class of ICDADD I mainly implement a total of um that is ICD11

with extra code to expand the function, this function is relatively simple.

Class diagram

3.5. Establish a physical layer connection

In this ICD11API service, I decompose the physical layer into three levels of

physical hardware synthesis, from the top down are: The user layer, Tomcat Server

57

and database (in fact, if there is a fourth layer, the fourth layer can be divided into

the operating system level, but I did not choose to use another operating system in

this project), the user layer can be commonly understood as the display layer,

which is the most intuitive feeling that can be displayed to users. In addition, most

of the functions can be added, deleted and modified directly through the buttons on

the web side, which aims to reduce personnel training. Users (doctors and super

administrators) can modify directly on the web side, and there is no need to go to

the background to increase the content of the database by moving code. I believe

this is very useful for non-programmers.

Then there is the module of TomCat Server, which is divided into three parts

according to the logical way of reference. For example, I will first collect the

requirements of users and the functions that users want to achieve, and then enter

the first layer with these requirements, which I call the request processing layer. At

this level, our main purpose is not to realize the needs of users, but to collect

statistics and delegate the needs of users. At this time, we enter the second layer of

services, that is, the business logic layer. In this layer, we will do a similar way to

jump to show the ideas of users, but only send the ideas of users to the next layer

like the post office. In fact, the business logic layer actually plays a more role in

the user's ideas into the system for logical differentiation, in order to better

reference the next layer of functions, that is, the final execution level, I named it

the data access layer, in this layer the system will issue an application to view the

database command, in fact, here is the real execution of the command level. It is

also the beginning of matching the system with the user's idea and the user's

operation. In this set of three steps, the complete walk down is actually the

complete face of TomCat Server service, so that the user's needs are the formal

beginning.

The last part is the database. After the complete set of TomCat Server

operations, the system will go to the database to access the required data or store

the user's data to complete the detailed operation of the database. Originally, it

should enter the database for data storage, modification and deletion. However,

because I added visual data operation, this step became easier and our learning cost

was reduced. As people who can modify the database, they are not so familiar with

the code. In other words, a simple aspect is opened up, so that people without basic

knowledge can make changes directly. In this era of rapid talent circulation, I think

it is still necessary to save the cost of talent.

The following figure is the detailed physical layer specific contact policy I

made, and it is possible to see my idea here more clearly in the form of pictures.

58

Detailed physical layer specific contact policy

conclusion

conclusion

In this module, I introduced the general structure of the WEB program system

based on the development of ICD11API in detail; Here I also put forward my

understanding of this project, and pointed out the main aspects that need special

attention and improvement in the development process;From a very important

point of view, I reviewed the part of the system that I designed and how it would

continue to work later; I also specially show the key data in the system database

client layer

Terminal display layer

Tomcat Server

Spring Controller WEB

Request processing layer

Business logic layer

Service Spring Boot

DTO

DTO

Data Access Layer

DAO Mybatis

JDBC

database

MySQL

59

and the important and detailed class diagram in the system; First, it shared the

progressive relationship between each layer of the physical layer, and then

explained how to advance between each layer of the physical layer, the working

principle and working mode of the physical layer. Finally, it introduced the

construction of physical hardware connection in detail and concretely, and put

forward my improved part in this layer.

60

CHAPTER 4

ICD11 API WEB page system prototype display

4.1. The development of ICD11 coding API display system is briefly

introduced

Develop a clear project plan, including goals, tasks, timelines, and resource

allocations. Make sure the team understands and is committed to achieving these

goals. Effective learning is the key to successful thinking about project

management. Think clearly and in a timely manner to ensure that information is

communicated correctly, identify potential risks in the project, and develop a risk

management plan accordingly. Resolve issues in a timely manner to ensure that the

project is progressing smoothly, address changes in the project, and ensure that

these changes do not negatively impact the project objectives. Flexibly respond to

changes, adjust plans, focus on the quality of project development, and ensure that

expected standards are met. Establish appropriate quality control and quality

assurance mechanisms. Review the experience of the page regularly, draw lessons

learned, and identify opportunities for improvement. Continue to learn and update

their project management knowledge

In the SSM framework of my choice, I usually refer to a combination of Spring

+ Spring MVC + MyBatis. In this framework, I have selected various components

that are common. The Controller is a core component in the Spring MVC

framework that processes user requests and returns responses. It usually contains

the method for handling the request and is responsible for forwarding the request to

the appropriate Service layer for processing, and then returning the processing

result to the front-end page. Service is the business logic layer of my choice, which

contains the core business logic of the application and is responsible for handling

the business-related logic and processes. Services are typically designed as

interfaces that define the methods of the business logic. The Service

implementation class is responsible for concretely implementing the business logic

defined by the Service interface. In the SSM framework, the Service interface and

its implementation class are generally separated to decouple the business logic

from the invocation relationship. Mapper is an important interface used to perform

database operations in MyBatis framework, which defines the required methods to

interact with the database, and does not contain specific SQL statements. Mapper

XML file is used as MyBatis to store SQL mapping statements and database

interaction configuration information, including contents related to database

interaction such as SQL statements, parameter mappings, result mappings, and so

on. These XML files are used to establish mappings between Mapper interfaces

and database operations. These components work together to form the core of the

SSM framework and effectively support Web application functionality: Controller

is responsible for receiving and processing user requests; Service carries the core

61

business logic. Mapper and its corresponding XML files focus on efficient

interaction with the database.

