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LIST OF TERMS, ABBREVIATIONS AND TERMS

SC is a coordinate system

KA is a space vehicle

OSK is an orbital coordinate system
ZSK is a connected coordinate system

CM is the center of mass



INTRODUCTION

Small spacecraft (SC) are becoming more and more common nowadays. In
particular, nanosatellites are used to develop the latest technologies, methods and
software and hardware solutions, as well as for educational programs, remote sensing of
the Earth and space observations. Due to their small dimensions, weight and cost, as
well as a wide range of applications, they have become an integral part of the scientific
and space world.

Conducting most scientific and applied research in space involves ensuring a
certain orientation of the angular position of the nanosatellite in space. To ensure the
necessary orientation of the nanosatellite, an orientation system is created, which
consists of an algorithm for determining angular values and a regulator that creates a
control moment. In this paper, only the algorithm for determining the orientation due to
information from the magnetometer and the Earth sensor is considered. Thanks to the
use of this pair of sensors, the creation of an orientation system becomes simpler and
more reliable. That allows you to be sure that the assigned mission has been solved.

Despite the large volume of research, in the created algorithms for determining
the orientation of a nanosatellite, as a rule, they are built on the basis of the use of two-
vector methods [1, 2], since they are easy to establish and sufficiently reliable. Among
such algorithms, the TRIAD algorithm [1], which simultaneously determines three
orientation angles, has become more common. But when using the data of the meters, it
IS not optimal, since the Earth sensor provides information about two angles, and the
angle that is in the plane perpendicular to the orbital plane remains unknown. Based on
this, there is redundant information. It should also be taken into account that the
magnetometer is a less accurate meter than the Earth sensor, which also affects the
accuracy of the orientation determination by the TRIAD algorithm. Solving the problem
of eliminating redundant information, as well as reducing the influence of a less
accurate sensor on the determination of the three orientation angles of a nanosatellite, is
an actual direction of research. Solving this issue makes it possible to reduce the load on
the on-board computer, as well as to eliminate the cross-influence of the gauges on the

orientation accuracy. Which, in turn, will reduce the cost of the finished product due to



the use of a weaker calculator, and increase the overall accuracy of determining the
angular position.

The orientation system of the nanosatellite consists of three main elements, these
are the meters of certain physical quantities (orientation sensors), the processing of
information sent to the on-board computer (in which the orientation determination
algorithm and the control signal generation algorithm are embedded) and the regulator
that creates the control moment. The basic quality of determining the angular position
of the spacecraft depends on the accuracy of the installed sensors, as well as the
orientation algorithm. Determining the orientation of small spacecraft is often
accomplished with instruments such as sun sensors and magnetometers. However, these
sensors have various disadvantages. For example, solar sensors lose their functionality
during periods of solar eclipse in orbit. Magnetometers cannot achieve high accuracy in
determining the projection of the intensity of the Earth's magnetic field, due to its
constant change. The sensors of the Earth's horizon appeared as an effective and
relatively inexpensive meter to ensure accurate determination of the orientation of small
spacecraft during low-orbital motion, their accuracy can reach [0.1] ~°.

Due to the low cost and acceptable accuracy of determining the orientation, the
choice was made to use a magnetometer and an Earth sensor as part of the orientation
system. We will analyze the existing orientation systems built on the basis of the Earth

sensor and magnetometer.

1.1. Solving the problem of orientation determination using the Earth sensor and

magnetometer

The magnetometer determines the intensity vector of the Earth's magnetic field. The
accuracy of the magnetometric sensor depends on the quality and is 0.5-5 degrees.
For correct operation, the sensor must be isolated from electromagnets physically or
by switching magnets in the CA. They are not as accurate as star or horizon sensors,

but the low accuracy is compensated by the simplicity, reliability, lightness and low



cost of this sensor. Magnetometers weigh approximately 0.3 to 1.2 kg and consume

less than 1 W of electricity.

Earth sensors (local vertical sensor) detect the Earth's electromagnetic radiation in
the infrared spectrum, caused by the absorption and re-reflection of solar radiation
by the Earth's surface and atmosphere, and also work in the optical spectrum and
determine orientation through photo and video images. Earth sensors determine the
nadir direction to the Earth or roll and pitch angles. The accuracy is from 0.1 to 0.25

degrees.

Orientation systems for small spacecraft, which are based on the use of a
magnetometer and an Earth sensor, have long been known and used on real objects.

Consider the following known solutions when creating an orientation system:

* The orientation system is based on a horizon sensor and a pair of biaxial

magnetometers;

The main idea, which is considered in the article [3] is as follows, an autonomous
magnetic orientation system is proposed for a small satellite of remote sensing of the
Earth. The orientation detection hardware consists of a horizon sensor and a pair of
biaxial magnetometers. Three-axis orientation control is carried out using three
magnetic coils. The control laws are derived separately for the orientation determination

and retention phases.
Disadvantages of the method:

- To stabilize the satellite, a suspended mass is used, which occupies a certain

volume on the space carrier, as well as a long stabilization time;
- This scheme has limitations in orientation angles;

- The impact of magnetometer errors on the operation of the orientation algorithm is

not considered.



The weak point of this approach is the satellite orientation time and angular position

determination.

 Construction of the algorithm for determining the orientation of the spacecraft

using the Kalman filter;

This paper [4] considers the development of an orientation system that determines
the position of the satellite only by means of magnetic field measurements. This is
achieved using a Kalman filter that estimates the spacecraft's orientation, velocity, and

perturbation constants. Advantages of the method:
- Relative cheapness;
- Increasing the size of the spacecraft, due to the installation of an additional sensor.
Disadvantages of the method:
- The complexity of developing an orientation determination algorithm;
- The need to use the most accurate magnetometers;
- Accuracy of knowledge of the local magnetic field;
- Uncertainty at small deviation angles.

That is, the use of the Kalman filter makes it possible to accurately determine the
orientation of the satellite, but to reproduce such an algorithm, it is necessary to use

expensive sensors given the complexity of implementing this method.

* The algorithm for determining the angular position of the spacecraft using the

TRIAD and QUEST matrix algorithms.

This article [5] presents two effective algorithms for determining the three-axis
position of a spacecraft, using two or more vector observations. The first of them, the
TRIAD algorithm [6], provides deterministic (non-optimal) solutions for orientation

based on two vector observations. The second, the QUEST algorithm [7], is an optimal



algorithm that determines the orientation that achieves the best weighted overlap of an

arbitrary number of reference and observation vectors.
Advantages of the above algorithms:
- Relative simplicity in creating an orientation system.
Disadvantages of the above algorithms:
- Influence of sensor errors on determination of orientation.

