

MINISTRY OF EDUCATION AND SCIENCE OF UKRAINE NATIONAL

AVIATION UNIVERSITY

FACULTY OF AIR NAVIGATION, ELECTRONICS AND

TELECOMMUNICATIONS

AEROSPACE CONTROL SYSTEMS DEPARTMENT

 APPROVED FOR DEFFENCE

Head of the Department

 __________Yurii MELNYK

“_____” ____________ 2024

QUALIFICATION PAPER

FOR THE ACADEMIC DEGREE OF

BACHELOR

Title: «Autonomous navigation system of a wheeled robot»

Performer: student of group CS-404 Yelyzaveta HULBINAS

Supervisor:___________________________ Yurii MELNYK

Srandarts inspector:_____________________Mykola DYVNYCH

Kyiv 2024

2

МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІЕРСИТЕТ

ФАКУЛЬТЕТ АЕРОНАВІГАЦІЇ, ЕЛЕКТРОНІКИ ТА ТЕЛЕКОМУНІКАЦІЙ

КАФЕДРА АЕРОКОСМІЧНИХ СИСТЕМ УПРАВЛІННЯ

 ДОПУСТИТИ ДО ЗАХИСТУ

Завідувач кафедри

 __________Юрій МЕЛЬНИК

 «_____» ____________ 2024 р.

КВАЛІФІКАЦІЙНА РОБОТА

(ПОЯСНЮВАЛЬНА ЗАПИСКА)

ВИПУСКНИКА ОСВІТНЬОГО РІВНЯ

«БАКАЛАВР»

Тема: «Система автономної навігації колісного робота»

Виконавець: студент групи СУ-404_______________Єлизавета ГУЛЬБІНАС

Керівник: __Юрій МЕЛЬНИК

Нормоконтролер:_____________________________Микола ДИВНИЧ

Київ 2024

3

НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Факультет аеронавігації, електроніки та телекомунікацій

Кафедра Аерокосмічних систем управління

Освітній ступінь: бакалавр

Спеціальність: 151 Автоматизація та компʼютерно-інтегровані технології

ЗАТВЕРДЖУЮ

Завідувач кафедри

 _________Юрій МЕЛЬНИК

 « ____» __________ 2024 р.

ЗАВДАННЯ

на виконання кваліфікаційної роботи студента

Гульбінас Єлизавети Сергіївни

1. Тема роботи (проекту): «Система автономної навігації колісного робота».

Затверджена наказом ректора від «1» квітня 2024 р. No 511/ст.

2. Термін виконання роботи (проекту): з 13.05.2024 по 13.06.22024

3. Вихідні дані до роботи (проекту): розробка модуля автономної навігації

колісного робота з побудовою оптимальних алгоритмів обходу перешкод з

використанням карт місцевості

4. Зміст пояснювальної записки (перелік питань, що підлягають розробці):

РОЗДІЛ I. НАВІГАЦІЙНА СИСТЕМА ДЛЯ МОБІЛЬНИХ РОБОТІВ;

РОЗДІЛ 2. ПЛАНУВАННЯ ШЛЯХУ МОБІЛЬНОГО РОБОТА; РОЗДІЛ 3.

РЕЗУЛЬТАТИ ВПРОВАДЖЕННЯ ПРОГРАМНОГО ЗАБЕЗПЕЧЕННЯ;

ВИСНОВОК; СПИСОК ВИКОРИСТАНОЇ ЛІТЕРАТУРИ ТА

РЕСУРСІВ.

5. Перелік обов’язкового графічного матеріалу: Рисунки результатів

4

моделювання та розрахунків. Матеріали презентації в Power Point.

6. Календарний план-графік

1 Отримання завдання 13.05.2024-16.05.2024 Виконано

2

Формування мети та

основних завдань

дослідження

17.05.2024-18.05.2024 Виконано

3
Аналіз існуючих методів 19.05.2024-23.05.2024 Виконано

4
Теоретичний розгляд

рішення проблеми

24.05.2024-28.05.2024 Виконано

5

Розробка методів

планування траєкторії

рухомого об'єкта,

здатного здійснювати

автономний рух у різних

середовищах

30.05.2024-2.06.2024 Виконано

6
Оформлення

пояснювальної записки

2.06.2024-4.06.2024 Виконано

7
Підготовка презентації

роздаткового матеріалу

5.06.2024-11.06.2024 Виконано

7. Дата видачі завдання: «13» травня 2024 р.