4.2. ICD11API WEB side results display and source code display

This part of the content is to show that I have implemented the module of

adding, deleting and correcting functions, which is composed of four parts in

general, and my explanation is also carried out in this order:

1. Add, modify and delete ICD main code;

2. Adding, modifying and deleting additional ICD codes;

3. Add, modify and delete registered users;

4. Addition, modification and deletion of patient's medical information.

The above are the specific functions I realized in this program development,

and I refer to some fresh technologies and achievements in the market now. The

modification and deletion functions in all project implementation need to be

reviewed before deletion, so as to ensure that no accidental deletion will occur

during deletion, so as to protect the integrity of data

Source Code Inventory 1

Class ICD-create.java

1. @PostMapping
2. public AjaxResult add(@Validated @RequestBody SysIcd icd)
3. {
4. if (!icdService.checkCodeUnique(icd))
5. {
6. return error("新增 Icd'" + icd.getCode() + "'失败，Code 已

存在");
7. }
8. icd.setCreateBy(getUsername());
9. return toAjax(icdService.insertIcd(icd));
10. }
11.
12. public int insertIcd(SysIcd icd);
13.
14. @Override
15. public int insertIcd(SysIcd icd)
16. {
17. SysIcd info = icdMapper.selectIcdById(icd.getParentId());

18. // 如果父节点不为正常状态,则不允许新增子节点
19. if (!UserConstants.DEPT_NORMAL.equals(info.getStatus()))
20. {

21. throw new ServiceException("Icd 停用，不允许新增");
22. }
23. icd.setAncestors(info.getAncestors() + "," + icd.getParentId

());
24. return icdMapper.insertIcd(icd);
25. }
26. public int insertIcd(SysIcd icd);
27. <insert id="insertIcd" parameterType="SysIcd">

62

28. insert into sys_icd(
29. <if test="icdId != null and icdId != 0">icd_id,</if>
30. <if test="parentId != null and parentId != 0">parent_id,

</if>
31. <if test="cnName != null and cnName != ''">cn_name,</if>

32. <if test="enName != null and enName != ''">en_name,</if>

33. <if test="code != null and code != ''">code,</if>
34. <if test="ancestors != null and ancestors != ''">ancesto

rs,</if>
35. <if test="orderNum != null">order_num,</if>
36. <if test="status != null">status,</if>
37. <if test="level != null">level,</if>
38. <if test="createBy != null and createBy != ''">create_by

,</if>
39. create_time
40.)values(
41. <if test="icdId != null and icdId != 0">#{icdId},</if>
42. <if test="parentId != null and parentId != 0">#{parentId

},</if>
43. <if test="cnName != null and cnName != ''">#{cnName},</i

f>
44. <if test="enName != null and enName != ''">#{enName},</i

f>
45. <if test="code != null and code != ''">#{code},</if>
46. <if test="ancestors != null and ancestors != ''">#{ances

tors},</if>
47. <if test="orderNum != null">#{orderNum},</if>
48. <if test="status != null">#{status},</if>
49. <if test="level != null">#{level},</if>
50. <if test="createBy != null and createBy != ''">#{createB

y},</if>
51. sysdate()
52.)
53. </insert>

Under this code is mainly to do the ICD main code input code, when the super

administrator starts the system and starts to create a new main code is to use this

way to input, the scheduling content is the same.

Source Code Inventory 2

Class ICD-update.java

1. @PutMapping
2. public AjaxResult edit(@Validated @RequestBody SysIcd icd)
3. {
4. Long icdId = icd.getIcdId();
5. if (!icdService.checkCodeUnique(icd))
6. {
7. return error("修改 Icd'" + icd.getCode() + "'失败，Code 已

存在");
8. }

63

9. else if (icd.getParentId().equals(icdId))
10. {

11. return error("修改 Icd'" + icd.getCnName() + "'失败，上级

Icd 不能是自己");
12. }
13. else if (StringUtils.equals(UserConstants.DEPT_DISABLE, icd.

getStatus()) && icdService.selectNormalChildrenIcdById(icdId) > 0)
14. {

15. return error("该 Icd 包含未停用的子 Icd！");
16. }
17. icd.setUpdateBy(getUsername());
18. return toAjax(icdService.updateIcd(icd));
19. }
20. public int updateIcd(SysIcd icd);
21. @Override
22. public int updateIcd(SysIcd icd)
23. {
24. SysIcd newParentIcd = icdMapper.selectIcdById(icd.getParentI

d());
25. SysIcd oldIcd = icdMapper.selectIcdById(icd.getIcdId());
26. if (StringUtils.isNotNull(newParentIcd) && StringUtils.isNot

Null(oldIcd))
27. {
28. String newAncestors = newParentIcd.getAncestors() + ","

+ newParentIcd.getIcdId();
29. String oldAncestors = oldIcd.getAncestors();
30. icd.setAncestors(newAncestors);
31. updateIcdChildren(icd.getIcdId(), newAncestors, oldAnces

tors);
32. }
33. int result = icdMapper.updateIcd(icd);
34. if (UserConstants.DEPT_NORMAL.equals(icd.getStatus()) && Str

ingUtils.isNotEmpty(icd.getAncestors())
35. && !StringUtils.equals("0", icd.getAncestors()))
36. {

37. // 如果该 Icd 是启用状态，则启用该 Icd 的所有上级 Icd
38. updateParentIcdStatusNormal(icd);
39. }
40. return result;
41. }
42. public int updateIcd(SysIcd icd);
43. <update id="updateIcd" parameterType="SysIcd">
44. update sys_icd
45. <set>
46. <if test="parentId != null and parentId != 0">parent_id

= #{parentId},</if>
47. <if test="cnName != null and cnName != ''">cn_name = #{c

nName},</if>
48. <if test="enName != null and enName != ''">en_name = #{e

nName},</if>
49. <if test="ancestors != null and ancestors != ''">ancesto

rs = #{ancestors},</if>
50. <if test="code != null and code != ''">code = #{code},</

if>
51. <if test="orderNum != null">order_num = #{orderNum},</if

>
52. <if test="status != null and status != ''">status = #{st

atus},</if>

64

53. <if test="level != null and level != ''">level = #{level
},</if>

54. <if test="updateBy != null and updateBy != ''">update_by
 = #{updateBy},</if>

55. update_time = sysdate()
56. </set>
57. where icd_id = #{icdId}
58. </update>

In this code is mainly to do the ICD main code input update code, when the

identity of the super administrator and doctor start the system and start to create a

new main code is to use this way to make new data modification, scheduling

content is also the code of this area .