The use of matrix algorithms when using a magnetometer and an Earth sensor is not
optimal, since redundant information from the local vertical sensor is created, and the
error of a less accurate meter is also dependent on the general determination of the

satellite's angular position.

That is, the use of a magnetometer to determine the intensity vector of the Earth's
magnetic field in the TRIAD and QUEST algorithms causes errors not only in the yaw

angle, but also in the pitch and roll angles.

To avoid the listed disadvantages of the above algorithms, we will evaluate the
proposed orientation determination algorithm [8], which was not implemented on real
spacecraft. The work of the algorithm consists in the use of two meters, a magnetometer
and a local vertical sensor. Pitch and roll angles (using the Earth sensor) are considered
calculated. Projections of the magnetic field intensity vector in satellite-related
coordinate systems were measured using a magnetometer. Based on this information,
the yaw angle is determined.

1.1.1Conclusions on the section

Therefore, based on the conducted analysis, the development of a nanosatellite
orientation system based on the Earth sensor and magnetometer using the proposed
algorithm is a relevant topic of research. The above methods do not consider the use of
a simple orientation determination algorithm that does not depend on magnetometer
errors. This master's thesis presents the nanosatellite orientation system with a solution
to this problem, as well as the requirements for the errors of the magnetometric sensor
to ensure the necessary accuracy of the angular position.



The novelty of the work consists in the creation of a calculation model of the orientation
system of a nanosatellite with an Earth sensor and a magnetometer, which uses an
orientation determination algorithm that is simpler to implement and convenient in error
analysis, if compared with standard solutions.

The subject of research is the nanosatellite orientation system.



2. Calculation method

When the orientation of the object in space is determined, an important issue is the
determination of the reference systems used and the determination of the relationship
between them. The appropriate method of calculation includes the determination of
transition matrices and transformation formulas.
2.1. Coordinate systems
Different reference systems are used for tasks that describe the angular position of a
nanosatellite in space. The correct choice of the frame of reference ensures the
simplification of the equations of motion of the object, and also improves the
informativeness of determining the position of the body in space.
2.1.1. Absolute geocentric coordinate system

Geocentric equatorial rectangular coordinate system. As shown in fig. 1, the beginning
of this SC O_E is located in the center of mass of the Earth, the main plane OX EY_E
lies in the plane of the equator, the axis OX_E is directed to the point of the vernal
equinox Y, the axis OZ_E coincides with the axis of rotation of the Earth and is directed

to the North Pole of the Earth, the axis OY_E completes the system to the right .

I'pinBinbKHEH
MepHAiaH

-

IL1omuHEa
eKBaTopa

Opoira KA

Fig. 1. Absolute geocentric SK



2.1.2. Orbital coordinate system

— orbital coordinate system (OCS), O is the center of mass of the
nanosatellite, the axis OX_o lies in the plane of the orbit and is perpendicular to the
radius vector of the center of mass of the satellite in the direction of its movement,
the axis OZ_o is along the radius vector, the axis OY_o completes the system to the
right.

2.1.3. Kepler elements of orbit
Kepler elements of the orbit are used to determine the state vector of the satellite, which
fully characterizes its movement and position in space. In fig. 2 shows the spherical
Earth and the elliptical orbit of the spacecraft in space. They allow you to determine the
values of the coordinates and components of the velocity vector of the center of mass of
the satellite at any time.
The main elements of the orbit:

The inclination of the orbit 1 (0<i<nr) is the angle between the plane of the orbit and
the plane of the Earth's equator (counted from the plane of the equator
counterclockwise, if you look along the line of nodes from the ascending node in the
direction of the descending node);

Longitude of the ascending node of the orbit — the angle in the
plane of the equator between the directions to the point of the vernal equinox and to
the ascending node of the orbit (it is counted in the plane of the equator from the
point of the vernal equinox counterclockwise to the direction to the point of the
ascending node, if viewed from the northern end of the Earth's axis);

The perigee argument ® (0<w<2n) is the angle in the orbital plane between the line
of nodes and the line of apsides (it is measured from the ascending node to the
perigee of the orbit in the direction of the spacecraft);

The true anomaly ¢ is the angle between the directions from the center of the Earth to
the perigee and the location point of the spacecratft;

e The semi-major axis a is a distance equal to half the length of the apse line;
e Eccentricity e is a parameter that determines the shape of the orbit;



e The time of passage of the spacecraft through perigee t I1.

The quantities i and 2 characterize the position of the orbital plane in space, and the
quantities a and e — the size and shape of the spacecraft's orbit. The dimension »
represents the angular distance from the ascending node Q to the perigee of the orbit,
that is, it characterizes the state of the ellipse in space.

ILromuHAa
eKBaTopa

BY3.1iB

Bucxigan#
BY30.1

Opodira KA

Fig. 2. Spacecraft orbit in space

Knowing all six elements of the orbit 1, Q, ®, a, e, t I, you can calculate the
coordinates of the satellite for any moment in time. This SC is used in descriptions of
the true motion of the satellite through the elements of its orbit.

2.1.4. Linked coordinate system

Let's introduce the coordinate system rigidly connected to the satellite in Fig. 3, that is,
during the movement of the spacecraft, the coordinates of its points in the system do not
change. We place the origin of coordinates O in the center of mass of the KA, the axis
OZ_ KA is directed along the radius vector r KA, the axis OX_KA is chosen in the
plane of the orbit, perpendicular to [OZ] _KA so that when combining Z_KA with
the axis OZ_o, the axis OX_KA is combined with the axis OX_o0. The OY_KA axis
complements the OX_KA Y_KA Z KA system to the right rectangular coordinate

system.
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Fig. 3. Connected coordinate system
2.2. Conversion between SC
The position of the axes of the spacecraft OX ka Y _ka Z ka relative to the base
coordinate system OX 0 Y _o0 Z o is determined using matrix A of the transition from
the orbital to the nanosatellite-linked coordinate system. Since the transition from OSK
to ZSK, as can be seen from fig. 4, is performed by successive rotations by the angles v,

0 and ¢, then the matrices of single angular transitions have the form
The first rotation by the angle y around the axis OZ o:
The second rotation by the angle 6 around the axis
oY _o™:

Rotation by an angle ¢ around the axis

Thus, the resulting transition from orbital to bound SC has the following matrix form



Fig. 4. Transition from USK to ZSK

The position of the spacecraft in orbit in the plane of motion is found using the
matrix M of the transition from the geocentric equatorial rectangular coordinate system
OX_E Y_E Z_E to the moving coordinate system OX o0 Y_o0 Z_ o connected to the
center of mass of the nanosatellite. Due to the fact that, the transition from the OX_E
Y_E Z E coordinate system to the OX_o Y_o Z_o coordinate system, as can be seen
from fig. 5, occurs due to successive rotations to the angles Q, i and u=w+9, then the

transition matrix M has the

form



YE
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Fig. 5. The position of the moving SC relative to the inertial one

Any vector k specified in the absolute geocentric coordinate system OX EY _E

Z_E using the transition matrix M can be translated into the moving orbital coordinate

system OX 0 Y_o0 Z o connected to the center of mass of the nanosatellite

where K _oisthe k vector, in the orbital coordinate system, M”(-1) is the inverse

matrix M (which is orthogonal).