Керівник дипломної роботи Юрій МЕЛЬНИК

Завдання прийняв до виконання Єлизавета ГУЛЬБІНАС

5

NATIONAL AVIATION UNIVERSITY

Faculty of Air Navigation, Electronics and Telecommunications

Aerospace Control Systems Department

Educational level: bachelor

Specialty: 151 "Automation and Computer-integrated Technologies"

APPROVED BY

Head of Department

 _______Yurii MELNYK

"____" __________2024 y.

Qualification Paper Assignment for Graduate Student

Hulbinas Yelyzaveta Serhiyivna

1. The qualification paper title « Autonomous navigation system of a wheeled

robot »

Approved by the rector order from «01» April 2024 № 511/ст.

2. The paper to be completed between: 13.05.2024 and 13.06.2024

3. Output data to the work (project): development of a module for autonomous

navigation of a wheeled robot with the construction of optimal algorithms for

avoiding obstacles using terrain maps.

4. Contents of the explanatory note (list of questions to be developed):

SECTION I. NAVIGATION SYSTEM FOR MOBILE ROBOTS; SECTION 2.

PLANNING THE MOBILE ROBOT PATH; SECTION 3. RESULTS OF

SOFTWARE IMPLEMENTATION; CONCLUSION; LIST OF REFERENCES

AND RESOURCES.

6

5. List of required graphic material: Figures of simulation and calculation results.

Presentation materials in Power Point.

6. Planned schedule:

№ Task Execution term
Execution

mark

1 Task receiving
13.05.2024-

16.05.2024
Executed

2
Purpose formation and describing

the main research tasks

17.05.2024-

18.05.2024

Executed

3 Analysis of existing methods
19.05.2024-

23.05.2024

Executed

4
Theoretical consideration of the

problem solution

24.05.2024-

28.05.2024

Executed

5

Developing of methods for planning

the trajectory of a moving object

capable of autonomous movement

in various environments

30.05.2024-

2.06.2024

Executed

6 Making an explanatory note
2.06.2024-

4.06.2024

Executed

7
Preparation of presentation and

handouts

5.06.2024-

11.06.2024

Executed

7. Date of task receiving: “13” May 2024

Diploma thesis supervisor__________________ Yuriy MELNYK.

 (signature)

Issued task accepted___________________ Yelyzaveta HULBINAS.

 (signature)

7

РЕФЕРАТ

Пояснювальна записка до дипломної роботи «Система автономної навігації

колісного робота»: 58 ст., 29 рисунків, 13 використаних джерел.

Актуальність теми. Проблема створення навігаційної системи, що дозволяє

рухомим об'єктам здійснювати автономний рух у реальних середовищах, дуже

важлива в сучасному світі. Масове виробництво автономних роботів, здатних

працювати у складних умовах, значно спростить життя людей. Нікому не

доведеться ризикувати своїм життям, виконуючи роботу.

В даний час найчастіше використовуваними автономними рухомими

об'єктами через зручність їх використання є мобільні роботи. У зв'язку з цим

розглядається завдання побудови системи навігації саме для даного типу роботів.

Об’єкт дослідження – автономні мобільні роботи.

Предмет дослідження – система автономної навігації робота.

Мета дослідження – створення навігаційної системи, що дозволяє

здійснювати автономний рух на площині (2D).

Наукова новизна – розроблено модуль автономної навігації робота з

побудовою оптимальних алгоритмів обминання перешкод з використанням карт

місцевості.

Методи дослідження: методи аналізу, аналітичного та комп’ютерного

моделювання, методи випробувань і експерименту.

Матеріали дипломної роботи можуть бути використані для вирішення задач

автономного виконання завдань колісними роботами різного призначення по

картам місцевості з обминанням перешкод по найбільш оптимальному, в даних

умовах, маршруту.

8

ABSTRACT

Explanatory note to the thesis "Autonomous navigation system of a wheeled

robot": 58 p., 29 figures, 13 references.

Actuality of the theme. The problem of creating a navigation system that allows

moving objects to move autonomously in real environments is very important in the

modern world. Mass production of autonomous robots capable of working in difficult

conditions will greatly simplify people's lives. No one should have to risk their life

doing the job.

Currently, mobile robots are the most frequently used autonomous moving

objects due to their ease of use. In this regard, the task of building a navigation system

specifically for this type of robots is considered.

The object of research is autonomous mobile robots.

The subject of research is a system of autonomous robot navigation.

The purpose of the research is to create a navigation system that allows for

autonomous movement on a plane (2D).