Source Code Inventory 3

Class ICD-delete.java

1. @DeleteMapping("/{icdId}")
2. public AjaxResult remove(@PathVariable Long icdId)
3. {
4. if (icdService.hasChildByIcdId(icdId))
5. {

6. return warn("存在下级 Icd,不允许删除");
7. }
8. return toAjax(icdService.deleteIcdById(icdId));
9. }
10. ublic int deleteIcdById(Long icdId);
11. @Override
12. public int deleteIcdById(Long icdId)
13. {
14. return icdMapper.deleteIcdById(icdId);
15. }
16. ublic int deleteIcdById(Long icdId);
17. <delete id="deleteIcdById" parameterType="Long">
18. update sys_icd set del_flag = '2' where icd_id = #{icdId}
19. </delete>

In this code is mainly to do the ICD main code deletion code, when the

super administrator and the doctor's identity to start the system and start to delete

the old main code is to use this way to modify the new data, to do the deletion of

the schedule content is also the code of this area.

Source Code Inventory 4

 Class ICDADD-create.java

1. @PostMapping
2. public AjaxResult add(@Validated @RequestBody SysIcd icdAdd)
3. {
4. if (!icdAddService.checkCodeUnique(icdAdd))
5. {

65

6. return error("新增 IcdAdd'" + icdAdd.getCode() + "'失败，

Code 已存在");
7. }
8. icdAdd.setCreateBy(getUsername());
9. return toAjax(icdAddService.insertIcdAdd(icdAdd));
10. }
11. public int insertIcdAdd(SysIcd icd);
12. @Override
13. public int insertIcdAdd(SysIcd icdAdd)
14. {
15. SysIcd info = icdAddMapper.selectIcdAddById(icdAdd.getParent

Id());
16. // 如果父节点不为正常状态,则不允许新增子节点
17. if (!UserConstants.DEPT_NORMAL.equals(info.getStatus()))
18. {

19. throw new ServiceException("IcdAdd 停用，不允许新增");
20. }
21. icdAdd.setAncestors(info.getAncestors() + "," + icdAdd.getPa

rentId());
22. return icdAddMapper.insertIcdAdd(icdAdd);
23. }
24.
25. public int insertIcdAdd(SysIcd icd);
26. <insert id="insertIcdAdd" parameterType="SysIcd">
27. insert into sys_icd_add(
28. <if test="icdId != null and icdId != 0">icd_id,</if>
29. <if test="parentId != null and parentId != 0">parent_id,

</if>
30. <if test="cnName != null and cnName != ''">cn_name,</if>

31. <if test="enName != null and enName != ''">en_name,</if>

32. <if test="code != null and code != ''">code,</if>
33. <if test="ancestors != null and ancestors != ''">ancesto

rs,</if>
34. <if test="orderNum != null">order_num,</if>
35. <if test="status != null">status,</if>
36. <if test="level != null">level,</if>
37. <if test="createBy != null and createBy != ''">create_by

,</if>
38. create_time
39.)values(
40. <if test="icdId != null and icdId != 0">#{icdId},</if>
41. <if test="parentId != null and parentId != 0">#{parentId

},</if>
42. <if test="cnName != null and cnName != ''">#{cnName},</i

f>
43. <if test="enName != null and enName != ''">#{enName},</i

f>
44. <if test="code != null and code != ''">#{code},</if>
45. <if test="ancestors != null and ancestors != ''">#{ances

tors},</if>
46. <if test="orderNum != null">#{orderNum},</if>
47. <if test="status != null">#{status},</if>
48. <if test="level != null">#{level},</if>
49. <if test="createBy != null and createBy != ''">#{createB

y},</if>
50. sysdate()

66

51.)
52. </insert>

 Under this code is mainly to do the ICD additional code new input code code,

when the super administrator and doctor start the system and start to create

additional code is to use this way to input, scheduling content is also the same.

 Source Code Inventory 5

 Class ICDADD-update.java

1. @PutMapping
2. public AjaxResult edit(@Validated @RequestBody SysIcd icdAdd)
3. {
4. Long icdAddId = icdAdd.getIcdId();
5. if (!icdAddService.checkCodeUnique(icdAdd))
6. {

7. return error("修改 IcdAdd'" + icdAdd.getCode() + "'失败，

Code 已存在");
8. }
9. else if (icdAdd.getParentId().equals(icdAddId))
10. {
11. return error("修改 IcdAdd'" + icdAdd.getCnName() + "'失败，

上级 IcdAdd 不能是自己");
12. }
13. else if (StringUtils.equals(UserConstants.DEPT_DISABLE, icdA

dd.getStatus()) && icdAddService.selectNormalChildrenIcdAddById(icdA
ddId) > 0)

14. {

15. return error("该 IcdAdd 包含未停用的子 IcdAdd！");
16. }
17. icdAdd.setUpdateBy(getUsername());
18. return toAjax(icdAddService.updateIcdAdd(icdAdd));
19. }
20.
21. public int updateIcdAdd(SysIcd icd);
22. @Override
23. public int updateIcdAdd(SysIcd icdAdd)
24. {
25. SysIcd newParentIcdAdd = icdAddMapper.selectIcdAddById(icdAd

d.getParentId());
26. SysIcd oldIcdAdd = icdAddMapper.selectIcdAddById(icdAdd.getI

cdId());
27. if (StringUtils.isNotNull(newParentIcdAdd) && StringUtils.is

NotNull(oldIcdAdd))
28. {
29. String newAncestors = newParentIcdAdd.getAncestors() + "

," + newParentIcdAdd.getIcdId();
30. String oldAncestors = oldIcdAdd.getAncestors();
31. icdAdd.setAncestors(newAncestors);
32. updateIcdAddChildren(icdAdd.getIcdId(), newAncestors, ol

dAncestors);
33. }
34. int result = icdAddMapper.updateIcdAdd(icdAdd);
35. if (UserConstants.DEPT_NORMAL.equals(icdAdd.getStatus()) &&

StringUtils.isNotEmpty(icdAdd.getAncestors())

67

36. && !StringUtils.equals("0", icdAdd.getAncestors()))

37. {

38. // 如果该 IcdAdd 是启用状态，则启用该 IcdAdd 的所有上级
IcdAdd

39. updateParentIcdAddStatusNormal(icdAdd);
40. }
41. return result;
42. }
43.
44. public int updateIcdAdd(SysIcd icd);
45. <update id="updateIcdAdd" parameterType="SysIcd">
46. update sys_icd_add
47. <set>
48. <if test="parentId != null and parentId != 0">parent_id