Conclusions on section

The main coordinate systems have been chosen, which will serve as the basis for

creating a nanosatellite orientation system and ensuring a simpler reproduction of the

processes taking place. Also in this section, the relationship between coordinate systems

Is considered and the transition matrices between them are defined. For certainty, the

main version of the orientation of the nanosatellite in space will be the orbital

coordinate system located at the center of mass of the spacecraft.



3. Development of a model of the system for determining the orientation of
nanosatellite
3.1. Earth's magnetic field model

The complexity of the research and the accuracy of describing the angular motion of the
nanosatellite in the Earth's magnetic field largely depends on the selected field model.
The simpler the model, the more possibilities the developer has in using research
methods, but due to this, the reliability of the description of transient movements
decreases. To obtain general ideas about the behavior of a nanosatellite, it is necessary
to obtain the most universal description without excessive detail, which forces the use
of a simpler model. A simple magnetic field model will be used to calculate a specific
orientation determination system.

3.1.1. International Geomagnetic Reference Field/World magnetic model
The most complete geomagnetic field is described by the IGRF (International
Geomagnetic Reference Field) and WMM (World Magnetic Model) models. Both

models use the expansion of the potential of the internal field to the Gaussian series [9]:

where A 0 is the longitude of the point where the field induction vector is
determined, 9 0= [90] ~°-0 0, 0 0 is its latitude, r is the distance from the center of
the Earth, R is the average radius of the Earth, g_n”m and h_n"m are coefficients (in
nT) from table [10], P_n"m are quasi-normalized Schmidt adjoint Legendre functions.
The induction and field strength vectors are determined by the expression

B=u OH,

where p_0=4n- [10] ~(-7) kg'm-A~(-2)-s"(-2) is the magnetic constant. The values
of the coefficients in this series are determined empirically with the help of statistical
processing of numerous measurements of the geomagnetic field. Both models differ
only in coefficients and have common limitations. They are used for altitudes up to 600
kilometers above the Earth's surface (WGS84) and are defined by a specific year. In the
last year of the model, the International Geodetic and Geophysical Union publishes new

IGRF coefficients valid for the next five years. The US National Oceanic and



Atmospheric Administration does the same for the WMM model. Such models are
usually used on board the satellite to achieve the highest possible accuracy and in the
numerical simulation of its motion during the development phase, but are not used in
analytical studies.In fig.7 it is worth noting that the IGRF model is usually used to

provide satellite orientation.

¢ w4

—

Fig. 6
3.1.2. Direct dipole 26
In the future, a simplified model will be used - the direct dipole model [11]. The
geomagnetic field is approximated by the field of a dipole located in the center of the
Earth and antiparallel to its axis of rotation. In this case, in the OXYZ system, the dipole
direction vector has the form k=(0,0,-1). Accordingly, the expression for the

geomagnetic induction vector in the OXYZ system takes the form

— 3.1)



where r is the value of the radius vector of the point in which the induction is
calculated, u e=p 0 p_m/4x is the value determined by the first three components of
the expansion, p_m=7.7245- [10] 76 T-km"2 is the dipole value Earth

The size of the induction vector B changes during the movement of the satellite in

orbit and is

— (3.2)

In the orbital coordinate system OX_0 Y_o0 Z o, the geomagnetic field is written in the

form

— (3.3)

The use of the direct dipole model will make it possible to take into account the non-
uniformity of the rotation of the local magnetic induction vector during the
movement of the nanosatellite in orbit. Also, this model will allow to fairly correctly
describe the main properties of the Earth's magnetic field for the correct operation of

the magnetometric orientation sensor.

3.2. Motion of the nanosatellite relative to the center of mass
To write the equations of motion of the satellite [12,13,14,15] relative to the
center of mass, we use the reference coordinate system OX _0Y_o0 Z o and the moving
OX_ ka Y_ka Z ka. We will determine the position of the nanosatellite-related
coordinate system relative to the orbital one using the orientation angles y, 6, and .
The transition between systems will be performed due to the orthogonal transition

matrix A.
Euler's kinematic equations

Kinematic equations establish a relationship between the orientation angles and
the angular velocity of the nanosatellite. The angular velocity of the spacecraft in the

reference coordinate system can be represented as



o =y  +0 +o

Let's project the absolute angular velocity vector @ on the OX ka Y_ka Z ka
axis using the transition matrix A and get the projections o X, ®_y, o z in the

connected coordinate system

(3.4)

Equations (3.4) are called Euler's kinematic equations, they connect the
projections of the spacecraft's angular velocity vector with the derivatives of the
orientation angles. To fully describe the movement of the spacecraft around the center
of mass, the kinematic equations must be supplemented with dynamic equations.

Euler's dynamic equations

Dynamic equations describe the motion of a rigid body near a fixed point, which
are derived from the kinetic momentum change theorem, according to which the time
derivative of the kinetic moment vector relative to a fixed point is equal to the principal

moment of external forces

- (3.5)

Dynamics equation in a general form, the space vehicle in the projection on the
axis of the moving coordinate system OX ka Y_ka Z ka under the condition that the

connected axes are the main axes of inertia

(3.6)

where |_x, |y, | _z are the axial moments of inertia of the spacecraft, M_x, My,

M _z are the moments of external forces acting on the spacecraft.



Euler's dynamic equations relate the change in angular velocity of the spacecraft

to the action of control and disturbance moments acting on the satellite.

Thus, the motion around the center of mass of the space vehicle as a completely
solid body is described by a system of six ordinary nonlinear differential equations of
the first order with respect to six unknown functions of time: vy, 6, ¢, ® X, ® y, ® z.
The system of equations includes: three dynamics equations and three kinematic
equations. These equations make it possible to judge the change in the angular position

of the spacecraft under the action of the controls and disturbing moments.

By substituting the kinematic equations (3.5) into the dynamics equation, instead
of six first-order equations, three second-order differential equations can be obtained
with respect to the three orientation angles v, 0, and ¢. Such equations establish a direct
connection between orientation angles, which determine the angular position of the

spacecraft, and external moments acting on the satellite.