Scientific innovation – a robot autonomous navigation module was developed

with the construction of optimal algorithms for bypassing obstacles using terrain maps.

Research methods: methods of analysis, analytical and computer modeling,

methods of tests and experiments.

The materials of the thesis can be used to solve the problems of autonomous

performance of tasks by wheeled robots of various purposes on maps of the area with

the bypassing of obstacles along the most optimal, under the given conditions, route.

9

PLAN

РЕФЕРАТ ... 7

ABSTRACT .. 8

PLAN ... 9

INTRODUCTION ... 11

SECTION 1 ... 12

NAVIGATION SYSTEM FOR MOBILE ROBOTS ... 12

1.2. Obstacle detection .. 18

1.3. Stereo vision method in the problem of determining the distance to an obstacle . 19

1.4. Triangulation method in the problem of determining the distance to an

obstacle ………………………………………………………………………………..23

CONCLUSION ... 27

SECTION 2 ... 28

PLANNING THE PATH OF A MOBILE ROBOT ... 28

2.1. Description of the movement of a moving object .. 28

2.2. Navigation system structure ... 29

2.3. SLAM algorithm ... 31

2.4. Constructing an environmental map in the form of a grid map 33

2.5. Obstacle tracing .. 34

2.6. General planning structure .. 35

2.7. Algorithms for avoiding obstacles .. 36

2.7.1. Dijkstra’s algorithm ... 36

2.7.2. Algorithm A* (A-star) ... 38

2.7.3. Algorithm A* (A-star) for wheeled robots .. 38

2.7.4. Algorithm D* (D-star) ... 40

2.7.5. Algorithm D* ... 41

2.8. Efficient Path Method ... 42

SECTION 3 ... 45

RESULTS OF SOFTWARE IMPLEMENTATION .. 45

10

3.1. Building an obstacle map ... 50

3.3. Comparison of accuracy and speed of algorithms ... 54

CONCLUSION ... 56

11

INTRODUCTION

The problem of creating a navigation system that allows moving objects to move

autonomously in real environments is very important in the modern world. More and

more tasks are being performed by some service robots instead of people. Over time,

most processes for the production of material assets, exploration of new territories

(including in space) and servicing people will be performed by autonomous robots.

Mass production of autonomous robots capable of working in difficult conditions

will greatly simplify people’s lives. No one should have to risk their life doing the job.

Creating some universal method that can automate robot movement in various

environments will be a huge step towards creating fully autonomous and

multifunctional robots. In this regard, this task is currently truly relevant and requires

finding more optimal solutions in many respects, such as reducing the error in

calculations by sensors of distances to environmental objects and the ability to create

groups of robots that can jointly perform one task that a mobile robot cannot can do it

alone.

12

SECTION 1

NAVIGATION SYSTEM FOR MOBILE ROBOTS

The main problem of all currently existing mobile devices that move

independently, without human control, remains navigation. To successfully navigate in

space, the robot’s on-board system must be able to build a route, control movement

parameters (set the angle of rotation of the wheels and the speed of their rotation),

correctly interpret information about the surrounding world received from sensors, and

constantly monitor its own coordinates.

Computer route planning systems are quite well developed. Initially, they were

created for the simplest virtual environments, and the program simulating the robot’s

actions quickly found the optimal path to the goal in two-dimensional labyrinths and

rooms filled with simple obstacles.

When fast processors appeared, it became possible to form a movement trajectory

on complex three-dimensional maps and in real time. A significant contribution to this

algorithmic direction has been made by companies that develop computer games and

finance relevant research. In modern games, each of the conflicting sides involves

several hundred combat units operating on randomly generated three-dimensional maps,

and each unit quickly and quite efficiently finds its way to the goal. Therefore, in real

operating conditions such algorithms are ineffective.

A full-fledged robot must determine its own coordinates and choose the direction

of a movement only based on the indicators of on-board sensors, therefore, artificial

intelligence systems created for autonomous machines are focused on supporting a

continuous cycle of “poll of sensors – making an operational decision to change the

route”.

There can be several such cycles – one is responsible for following the main

route, the other for avoiding obstacles, etc. In addition, at the hardware level, each cycle

can be supported by sensors of different types and different operating principles,

generating data streams of different volumes and intensity.

13

Mobile robot navigation covers a wide range of different technologies and

applications. It relies on both very old technologies and the most advanced

achievements of science and technology.