= #{parentId},</if>
49. <if test="cnName != null and cnName != ''">cn_name = #{c

nName},</if>
50. <if test="enName != null and enName != ''">en_name = #{e

nName},</if>
51. <if test="ancestors != null and ancestors != ''">ancesto

rs = #{ancestors},</if>
52. <if test="code != null and code != ''">code = #{code},</

if>
53. <if test="orderNum != null">order_num = #{orderNum},</if

>
54. <if test="status != null and status != ''">status = #{st

atus},</if>
55. <if test="level != null and level != ''">level = #{level

},</if>
56. <if test="updateBy != null and updateBy != ''">update_by

 = #{updateBy},</if>
57. update_time = sysdate()
58. </set>
59. where icd_id = #{icdId}
60. </update>

Under this code is mainly to do the ICD supplementary code input update code,

when the super administrator and doctor identity start the system and start to create

additional code is to use this way to make new data modification, in this area we

can review the content of the additional code and correct the correctness of the

additional code .

Source Code Inventory 6

 Class ICDADD-delete.java

1. @DeleteMapping("/{icdAddId}")
2. public AjaxResult remove(@PathVariable Long icdAddId)
3. {
4. if (icdAddService.hasChildByIcdAddId(icdAddId))
5. {

6. return warn("存在下级 IcdAdd,不允许删除");
7. }

68

8. return toAjax(icdAddService.deleteIcdAddById(icdAddId));
9. }
10. public int deleteIcdAddById(Long icdId);
11. @Override
12. public int deleteIcdAddById(Long icdId)
13. {
14. return icdAddMapper.deleteIcdAddById(icdId);
15. }
16. public int deleteIcdAddById(Long icdId);
17. <delete id="deleteIcdAddById" parameterType="Long">
18. update sys_icd_add set del_flag = '2' where icd_id = #{icdId

}
19. </delete>

Under this code is the code for ICD plus code deletion. When the super

administrator and doctor start the system and start to delete the old main code, this

is the way to modify the new data. The content of scheduling when deleting is also

the code of this area. It is not possible to delete large modules with subsets below

them.

Source Code Inventory 7

Class User-create.java

1. public AjaxResult add(@Validated @RequestBody SysUser user)
2. {
3. if (!userService.checkUserNameUnique(user))
4. {

5. return error("新增用户'" + user.getUserName() + "'失败，登

录账号已存在");
6. }
7. else if (StringUtils.isNotEmpty(user.getPhonenumber()) && !u

serService.checkPhoneUnique(user))
8. {

9. return error("新增用户'" + user.getUserName() + "'失败，手

机号码已存在");
10. }
11. else if (StringUtils.isNotEmpty(user.getEmail()) && !userSer

vice.checkEmailUnique(user))
12. {
13. return error("新增用户'" + user.getUserName() + "'失败，邮

箱账号已存在");
14. }
15. user.setCreateBy(getUsername());
16. user.setPassword(SecurityUtils.encryptPassword(user.getPassw

ord()));
17. return toAjax(userService.insertUser(user));
18. }
19. public int insertUser(SysUser user);
20. @Override
21. @Transactional
22. public int insertUser(SysUser user)
23. {

24. // 新增用户信息
25. int rows = userMapper.insertUser(user);

26. // 新增用户岗位关联
27. insertUserPost(user);

28. // 新增用户与角色管理

69

29. insertUserRole(user);
30. return rows;
31. }
32. public int insertUser(SysUser user);
33. <insert id="insertUser" parameterType="SysUser" useGeneratedKeys

="true" keyProperty="userId">
34. insert into sys_user(
35. <if test="userId != null and userId != 0">user_id,</if>

36. <if test="deptId != null and deptId != 0">dept_id,</if>

37. <if test="userName != null and userName != ''">user_name

,</if>
38. <if test="nickName != null and nickName != ''">nick_name

,</if>
39. <if test="email != null and email != ''">email,</if>
40. <if test="avatar != null and avatar != ''">avatar,</if>

41. <if test="phonenumber != null and phonenumber != ''">pho

nenumber,</if>
42. <if test="sex != null and sex != ''">sex,</if>
43. <if test="password != null and password != ''">password,

</if>
44. <if test="status != null and status != ''">status,</if>

45. <if test="createBy != null and createBy != ''">create_by

,</if>
46. <if test="remark != null and remark != ''">remark,</if>

47. create_time
48.)values(
49. <if test="userId != null and userId != ''">#{userId},</i

f>
50. <if test="deptId != null and deptId != ''">#{deptId},</i

f>
51. <if test="userName != null and userName != ''">#{userNam

e},</if>
52. <if test="nickName != null and nickName != ''">#{nickNam

e},</if>
53. <if test="email != null and email != ''">#{email},</if>

54. <if test="avatar != null and avatar != ''">#{avatar},</i

f>
55. <if test="phonenumber != null and phonenumber != ''">#{p

honenumber},</if>
56. <if test="sex != null and sex != ''">#{sex},</if>
57. <if test="password != null and password != ''">#{passwor

d},</if>
58. <if test="status != null and status != ''">#{status},</i

f>
59. <if test="createBy != null and createBy != ''">#{createB

y},</if>
60. <if test="remark != null and remark != ''">#{remark},</i

f>
61. sysdate()
62.)
63. </insert>

70

Under this code is the code for the user to create a new user. When the user

starts to register again, it is entered in this way, and the user's judgment is added.

For example, the same account cannot be registered twice directly. And the

detailed information of the user is also sorted out, so is the scheduling of content.