Assuming that the orbit is circular (angular velocity @ 0 of the moving
coordinate system = const), the linearized equations of motion of the spacecraft under
the influence of gravitational and disturbing moments, as well as at small deviation

angles, have the following form:

(3.7)

Let's use the Laplace transform to the system of equations (3.7) and express the

orientation angles from it



We will consider the resulting system of equations as a simplified model of
a nanosatellite, which will make it possible, at the initial stage of design, to
simulate the angular motion of the spacecraft under the action of disturbing

moments. (3.8)

3.3. Undisturbed movement of the spacecraft in orbit

Forecasting the position of the spacecraft at a given moment requires a high-
quality mathematical model of the movement of its center of mass in the
Earth's gravitational field. Let's consider the formation of a mathematical
model of the Keplerian motion of a nanosatellite, that is, without taking into

account the influence of disturbing factors.

3.3.1. The equation of motion of the center of mass of the KA

We consider the undisturbed motion [16,17,18,19] of the spacecraft relative to the

Earth, taking into account the following assumptions:

we neglect the action of aerodynamic forces, forces of light pressure, forces of

gravity of other celestial bodies;



the center of mass of the central attracting body moves in a straight line and

uniformly;

the attracting celestial body (planet Earth) has the shape of a sphere with a

spherical density distribution. In this case, the gravitational field is central
F _rez=-um/i2 (e r) (3.9

where u=398600.5 km"2-s"(-2) is the gravitational parameter of the Earth, m is
the mass of the spacecraft, (e_r) is the radius vector of the spacecraft, r is the distance

to the satellite.

the mass of the spacecraft is very small compared to the mass of the attracting

body, that is, we neglect the force of gravity from the side of the spacecraft.

We consider the movement of the nanosatellite relative to the inertial coordinate
systemOX EY EZ E.

In celestial mechanics, this model is considered as a limited two-body problem.
Then the origin of the spacecraft coordinate system is combined with the center of the

Earth, the vector differential equation of motion of the nanosatellite looks like

. (3.10)

Projecting equation (3.10) on the axis of the inertial coordinate system, we obtain the

equation of the undisturbed motion of the spacecraft in the coordinate form:

— (3.11)



When integrating this system of differential equations, we get 6 integrals that contain

time t and 6 arbitrary constants determined from the initial conditions.

3.3.2. Orbit equation. Determination of the radius vector of the space vehicle and

velocity projections through the elements of orbit

The movement of the nanosatellite occurs in a constant plane (Laplace plane). The
trajectory of the spacecraft is a flat curve — the orbit of the satellite. To obtain the orbit
equation, we use the Laplace vector [17]. First, we find the scalar product of the vectors
f onr :

fr=\V xC )r-ur /Irr =C (r xV )-ur=C"2-ur (3.12)

where V is the energy integral vector, C is the plane integral vector

By definition of the scalar product

f -r =fr-cosd (3.13)

where 9 is the angle between the vectors f andr , then we get

fr-cos9 =C"2-ur (3.14)

From here we get the equation of the conic section in polar coordinates with the center
at the focus of the orbit:

(3.15)
where p is an orbit parameter that determines its linear dimensions in space:

— (3.16)

The conic section is symmetric with respect to the Laplace vector, and the polar
angle 9 (true anomaly) determines the rotation of the current radius vector relative to

the axis of symmetry. The obtained result reflects Kepler's first law.

The speed of the spacecraft. Depending on the shape and dimensions of the orbit, as
well as the position of the satellite in the orbit, its speed can vary in a fairly wide range.

Given the distance to the center of attraction (Earth), the speed of the satellite is one of



the main parameters of the movement. Let's decompose the velocity vector into two
components. Let's assume that one component (V_r) is directed along the radius-vector,
and the second (V_n) - along the normal to the radius-vector in the direction of the

satellite's movement.

Radial component of velocity:

(3.17)
Transversal component of speed:
B (3.18)
The absolute speed of the spacecraft along the trajectory:
B (3.19)

It follows from this formula that the absolute speed of the satellite in a given orbit

varies within fixed limits. The maximum speed is reached in the pericenter of the orbit.

The coordinates of the unit vectors (e_r) and (e_n) directed along the radius
vector r  of the spacecraft in orbit and along the normal to it in the plane of motion,

respectively, are found using the transition matrix M using the formulas:

(3.20)

(3.21)

The value of the radius vector in the absolute geocentric coordinate system:



(3.22)

The value of the velocity vector in the absolute geocentric coordinate system:

(3.23)

Based on this, the radius vector r (t) of the position of the spacecraft and its velocity
vector V (t) at the moment of time t were completely specified through the parameters

of the orbit, in the geocentric equatorial coordinate system.

3. Development of a model of the system for determining the orientation of
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3.3.3. Dependence of parameters of motion along an elliptical orbit. Solving the

Kepler equation

To determine the law of the satellite's orbital motion, it is necessary to establish the
dependence of the motion parameters on time. The distance of the nanosatellite to
the center of mass of the Earth and its speed can be calculated quite simply if the
value of the true anomaly 9 is known. Therefore, it is necessary to associate the
truth of the anomaly with the time of movement t.

The equation of the dependence [17] of the true anomalies 9 in the time interval
from t_IT to some arbitrary point on the orbit where the satellite is at the moment of

time t:

_ (3.24)

As we can see, the integral (3.24) depends on the sign of the eccentricity e, that is, on
the type of satellite orbit. For an elliptical orbit O<e<1. To calculate the integral (3.24),

it 1S necessary to switch to a new variable E - the eccentric anomaly.



The relationship between the eccentric anomaly E and the truth 9 has the following
form

- (3.25)
If we replace 9 with E in the integral (3.24) and differentiate, we get
_ (3.26)
Now let's introduce the concept of average anomaly
(3.27)
where — _the average motion of the spacecraft along the orbit.
The Kepler equation can be derived from the obtained ratio
(3.28)

Determining the position of the satellite at a given time requires solving Kepler's
transcendental equation (3.28).

To solve Kepler's equation [29,20] we will use an iterative algorithm. The average

anomaly, eccentricity and truth at the initial moment of time (t=0) are denoted as M, E
and 9, at any moment of time (At)—asM _1,E land9 1.

1) To obtain the true anomaly 9 1 at the time At, we use equations (3.25, 3.27,
3.28) as follows:

2) we set the initial value of the eccentric anomaly E_1=M 1, the average anomaly
is found by the formula (3.27);

3) we calculate the new value of the eccentric anomaly E_new according to the
Kepler equation E new=M 1+e-sinE 1;

4) the error is equal to the difference of absolute values [e=|E] new-E_1|;



5) thenlet [E_1=E] _new, now this is the new value of E_1;

6) steps 14 will be repeated until the error € becomes small;
7) true anomaly 9 1 is expressed from equation (3.25);
8) end of the algorithm.

Conclusions on the section

The main aspects of the formation of the model of the spacecraft movement relative to
the center of mass and motion along the orbit are considered, and the main model of the
magnetic field, which depends on the orbital position of the satellite, is also given.
Using the presented models of the movement and position of the satellite in orbit, it is
possible to consider the tasks of determining the orientation using a magnetometer and
an Earth sensor, as the main measures of the angular position relative to the reference
coordinate system.



4. Synthesis of the orientation system of nanosatellite

In order to solve the problem of determining the orientation of a nanosatellite, in
addition to using the models discussed above, it is also necessary to consider orientation
meters (in our case, it is a magnetometer and a vertical sensor of the Earth) and the main
orientation algorithms that will be compared (the algorithm for determining the yaw
angle and the TRIAD algorithm). The selected sensors have adequate orientation
accuracy and are also sufficiently simple and reliable to use. Also, the use of appropriate
algorithms will make it possible to assess the influence of the accuracy of the meters,
mostly for the magnetometer (as it is a less accurate sensor), on the complete
determination of the angular position of the spacecratft.

The general principle of operation is as follows: under the influence of external
moments on the satellite during orbit movement, an angular displacement of the SC
connected to the satellite relative to the reference one is formed, this angular
displacement will be reflected in the change in the position of the magnetic stress vector
in the orbital coordinate system, which in its the magnetometer will measure the turn,
and the direction vector to the Earth will also change, the change of which is determined
by the Earth sensor. Further, the measured data are used in the orientation determination
algorithms, and after determining the angular position, an accuracy assessment is made
depending on the specified errors of the meters and initial conditions.

In fig. 7. a demonstrative reference coordinate system OX o Y_o0 Z_ o relative to which
the formation of mathematical models of the movement of the spacecraft, as well as the

operation of sensors and algorithms for determining the orientation will be carried out.



Fig. 7. Reference coordinate system

4.1. Models of measurement sensors

4.1.1. Mathematical model of magnetometer
Using a magnetometer as part of a low-orbit satellite

The mathematical model of magnetometer measurement [21] without taking into
account the non-orthogonality of the sensitive elements of the axes has the following
form:

(3.29)

where h is the vector of measurements of the magnetometer, H is the vector of the
Earth's magnetic field strength in the coordinate system linked to the nanosatellite, A is

the error of the scale factor, p is the zero displacement vector of the magnetometer.

Formula (3.29) can be written in the following form:



(3.30)

Based on the fact that we know the true angular position of the satellite in space
at this moment in time, due to motion simulation and the magnetic field model, we
determine the H_o vector in the orbital SC. Then the magnitude of this vector in the

connected SC is calculated by the formula:
(3.31)

With the help of the given ratios, the determination of the intensity vector of
the Earth's magnetic field by the magnetometer, which is on board the
spacecraft, is reproduced. This model of the magnetometer is approximate, it
takes into account only the error of the scale factor and the displacement of

zero along the corresponding axes.

4.1.2. Mathematical model of the Earth sensor

The line that passes through the center of the Earth O_E and the center of mass of
the spacecraft O is called the local vertical [12]. The OZ_o axis of the orbital coordinate
system is located on it. The vertical sensor is needed to build an on-board orbital
coordinate system. When using the Earth as a reference point, one axis of the satellite (-
0zZ_KA) will be constantly directed towards the Earth and coincide with the local
vertical, provided that there is an ideal orientation.

In this work, the Earth sensor is considered in two possible versions, the first as a
meter of pitch angles 6 and roll ¢, which are formed as follows. Let the initial position
of the axes of the connected system OX ka Y _ka Z ka coincide with the axes of the
orbital coordinate system OX o Y o Z o. The rotation by the pitch angle 0 is
performed around the connected axis OY_ka. After the first turn, the connected axes of
the spacecraft occupy the position (OX ka'Y ka Z ka ). The turn to the roll angle ¢ is
performed around the connected axis O [X_ka] ~. Information from which is

necessary for the operation of the yaw angle finding algorithm.



The second option is a direct meter of the direction vector to the center of mass of
the Earth. Information from the Earth sensor in this form is used for the TRIAD vector
algorithm.

The measured values from the Earth sensor will be considered under the influence of
the added zero displacement error for two angles 0, ¢. The mathematical model has the

following form:

(3.32)

are the pitch and roll angles measured by the Earth sensor, respectively,
0, ¢ are the true values of the orientation angles, AB, A are the zero offset of the

orientation angles.

Mathematical model of local vertical vector measurement with scale factor error and

zero offset:

where e_Xx, e Y, e_z are the measured projections of the local vertical vector
on the connected axes of the spacecraft, E_x, E_y, E_z are the true values of
the local vertical vector in the connected SC, A x, A y, A z are the errors of
the scale factor on the corresponding axes, ¢ x, 6 y, 6 z — displacement of
Sensor zeros. (3.33)
The Earth sensor is one of the most accurate meters [22] that are installed on
small spacecraft during low-orbit flight, but it has a significant drawback,
which is the limitation of the maximum deviation at which the sensor can be
oriented to the Earth. In the future, the dependence of the maximum possible
deviation angles of the spacecraft, which do not affect the accuracy of

determining the orientation, will be considered.



4.2. Algorithms for determining the orientation of a nanosatellite
4.2.1. The TRIAD algorithm
The algorithm for determining the angular position of the spacecraft relative to the
reference coordinate system is TRIAD [22,23]. The result of determining the orientation
is formed by observing at least two non-parallel vectors located in two different SCs.
The operation of this algorithm requires information about two vectors located in the
coordinate system connected to the nanosatellite. This information is provided by
selected meters (magnetometer, Earth sensor), due to the selection of these sensors, the

orientation system will be reliable and simple to implement.

We consider the orientation of the object in the coordinate systems OX _oY_o Z o and
OX_ka'Y_ka Z ka, the relative position is shown in fig. 6. Assume that two vectors e
and s are known in the given coordinate systems. In the reference coordinate system
OX o0Y_o Z o vectors are denoted as (e 0) =E_o=[E_Xo,E Yo,E Zo]*Tand (s 0)
=S _0=[S_Xo0,S Y0,S Zo J*T. In the connected coordinate system OX ka Y ka Z ka
we denote the vectors by (e KA ) =E KA=[E_ X,E Y,E Z *"T and (s KA )
=S KA=[S X,S_VY,S Z ] T. Next, the normalized (unit) vectors of the reduced vectors

are constructed: —

We construct a normalized vector that is perpendicular to the plane formed by the
two vectors e no and s _no. This vector, denoted by m _no, is found by the
following equation:

Having obtained the vector m _no, we determine the unit vector n _no=e _noxm

_no. Using the previously generated vectors, we will get an orthogonal triplet of



vectorse _no,m _no,n _no (triad), which forms a basis built on the vectors (e_0)

and (s o) .