Source Code Inventory 8

Клас User-update.java

1. @PutMapping
2. public AjaxResult edit(@Validated @RequestBody SysUser user)
3. {
4. userService.checkUserAllowed(user);
5. userService.checkUserDataScope(user.getUserId());
6. if (!userService.checkUserNameUnique(user))
7. {

8. return error("修改用户'" + user.getUserName() + "'失败，登

录账号已存在");
9. }
10. else if (StringUtils.isNotEmpty(user.getPhonenumber()) && !u

serService.checkPhoneUnique(user))
11. {

12. return error("修改用户'" + user.getUserName() + "'失败，手

机号码已存在");
13. }
14. else if (StringUtils.isNotEmpty(user.getEmail()) && !userSer

vice.checkEmailUnique(user))
15. {

16. return error("修改用户'" + user.getUserName() + "'失败，邮

箱账号已存在");
17. }
18. user.setUpdateBy(getUsername());
19. return toAjax(userService.updateUser(user));
20. }
21. public int updateUser(SysUser user);
22. @Override
23. @Transactional
24. public int updateUser(SysUser user)
25. {
26. Long userId = user.getUserId();

27. // 删除用户与角色关联
28. userRoleMapper.deleteUserRoleByUserId(userId);

29. // 新增用户与角色管理
30. insertUserRole(user);

31. // 删除用户与岗位关联
32. userPostMapper.deleteUserPostByUserId(userId);

33. // 新增用户与岗位管理
34. insertUserPost(user);
35. return userMapper.updateUser(user);
36. }
37. public int updateUser(SysUser user);
38. <update id="updateUser" parameterType="SysUser">

71

39. update sys_user
40. <set>
41. <if test="deptId != null and deptId != 0">dept_id = #{de

ptId},</if>
42. <if test="userName != null and userName != ''">user_name

 = #{userName},</if>
43. <if test="nickName != null and nickName != ''">nick_name

 = #{nickName},</if>
44. <if test="email != null ">email = #{email},</if>
45. <if test="phonenumber != null ">phonenumber = #{phonenum

ber},</if>
46. <if test="sex != null and sex != ''">sex = #{sex},</if>

47. <if test="avatar != null and avatar != ''">avatar = #{av

atar},</if>
48. <if test="password != null and password != ''">password

= #{password},</if>
49. <if test="status != null and status != ''">status = #{st

atus},</if>
50. <if test="loginIp != null and loginIp != ''">login_ip =

#{loginIp},</if>
51. <if test="loginDate != null">login_date = #{loginDate},<

/if>
52. <if test="updateBy != null and updateBy != ''">update_by

 = #{updateBy},</if>
53. <if test="remark != null">remark = #{remark},</if>
54. update_time = sysdate()
55. </set>
56. where user_id = #{userId}
57. </update>

Under this code is the main user registration update code, when the super

administrator, doctor and patient identity start the system and start the registration

and login is to use this way to modify the new user registration data, in this area we

can review the content of the new user and correct the correctness of the attached

code.

Source Code Inventory 9

Клас User-delete.java

1. @DeleteMapping("/{userIds}")
2. public AjaxResult remove(@PathVariable Long[] userIds)
3. {
4. if (ArrayUtils.contains(userIds, getUserId()))
5. {

6. return error("当前用户不能删除");
7. }
8. return toAjax(userService.deleteUserByIds(userIds));
9. }
10. public int deleteUserByIds(Long[] userIds);
11. @Override
12. @Transactional
13. public int deleteUserByIds(Long[] userIds)

72

14. {
15. for (Long userId : userIds)
16. {
17. checkUserAllowed(new SysUser(userId));
18. checkUserDataScope(userId);
19. }
20. // 删除用户与角色关联
21. userRoleMapper.deleteUserRole(userIds);

22. // 删除用户与岗位关联
23. userPostMapper.deleteUserPost(userIds);
24. return userMapper.deleteUserByIds(userIds);
25. }
26. public int deleteUserByIds(Long[] userIds);
27. <delete id="deleteUserByIds" parameterType="Long">
28. update sys_user set del_flag = '2' where user_id in
29. <foreach collection="array" item="userId" open="(" separator

="," close=")">
30. #{userId}
31. </foreach>
32. </delete>

Under this code is the main code to delete the registered user, when the super

administrator starts the system and begins to delete old users or zombie users is to

use this way to modify the new user data, to delete user information when the

scheduling content is the code of this area, it should be noted that the code

judgment is added in this area.

Source Code Inventory 10

Class Case-create.java

1. @PostMapping
2. public AjaxResult add(@Validated @RequestBody SysCase sysCase)
3. {
4. sysCase.setCreateBy(getUsername());
5. return toAjax(sysCaseService.insertCase(sysCase));
6. }
7. public void insertCaseIcdAdd(SysCase user);
8. @Override
9. public void insertCaseIcdAdd(SysCase sysCase) {
10. Long[] icdAddCodes = sysCase.getIcdAddCodes();
11. if (StringUtils.isNotEmpty(icdAddCodes))
12. {
13. List<SysCaseIcdAdd> list = new ArrayList<SysCaseIcdAdd>(

icdAddCodes.length);
14. for (Long icdAddId : icdAddCodes)
15. {
16. SysCaseIcdAdd scia = new SysCaseIcdAdd();
17. scia.setIcdAddId(icdAddId);
18. scia.setCaseId(sysCase.getCaseId());
19. list.add(scia);
20. }
21. caseIcdAddMapper.batchCaseIcdAdd(list);
22. }
23. }

73

24. public int insertCase(SysCase sysCase);
25. <insert id="insertCase" parameterType="SysCase" useGeneratedKeys

="true" keyProperty="caseId">
26. insert into sys_case(
27. <if test="caseId != null and caseId != ''">case_id,</if>

28. <if test="caseName != null and caseName != ''">case_name

,</if>
29. <if test="patientId != null and patientId != ''">patient

_id,</if>
30. <if test="code != null and code != ''">code,</if>
31. <if test="content != null and content != ''">content,</i

f>
32. <if test="delFlag != null and delFlag != ''">del_flag,</

if>
33. <if test="createBy != null and createBy != ''">create_by

,</if>
34. <if test="remark != null and remark != ''">remark,</if>

35. create_time
36.)values(
37. <if test="caseId != null and caseId != ''">#{caseId},</i

f>
38. <if test="caseName != null and caseName != ''">#{caseNam

e},</if>
39. <if test="patientId != null and patientId != ''">#{patie

ntId},</if>
40. <if test="code != null and code != ''">#{code},</if>
41. <if test="content != null and content != ''">#{content},

</if>
42. <if test="delFlag != null and delFlag != ''">#{delFlag},

</if>
43. <if test="createBy != null and createBy != ''">#{createB

y},</if>
44. <if test="remark != null and remark != ''">#{remark},</i

f>
45. sysdate()
46.)
47. </insert>
48.
49. </delete>

Under this code is the code that mainly does the user's new case information.