Similarly, we construct a basis for a connected coordinate system from the vectors e
_nKA, m nKA, n nKA, and write the normalized vectors in the matrix of the

following form:

: (3.34)

, (3.35)

Based on the concept of the TRIAD algorithm, the matrix of direction cosines of the

transition from the reference coordinate system to the connected one has the form

(3.36)
where [M_o] AT is the transposed matrix M_o.

To determine the angles from the matrix M, you need to use the following expressions:

(3.37)

— (3.38)

(3.39)

It should also be noted that the TRIAD algorithm is sensitive to the instrumental
errors of the meters. If we consider the error caused by the inaccuracy of the
magnetometer h_y along the OY KA axis, denote it as Ah y, then the error in

determining the yaw angle will have the following form:



From the given equation, we can see that the error of the magnetometer causes a
change in the yaw angle, i.e., even if the nanosatellite is perfectly oriented in space,
the orientation determination system will receive information about the angular

deviation, which in turn causes excessive movement of the spacecratft.

4.2.2. Algorithm for determining the yaw angle
Consider the algorithm [8] that determines the orientation of the spacecraft relative to
the axis OZ_ka — the yaw angle y. For its operation, it is necessary to know the angles
of pitch 6 and roll ¢ relative to the reference coordinate system OX oY o Z o, which
are determined using the Earth sensor. The obtained values are found in the form (3.32).
It is also necessary to know the stress vector of the Earth's magnetic field measured by a
magnetometer (3.30). The task is to determine the yaw angle y, based on the relevant

information.

The movement of the nanosatellite is considered in the reference coordinate system
OX_0 Y_o Z_o, the position of the connected axes is shown in fig. 6. We consider the
projections of the intensity vector of the Earth's magnetic field a_x0, a_y0, a_z0 in the
orbital coordinate system and in the connected SC a_x, a Yy, a_z to be known. The pitch

and roll angles measured by the Earth sensor must also be known.

From fig. 6, we determine the dependence of the projection of the tension vector H in

the orbital SC relative to the connected one by the given relation

a, =a,,CoSy CoSH +a,,Siny cosd —a,,sing ;

a, = a,o(—siny cosg + cosy sin psind) + a,, (CoSy cos ¢ + siny sin psin 0) +
+a,,c0s4sing ; (3.40)
a, = a,o(Siny sing + cosy cospsin f) + a,,(—Ccosy sin g +siny cos psin ) +
+a,,C0SOCoSQ .

We denote p_1 and p_2 by expressing from the second and third equations (3.40):



{axo COSOCosy +a,,cosfsiny = u;;
(3.41)

ae :
From the system of equations (3.41), the expression by which the yaw angle is
calculated is:
LY cosé + 48y

siny =
v cosé(ay, +aj,) (342)

Expression (3.42) is inserted into the on-board computer to find the yaw angle y. It
should also be noted that the accuracy of the angle determination by this algorithm,
when the value of the latitude argument u=90"° and u=270"° decreases significantly,

this follows from the following ratio:

This problem is also observed in the TRIAD algorithm, this is due to the fact that the
vectors at the corresponding values of the width argument become parallel, that is, the
system becomes one-vector.

Conclusions on the section

In this section, the main mathematical models of sensors for orientation determination
(magnetometer and Earth sensor) with scale factor errors and zero offset are considered.
The main algorithms for determining the orientation of a nanosatellite (the algorithm for
determining the yaw angle and the TRIAD algorithm), their dependence on the
parameters of the orbital motion, and their mathematical implementation are also given.

5. Modeling the system in the Matlab Simulink software package

We use the Matlab/Simulink program package to test the proposed methods and
solutions, as well as to create a simulation model that reflects the complex creation of
an orientation system. The simulated model of the orientation system of a nanosatellite

with a magnetometer and a vertical sensor of the Earth, built on the basis of the use of
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the mathematical """ I S and shown in fig. 8.
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Fig. 8. Complete simulation model of the nanosatellite orientation system
The model consists of the following blocks and subsystems:

e "Initial conditions of the orbit", a subsystem in which the parameters of the
orbit are set;

e "Solution of Kepler's equation”, function block in which Kepler's equation is
solved;

e "Orbital motion", a block for forming the nanosatellite’s state vector during
orbital motion;

e "H vector model in OSK", in this block the magnetic field intensity vector is
formed in the orbital coordinate system;

e "Magnetometer”, a subsystem in which the mathematical model of the
magnetometer is implemented,;

e "Earth sensor”, a subsystem in which the mathematical model of the Earth
sensor is implemented,;

e "Orientation determination algorithms", a subsystem in which the yaw angle

determination algorithm and the TRIAD algorithm are embedded;



"regulator”, a subsystem that implements damping of the angular motion of
the spacecraft;

"nanosat”, a subsystem that reproduces the mathematical model of a
nanosatellite.
When modeling the given scheme, we will get a display of the satellite's
orbital movement, the angular movement around the center of mass of the
spacecraft, and the determined values of the nanosatellite’s angular position
relative to the reference coordinate system.
The set parameters of the orbit:

The longitude of the ascending node of the orbit Q=0"°;

The argument of the perigee of the orbit ®=0"°;

Orbit inclination i= [98)] ~°;

Semi-major axis a=6971 km;

Eccentricity e=0.01 km;

Average anomaly M=0"°;

Gravitational parameter p=398600.5 km"2-s"(-2);

The value of the error of solving the Kepler equation e=1e-10;
Simulation time t=5854.8 s.
5.1. Model of nanosatellite movement relative to CM
5.2. Model of orbital motion of nanosatellite

5.3. Block of formation of the Earth's magnetic field

The results of the spacecraft's orbital motion,



obtained during the simulation of the nanosatellite calculation system for one period

T. are shown inl Fia. 9 - 12_

Fig. 9. The value of the radius vector in the geocentric coordinate system
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Fig. 10. The trajectory of the spacecraft's orbital motion
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Fig. 12. Absolute speed of a nanosatellite

The following graphs show the actual movement of the center of mass of the
nanosatellite along the orbit depending on the set parameters of the orbit. The
corresponding parameters were chosen according to the principle of optimality of the
orbit to ensure the maximum time of illumination of the spacecraft by the Sun's rays.

A model of nanosatellite motion relative to the CM



In the "nanosat" subsystem (Fig. 13), a system of differential equations (3.8) is
embedded, which reflects the movement of the nanosatellite relative to the center of
mass. With the help of the corresponding equations, the angular motion is modeled
when gravitational restoring and disturbing moments act on the satellite, as well as

small deviation angles.
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Fig. 13. Structural diagram of the "nanosat" subsystem

where

The initial conditions for deviation of yaw, pitch and roll angles are 0.1 radians,

which we set in every second integrator of the corresponding channel.



Let's set the optimal values of the coefficients for small spacecraft. In equation (3.8),

which characterizes the simulation of the angular motion of the satellite:

where @ 0 is the angular speed of rotation of the spacecraft in orbit.

In this simulation model, there is no damping of natural oscillations relative to the
connected axes. Let's solve this problem by introducing the "regulator" subsystem into
the system (Fig. 14), which will perform the task of damping links of the formed

angular movements.
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Fig. 14 Structural diagram of the "regulator" subsystem

We will use the optimal damping coefficients:



We will obtain the results of modeling the angular motion of the nanosatellite using the
given coefficients, the graphs of the formed deflection angles are shown in fig. 15 - 17.

6

5

L +
I By,

psi, [rad]
[
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Fig. 16. Graph of nanosatellite deflection by pitch angle
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Fig. 17. Graph of deviation of the nanosatellite by roll angle

The obtained graphs demonstrate the behavior of the nanosatellite when external

moments act on it, the output angles must then be measured with the help of a
magnetometer and the Earth sensor and processed in the orientation algorithm.

A model of the orbital motion of a nanosatellite

The structural diagram of the nanosatellite motion simulation (Fig. 18) consists of the
"Solving the Kepler equation” and "Orbital motion" blocks.
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Fig. 18. Structural modeling of the orbital motion of a nanosatellite

The iterative algorithm for solving the transcendental equation described in clause
(3.3.3) is embedded in the "solving the Kepler equation™ block, given the initial
conditions and orbit parameters. The MATLAB script of the corresponding
algorithm is given in Appendix A.1.

Let's consider the "Orbital motion" block, in this block the programmed equations
were set forth in the description of the mathematical model of item (3.3.2). The input
data are the previously set parameters of the orbit, as well as the truth anomaly 9
calculated with the help of the block "solving the Kepler equation”, which
characterizes the rotation of the radius vector of the spacecraft along the orbit. The
output values are the velocity and position vectors in the absolute geocentric
coordinate system, as well as the absolute values of the velocity and position of the

satellite in orbit. The implementation is outlined in Appendix A.2.

Block of formation of the Earth's magnetic field
The use of the "Vector H model in OSK" block (Fig. 19) is necessary to simulate the

Earth's magnetic field, which in turn will be measured by the magnetometer installed on
board the spacecraft.
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Fig. 19 Block for simulating the Earth's magnetic field
The values of the perigee argument, the inclination of the orbit and the distance of
the satellite to the center of the Earth are given to the input of the block. The formulas
contained in this block are considered in the section on the direct dipole model (3.1.2).
The implementation is outlined in Appendix A.3.

5.4. Block of orientation detection sensors 53



In the "Magnetometer" subsystem, the output signal of the magnetometer is
simulated, the type of signal is the projection of the magnetic field intensity vector in
the bound coordinate system. The input of the subsystem is supplied with the vector of
the magnetic field strength in the orbital SC and the angles of deviation of the spacecraft
to simulate the simulation of work. The magnetometer, according to the mathematical

model considered in point (4.1.1), has scale coefficient errors and zero offset error. The

structure of the subsystem IS shown in fig. 20.
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Fig. 20. Structural diagram of magnetometer simulation
The conversion of H_o to H_KA is implemented using the script file provided in
Appendix B.1.
Similarly, a model for simulating the operation of the Earth sensor is created, the
vector of the direction to the ground in the reference coordinate system and the satellite
deflection angles are input. Also, according to the mathematical model from point

(4.1.2), a structural one with measurement errors is created. The structure of the "Earth



sensor" subsystem IS shown in fig. 21.
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Fig. 21. Structural diagram of the simulation of the operation of the Earth sensor
The script file for the transformation of the local vertical vector from the reference
coordinate system to the connected SC is given in Appendix B.2.

5.5. Block of orientation determination algorithms

Let's consider the structure of the "Orientation determination algorithms" subsystem,
in which two orientation algorithms are located - the TRIAD algorithm and the
proposed algorithm. The structure of the subsystem is created on the basis of a
mathematical explanation of the operation of the corresponding algorithms, considered

in clauses (4.2.1 - 4.2.2). The algorithm simulation scheme is shown in fig. 22.
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Fig. 22. Structural diagram of orientation algorithms

The implementation of the proposed algorithm and the TRIAD algorithm using a

Matlab script is given in Appendix B.1. and B.2. in accordance.

Next, we will perform a comparative analysis of the accuracy of the given
algorithms with respect to the reference values of the orientation angles and consider
the influence of meter errors on the accuracy of the TRIAD algorithm and the

proposed algorithm.

Conclusions on the section

In this section, the structure of the simulation model of the calculation system of the
orientation of a nanosatellite with an Earth sensor and a magnetometer in the
Matlab/Simulink software package is implemented. The specified mathematical models
of measurement sensors, the Earth's magnetic field, the orbital motion of the spacecraft,
the angular motion of the satellite relative to the center of mass and the corresponding
algorithms are reproduced. In fig. 23 is MatLab code and Graph.

clc

clear

I=98*pi/180;

k=1.01,;

for p=1:1:2*pi*10

u=(p-1)/10;

axo=cos(u)*sin(i);

ayo=cos(i);

azo=-2*sin(u)*sin(i);

psi_gr=5; tet gr=3; fi_gr=4;

psi=psi_gr*pi/180; tet=tet_gr*pi/180; fi=fi_gr*pi/180;

cpsi=cos(psi); spsi=sin(psi); ctet=cos(tet); stet=sin(tet); cfi=cos(fi); sfi=sin(fi);
Eb_Xx=axo*cpsi*ctet+ayo*spsi*ctet-azo*stet;
Eb_y=k*(axo*(-spsi*cfi+cpsi*sfi*stet)+ayo*(cpsi*cfi+spsi*sfi*stet)+azo*ctet*sfi);
Eb_z=axo*(spsi*sfi+cpsi*cfi*stet)+ayo*(-cpsi*sfi+spsi*cfi*stet)+azo*ctet*cfi;
v(p)=u;

mul=Eb_ x+azo*sin(tet);

mu2=Eb_z*sin(fi)-Eb_y*cos(fi);

delt = cos(tet)*(axo"2+ayo”2);

delts = mu2*axo*cos(tet)+mul*ayo;

sinpsi = delts/delt;



psi_1 = asin(sinpsi)*180/pi;
del_psi_1(p)=psi_1-psi_gr;

end
plot(v/2/pi,del_psi_1,'k’,'linewidth’,1),grid
xlabel('BIOS1, HITAEPX)

ylabelCOHY XAMX, LIITIO/T)
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CONCLUSIONS