When the user starts to register and enter the case, it is entered in this way, and the

judgment of the doctor user is added. For example, the same account cannot be

registered twice directly. And the detailed information of the user is also sorted

out, so is the scheduling of content.

Source Code Inventory 11

Class Case-update.java

1. @PutMapping
2. public AjaxResult edit(@Validated @RequestBody SysCase sysCase)

3. {
4. sysCase.setUpdateBy(sysCase.getUpdateBy());

74

5. return toAjax(sysCaseService.updateCase(sysCase));
6. }
7. public int updateCase(SysCase sysCase);
8. @Override
9. @Transactional
10. public int updateCase(SysCase sysCase)
11. {
12. String sysCaseId = sysCase.getCaseId();

13. // 删除 Case 与 icdAdd 关联
14. caseIcdAddMapper.deleteCaseIcdAddByCaseId(sysCaseId);

15. // 新增 Case 与 icdAdd 管理
16. insertCaseIcdAdd(sysCase);
17. return caseMapper.updateCase(sysCase);
18. }
19. public int updateCase(SysCase sysCase);
20. <update id="updateCase" parameterType="SysCase">
21. update sys_case
22. <set>
23. <if test="caseId != null and caseId != ''">case_id = #{c

aseId},</if>
24. <if test="caseName != null and caseName != ''">case_name

 = #{caseName},</if>
25. <if test="patientId != null and patientId != ''">patient

_id = #{patientId},</if>
26. <if test="code != null and code != ''">code = #{code},</

if>
27. <if test="content != null and content != ''">content = #

{content},</if>
28. <if test="delFlag != null and delFlag != ''">del_flag =

#{delFlag},</if>
29.
30. <if test="updateBy != null and updateBy != ''">update_by

 = #{updateBy},</if>
31. <if test="remark != null">remark = #{remark},</if>
32. update_time = sysdate()
33. </set>
34. where case_id = #{caseId}
35. </update>

Under this code is the code that mainly updates the patient's case information.

When the super administrator, doctor and patient's identity start the system and

modify the user's case data in this way, we can modify and check the contents of

the already issued case information and correct the correctness in this area.

Source Code Inventory12

Class Case-delete.java

1. @DeleteMapping("/{sysCaseIds}")
2. public AjaxResult remove(@PathVariable String[] sysCaseIds)
3. {
4. return toAjax(sysCaseService.deleteCaseByIds(sysCaseIds));
5. }
6. ublic int deleteCaseByIds(String[] sysCaseIds);
7. @Override

75

8. @Transactional
9. public int deleteCaseById(String sysCaseId)
10. {

11. // 删除 Case 与 icdAdd 关联
12. caseIcdAddMapper.deleteCaseIcdAddByCaseId(sysCaseId);
13. caseMapper.deleteCaseById(sysCaseId);
14. return caseMapper.deleteCaseById(sysCaseId);
15. }
16. ublic int deleteCaseById(String sysCaseId);
17. <delete id="deleteCaseById" parameterType="String">
18. delete from sys_case where case_id = #{caseId}
19. </delete>

Under this code is the code for registered users to delete the wrong cases.

When the super administrator and doctor start the system and start to delete the

wrong cases or zombie user cases, this is the way to modify the new case data.

When deleting the pathological information of users, the scheduling content is the

code of this area. It should be noted that the deletion of the case message judgment

has been added to this area.

4.3. Web results display and function detailed introduction

ICD11API Web application startup page, users can start from here to register to

perform operations.

The following figure shows the system startup page.

76

System Launch Page

The user needs to register on the page again. The user can choose different

identities when registering (super administrator identity is not optional, only doctor

or patient identity can be selected). After entering the account and password, the

user will enter the main page. The user must meet the requirements of each field,

that is, no data outside the setting can be entered. At this stage, data verification

has been carried out, because if it is found that the entered user does not have the

required "user" role, it will not be allowed to log in to the system. In this function,

I added the function of verification code to protect the user's privacy and prevent

the robot from logging in.

The figure shows the authorization page

authorization page

If the user is a patient, you can directly register to log in. If the user is a

doctor, you need to wait for the super administrator's audit after submitting the

registration information, and you need to wait for a longer time, because the

administrator's audit is manual and may be slow. If the user is an administrator,

you will see a special user (doctor) registration login request, the administrator has

the right to review whether the other party is a doctor, if the other party is

determined to open the login channel for the other party will not change, nor allow

the other party to access the system.

The figure shows the administrator review page。

77

Administrator audits doctor identity page

After confirming the identity data on the administrator page, the registered

user will be opened to enter this page using the doctor privileges. You can view all

the ICD11 encoded data and patient information data, and you can add and modify

the patient information data, the administrator does not know that you can view the

patient data can also view the doctor's data, and then open many options.

In addition, at the top right of the page, there is already a button that opens the

secondary interface by clicking on the user name, including the option to log out

and change the background. It also added a data retrieval function, which searches

for certain information and sorts it to make faster choices about the patient's

situation.

The figure shows the administrator's code management page

78

Administrator's code management page.

The administrator can perform the following operations on the user: In

addition to reviewing new users, changing user information or deleting user

information, the administrator can also operate the ICD11 code. In order to

facilitate the update of the ICD11 code, I have done visual work and directly added

the increase of ICD11 code on the webpage, so that the administrator can directly

add it through the webpage and reduce the cost of manual learning. All operations

can be carried out through data filling forms, which can reduce the cost of manual

cultivation and manual modification costs.

The figure shows user management of accounts and passwords.

User management of accounts and passwords

79

The user changes the account password as shown in the figure below. It

should be noted that I have specifically added the confirmation of the user's old

password here to ensure that the user who is operating is himself.