1. A nanosatellite orientation system was developed based on the Earth sensor and
magnetometer to determine the angular position of the spacecratft;

2. Basic mathematical models of measurement and movement sensors are described
nanosatellite;

3. It is proposed to use the yaw angle determination algorithm in the composition
orientation systems based on the Earth sensor and magnetometer;

4. The structure of the nanosatellite orientation system was developed and implemented

model in the Simulink program;
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APPENDIX A
A.1. SOLVING THE KEPLER EQUATION

function [v,E] = KeplerEqg(omega,e,a,M0,mu,error,t) %OyHKLU1S BUpiueHHS
pieHaHHA Kenmepa

= sqrt(mu/a”3); % cepenHe nepeMimeHHS

MO + (n*t); % cepenmua aHomajis

oo

=23
Il

Enew = M;
Enewl = Enew - (Enew-e*sin(Enew)- M)/ (1 - e*cos (Enew));
while ( abs (Enewl-Enew) > error )
Enew = Enewl;
Enewl = Enew - (Enew - e*sin(Enew) - M)/ (1 - e*cos(Enew));
end;
E = Enewl;

v=2*atan (tan(E/2)*((1l+e)/ (1-e))”~0.5); % icTmHa aHoMasia

u = omega + V; % apryMeHT UIMPOTH

A.2. Orbital motion of the spacecraft

r = p/(l+e*cos(v)); % piBHauHa OpOiTHU

Vr = sqrt (mu/p) *e*sin(v); S%$panianbHa mMBUIKICTH

Vn = sqgrt(mu/p)* (l+e*cos (v)); S%TpaHcBepcalibHAa MBUIKICTH

Va = sqrt (Vr"2 + Vn"2); %abcosoTHa WNBUIKICTH

Mu = [cos(u) sin(u) 0; -sin(u) cos(u) 0; 0 0 11];

Mi = [1 0 0; O cos(i) sin(i); O =-sin(i) cos(i)];

MO = [cos (Omega) sin(Omega) 0; -sin(Omega) cos(Omega) 0; 0 0 1];

M = Mu*Mi*MO; SmMaTpuld nepexony M

er = M.'*[1,0,0]."; %Sopra no X
en = M.'*[0,1,0]."; %Sopra nmo Y
rk = r*er; %panilyc-BeKTOp CyNIyTHMKA

Vak = Vr*er + Vn*en; %BexTOp abCOJIOTHOI MBUIKOCTI
A.3. Model of Earth's magnetic field
function Ho = vecHo (v,omega,i,r)

M = 8.3*10716; $ MATHiTHMM MOMEHT 3eMJIi
lambda = M/r"3;

u = omega + Vv; % apryMeHT MIVPOTH
ax=cos (u) *sin (i) ;
ay=cos (i) ; % npoekiuii BekTOpa HamnpyxeHocTi Ha OCK

az=-2*sin(u) *sin (i) ;

Ho = [ax, ay, az].'*lambda; % BexTOp HamnpyxeHocTi H



APPENDIX B
B.1. THE MAGNETIC FIELD INTENSITY VECTOR IN THE ZSK

function Hka = magnitometer (psi, tet, fi, Ho)

Afi = [1 0 O0; 0 cos(fi) sin(fi); 0O -sin(fi) cos (fi)

17
Atet = [cos(tet) 0 -sin(tet); 0 1 0; sin(tet) 0 cos(tet)]:;
Apsi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) O0; 0 0 17];
A = Afi*Atet*Apsi; SMarpuusa nepexony Bim AT mo 3 CK
Hka = A*Ho; % Bu3HadeHuM BekTOop H B CK KA
B.2. The local vertical vector in the ZSK
function Eka = Earth sensor (psi, tet, fi)
Eo = [0 0 -1]."; %BexTOp Micuerol BepTukasyii B OCK
Afi = [1 0 O0; O cos(fi) sin(fi); O -sin(fi) cos(fi)];
Atet = [cos(tet) 0 -sin(tet); 0 1 0; sin(tet) 0 cos(tet)];
Apsi = [cos(psi) sin(psi) 0; -sin(psi) cos(psi) O0; 0 0 17];

A = Afi*Atet*Apsi; SMarpuus nepexomy Bin opBiranbHol mo 3 CK

Eka = A*Eo; %BexTOp Micuerol BepTumkaji B 3CK



APPENDIX C
C.1. THE PROPOSED ALGORITHM

function psi = AlgKyrs(tet, fi, Ho, Hka)

axo = Ho(1l);
ayo Ho(2); % mpoexuil sBexTopa H B OCK
azo Ho (3);

ax = Hka (1) ;
ay Hka (2); % mpoexkuii BexTopa H B 3CK
az Hka (3) ;

mul=ax + azo*sin(tet);
mu2=az*sin(fi) - ay*cos (fi);

delts = mu2*axo*cos(tet) + mul*ayo;
delt = cos(tet)*(axo™2 + ayo™2);

sinpsi = delts/delt;

psi = asin(sinpsi); %$po3paxyHOK KyTa pPsi

C.2. TRIAD algorithm

function [psi,tet,fi] = TRI (Eo,Ho,Eka, Hka)

% YCYyHEHHSs CKJIamaHHsa IOBOX BEKTOP1B
if Eo==Ho
Eo(1)=Ho(1)+0.0000000000000001;
end
if Eka==Hka
Eka(1)=Hka (1)+0.0000000000000001;
end

Eon=Eo./norm(Eo0) ;
Son=Ho./norm (Ho) ;

hon=cross (Eon, Son) ./norm(cross (Eon, Son) ); % GOopMyBaHHS OIMHUUHUX
von=cross (Eon, hon) ./norm(cross (Eon,hon)); % oproroHalbHMx BekTOpiB B OCK
Mo=[Eon hon von]; % marpuiisg BekTOopiB B OCK

’

Ebn=Eka./norm(Eka)

Sbn=Hka./norm(Hka) ;

hbn=cross (Ebn, Sbn) ./norm(cross (Ebn, Sbn) ); %
vbn=cross (Ebn, hbn) ./norm(cross (Ebn, hbn) ) ;

oo

@OpMyB AdHHA OIVMHMYHUX
OPTOTOHANLHUX BekTOpir B OCK

Mb=[Ebn hbn vbn]; % marpuusa eexTopir B 3CK
M = Mb*Mo'; %M - oOuUMCIIOETBHCS MaTPMLg HAIPaBJIgOUMX KOCHMHYC1B
psi=atan (M(1,2)/M(1,1));

tet=asin (-M(1,3)); % BMB3HAUAKWTBLCA KyTM opieHTanii
fi=atan(M(2,3)/M(3,3)):;