Password change interface

Back to the main page of the largest functional area, the current display is the

super administrator permissions can see the main interface, we can check the

patient's situation here, in the form of text to describe you can see that it can

automatically generate ICD11 code to the patient when the system will be directed

to the patient's detailed disease. The left side is the trunk code, the right side is a

detailed description of the trunk code of the additional code, our choice of trunk

code is necessary, can not be skipped, the current library is still improving.

Figure shows the pathology code page at the administrator level.

80

 Admin level pathology code page

The super administrator can perform the following operations on the

pathology code of ICD11: Create a new code, change the information of an

existing code, or delete an error code (expired code). Including deletion, I have

made all the visual design, so that you can directly edit the pathological code

information, the advantage is that the operation is simple, but also become

convenient.

The figure shows the page for creating a new pathology code.

Create a page for a new pathology code

81

The super administrator can choose the following actions for a patient's

permissions: change an existing patient's error message or delete an incorrect

patient's message (expired code). I also designed everything visually so that I could

directly manage the patient's information.

Figure shows the page for changing patient information.

Change the patient information page

The super administrator can choose the following operations for the doctor's

review: open the doctor's power, allow the doctor's account registration, or block

the doctor's account if it detects an anomaly, and see the doctor's application

registration time. I also designed it visually so that I could directly manage the

doctor's information and situation.

Super administrator audits the Doctor identity interface.

82

The super administrator reviews the doctor identity interface

Click the "Layout Settings" button at the top right of the page to open the

"Modify layout" page. All users can make their own theme switching and selection

here, even I have added the WEB header update here. Users can view all

modifiable theme information on the main page or template view page, for

example, users can select a dynamic title to know which page they are currently

on, and users can also add TOPNAV to make the interface look cleaner.

Figure user layout management page.

The user layout administration page

83

What I'm showing here is a page that I designed to use specific information

for doctor registration. Registrants can choose their own identity, according to the

selected identity will be different rights management, in order to create a special

identity, now show the doctor's identity registration and interface.

Doctor Graph registration interface

The doctor's registration screen

What is displayed now is the prompt information after the doctor submits the

registration message. Because the doctor's identity information is special, we need

to add manual audit. After the manual audit is passed, the doctor's identity user can

normally use the WEB for information operation.

Dr. Tu's registration review interface

84

Doctor registration review interface

What is displayed now is the patient information after the doctor submitted

the registration message. Because the doctor's identity information is special, he

can see the patient's information, and he can also choose the patient's pathological

code here, so he can also change the selected information. After the approval, the

doctor can directly visualize the patient and reduce the lifetime of learning tasks

and learning costs.

Dr. Tu's management page for patient pathology coding.

Dr. management page for patient pathology coding.

85

Because I hope that the whole people can work together to increase the ICD11

database, I have opened this permission to users who are doctors, and I hope that

everyone can work together to promote my database to get better and better。

Figure: Physician's management page for pathological coding

Physician's management page for pathological coding

Conclusion

In this section, we have made a prototype of the WEB system of ICD11API

and described its specific functions in detail. In my opinion, the highlights of the

design are as follows:

I divided the users according to their identities, and divided the functions

according to their identities and different needs, so that users can have a better

positioning of their needs, although it may increase some workload to a certain

extent, but at the root of it, I think it is worthwhile for users to get more accurate

services.

I use the verification code of person and person identification in the login

interface to ensure that the user's ICD11 diagnostic code is private, which can

protect the privacy of patients to the greatest extent, solve the security problems of

patients, and ensure the privacy of patients to the greatest extent.

In addition, after the study of this project, I understand that the development of

a complete project must have clear goals and ideas, and carry out necessary

summary and demonstration in each stage.

The development stages of a complete project include: vision scope planning

and use case specification, project structure and risk assessment, business function

specification, detailed design specification, code implementation, testing and

installation package, and so on. The development of a project requires a lot of

financial resources and manpower. If there is no good long-term plan, it will have a

86

great impact on the development progress in the future, and even appear that the

project cannot be completed within the scheduled time or the completed project is

different from the original expectation. A good project structure, business

functions and detailed design specification have a clear guiding effect on the

development of a project, which can make developers have a clearer understanding

of the functions to be achieved in the project as a whole, and can also reduce

unnecessary trouble in the development process. The implementation of the code is

the key to the success of a project development, that is to say, the early work is to

prepare for the implementation of the code.

I will continue to work hard to make my project more and more perfect, and

strive to help many people.

87

CONCLUSIONS

Don't limit yourself to superficial use of a technology, even once or twice.

"Don't worry about everything" is a quality that engineers in any industry should

not have. Develop windows applications, look at the design, loading, execution

principles of windows programs, analyze the pe file format, and try to develop a

windows application from scratch with sdk development; Use, delphi, java, net to

develop applications, spend time to study mfc, vcl, j2ee, net their framework

design or source code; In addition to using excellent open source products or

frameworks such as j2ee, jboss, spring, hibernate, etc., take a look at how the gurus

abstract, analyze, design, and implement common solutions to similar problems.

Try to do this, to learn more about other industries, but also to learn and understand

the high-tech within their own industry, so that you can

Program in a language, but don't let it bind your mind. In a code book says:

"In-depth programming in a language, do not float on the surface." In-depth

development of a language is far from enough, the existence of any programming

language has its own reasons, so no language is a "panacea". Examples abound of

the impact and constraints that programming languages have on the way

developers think and solve specific problems.

develop the habit of summary and reflection, and consciously refine the

results of daily work, form their own personal source code library, solve a type of

general system architecture, and even evolve into a framework. As we all know,

for software developers, there is a significant difference between inexperienced

and inexperienced: inexperienced people complete any task from scratch, while

experienced people often solve problems by reorganizing their reusable modules

and libraries (in fact, this conclusion should not be limited to the field of software

development, can be extended to many aspects). This is not to say that everything

that can be reused must be implemented on its own, and the mature and tested

results of others can also be collected, organized, and integrated into their own

knowledge base. However, it is best to achieve their own, so that there is no

intellectual property rights, copyright and other issues, the key is to truly master

this knowledge point after their own implementation, have this skill.

Pay equal attention to theory and practice, both inside and outside. The

connotation of engineer is: to observe and analyze things and the world with the

eyes of an engineer. A qualified software engineer is a person who truly

understands the nature of software products and the essence of software product

development (personal opinion). Mastering software development language,

applying language tools to solve specific problems in work, and completing target

tasks are the main tasks of software engineers, but from the perspective of software

engineers, this is only external things, not important and essential work. To learn

and master the theoretical knowledge and methodology of software product

development, and to understand and apply the analysis, design and realization

ideas of software products to solve specific problems of software product

development in practice, is the real work of software engineers. Standing on the

height of mature theory and reliable methodology, thinking, analyzing and solving

88

problems, and verifying and revising these ideas and ways in concrete practice, and

finally forming their own theoretical system and practical methodology.

Don't limit your knowledge to just technical aspects. The research results of

Professor Simon, a Nobel Prize winner in economics, show that: "For a person

with a certain foundation, he can master any subject within six months as long as

he is really willing to work hard." The educational psychology community thanks

Professor Simon's research results, so named Simon learning method. It can be

seen that mastering a strange knowledge is far from as difficult and profound as I

think. Absorb from many, widely dabbled. Try to consolidate their circle of

influence, as far as possible to expand their circle of attention. Financial,

economic, tax, management and other knowledge, have time to take a look, bide

your time, prepare for a rainy day.

What I learned the most and what impressed me the most was:

Don't become skilled unless your goal is to do so. Although this article is

about suggestions for improving software development knowledge, being a master

of technology is something I have always disagreed with. You can improve your

expertise, but only if you are competent.

Improving software knowledge and technology is only the surface of the

problem, the essence is to improve their understanding of the problem, analysis of

the problem, to solve the problem of the ideological height. Many of the methods

and principles of software expertise can be easily extended and applied to other

aspects of life.

On the basis of being able to work, immediately dabble in other fields of

professional knowledge, enrich their knowledge system, improve their overall

quality, especially those who are not the goal of technical friends.

89

LIST OF REFERENCES

1. 11th revision of the International Statistical Classification of Diseases and

Related Health Problems, [Electronic resource] – Mode of access:

https://icd.who.int/en/

2. World Health Organization. Classifications, [Electronic resource] – Mode of

access:

http://www.who.int/classifications/icd/en/

3. International Statistical Classification of Diseases and Related Health Problems

(ICD), [Electronic resource] – Mode of access:

https://www.who.int/standards/classifications/classification-of-diseases

4. Research on heterogeneous data integration based on JSON, [Electronic

resource] – Mode of access:

http://cdmd.cnki.com.cn/Article/CDMD-10673-1017215915.htm

5. Research on MySQL database protection technology based on security agent

[Electronic resource] – Mode of access:

https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-

degree-domestic_mphd_thesis/020316312346.html%3Ffrom%3Dlzhh-0-2-1-4p-

29499

6. Design and implementation of JAVA programming language examination

system based on WEB, [Electronic resource] – Mode of access:

https://www.zhangqiaokeyan.com/academic-degree-

domestic_mphd_thesis/020312862068.html

7. Web front-end development technology and optimization strategy based on

website production, [Electronic resource] – Mode of access:

services/services/http://qikan.cqvip.com/Qikan/Article/Detail?id=7102757884&

from=Qikan_Article_Detail

8. Research and application of web front-end performance optimization, [Electronic

resource] – Mode of access:

https://xueshu.baidu.com/usercenter/paper/show?paperid=af39f22139f02747b1a

544cda602a333

https://www.who.int/standards/classifications/classification-of-diseases
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020316312346.html%3Ffrom%3Dlzhh-0-2-1-4p-29499
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020316312346.html%3Ffrom%3Dlzhh-0-2-1-4p-29499
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020316312346.html%3Ffrom%3Dlzhh-0-2-1-4p-29499
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020312862068.html%3Ffrom%3D01-010-04-k-36504
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-degree-domestic_mphd_thesis/020312862068.html%3Ffrom%3D01-010-04-k-36504
https://www.geeksforgeeks.org/what-are-web-services/
https://www.geeksforgeeks.org/what-are-web-services/
https://xueshu.baidu.com/usercenter/paper/show?paperid=af39f22139f02747b1a544cda602a333
https://xueshu.baidu.com/usercenter/paper/show?paperid=af39f22139f02747b1a544cda602a333

90

9. From numerical optimization to learning optimization, [Electronic resource] –

Mode of access:

https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-

journal-cn_operations-research-

transactions_thesis/0201277589075.html%3Ffrom%3D01-005-04-19475

10. Review and summary of various Optimizer gradient descent optimization

algorithms, [Electronic resource] – Mode of access:

https://zhuanlan.zhihu.com/p/343564175

https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-journal-cn_operations-research-transactions_thesis/0201277589075.html%3Ffrom%3D01-005-04-19475
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-journal-cn_operations-research-transactions_thesis/0201277589075.html%3Ffrom%3D01-005-04-19475
https://link.zhihu.com/?target=https%3A//www.zhangqiaokeyan.com/academic-journal-cn_operations-research-transactions_thesis/0201277589075.html%3Ffrom%3D01-005-04-19475

91

APPENDIX A.

ADDITIONAL PICTURES

This step is to start the SEVER before starting the system through IDEA

The following are the steps and procedures for launching the backend and

frontend code. When the progress bar loads to 100%, it starts successfully, but I

added an emoticon in order to see if it starts successfully in the first place. If the

emoticon can appear on the device, it can start, otherwise it can't start, so I need to

make a small adjustment to the application

92

93

APPENDIX B.

LINK TO SIMILAR ANALOGUES

Here are the functions implemented by other websites that I referred to when I

was thinking about. I was inspired after reading their designs, so I optimized this

function and implemented it on my own system

1. ICD11 Official browser

https://icd.who.int/browse11/l-m/zh

2. Pumch

https://icd11.pumch.cn/

3. Medsci

https://www.medsci.cn/sci/icd-10.asp

94