The navigation system in robotics is divided into three levels:

 global – determination of the absolute coordinates of the device when

moving along long routes;

 local – determining the coordinates of the device in relation to some

(usually starting) point. This scheme is in demand by developers of tactical unmanned

aircraft and ground robots performing missions within a pre-known area;

 personal – the robot positions parts of its body and interacts with nearby

objects, which is important for devices equipped with manipulators.

Navigation systems are classified according to one more criterion – they can be

passive or active. A passive navigation system involves receiving information about

one’s own coordinates and other characteristics of one’s movement from external

sources, while an active one is designed to determine the location only on one’s own.

As a rule, all global navigation schemes are passive, local ones are both, and personal

schemes are always active [6].

In the process of local navigation, a number of tasks arise:

 Trajectory motion control;

 Detection localization of obstacles;

 Ensuring movement along a given route: along a strip, in a labyrinth, on a

map of the area;

 Determination of own coordinates in local space;

 Scanning space;

 Drawing up a map of the area and linking it to it.

14

1.1. Hierarchical structure of the robot control system

When building a robot navigation system, many technical difficulties appears, the

solution of which is assigned to the control system. To move towards a goal, the robot

needs to form a fairly accurate image of the space around it. Today this is achieved

mainly by using laser rangefinders and ultrasonic emitters (sonars). However, the laser

beam will help to obtain an image of the environment only in the line of sight. In

addition, small interference often appears along the path of the beam, introducing an

error into such an image. And ultrasonic sensors are characterized by a long response

time (if the robot is in a large and open space), on the order of tenths of a second, which

does not allow the robot to move quickly. The speed of sound in different conditions

can also “float”, affecting the accuracy of distance estimation, as a result, the overall

picture of the environment in the robot’s “head” is distorted.

Creating three-dimensional maps using lasers in real time is even more difficult

and, at a minimum, requires significant computing power, which has not yet been

implemented in the form of compact on-board boards. For these reasons, the value of

the information coming from on-board sensors is low. The robot needs to translate it

into a formal and structured “verbal” description of the world (recognition task), which

so far turns out rather poorly. Technical vision systems promise to provide the greatest

effect here but they are also still imperfect. However, this drawback has already been

overcome in projects where robots operate in buildings and in any other predetermined

environment [6]..

A promising idea turned out to be storing a complete map of the area in the

machine’s memory. Usually it is presented in a geometric (very detailed, but also very

voluminous) or topological (compact, symbolic, but less detailed) form.

The best results are obtained from three-dimensional maps, but their storage and

processing by the robot’s on-board system is difficult: the computing resources required

are too large by today’s standards. And most importantly, the robot is not always able to

correctly determine its real location on such a map.

15

A lot of research is being done to train autonomous vehicles in methods of

independently constructing terrain maps. This area is heavily funded by the military,

who are interested in automating the processes of constructing maps of any area of the

Earth. The obstacle to this lies not so much in the weakness of the algorithms, but in the

relatively slow on-board processors. During movement, the robot must quickly and

accurately control the motor and the position of the wheels.

Some robotics problems, in principle, do not allow an exact solution (this is, for

example, the problem of controlling the torque of an electric motor so that the robot

strictly follows the route). In other problems related to the dynamics of robot motion

(the field of theoretical mechanics), finding the answer is still very far away, and the

search for approximate coefficients that determine the motion parameters requires the

on-board device to constantly solve systems of differential equations. The robot must

know its real location and it is almost always different from that stored in the on-board

system.

Determining coordinates is a fundamental navigation problem, the answer to

which is of interest not only to roboticists, but also to specialists from many other fields

– primarily space, aviation and automotive.

The general functional diagram of a sensing robot equipped with a technical

vision system (possibly together with other external information sensors) is shown in

fig. 1.1. The robot’s sensory system must supply its control system with information

about the current situation in the external environment: the presence, type, parameters,

location and orientation of objects of manipulation (impact); the correctness and quality

of the robot’s performance of technological operations and/or other actions; the

existence of obstacles and ways to bypass them, etc. The control system also receives

tasks (commands) to the robot from a human operator, other robots, higher-level

computers, technological equipment or other devices. In accordance with the above

diagram, information from the technical vision system can be supplied to different

levels of the control system [3].

For example, data on the location of obstacles is needed to build up a model of

the working environment in order to plan the robot’s actions; the results of object

16

classification are necessary at the strategic level for dividing the general plan of action

into specific manipulation operations, setting their sequence and parameters;

information about the location and orientation of objects is necessary for the formation

at the tactical level of the required movements of the robot, according to which, in turn,

software laws for coordinated changes in the corresponding degrees of mobility are

constructed: information about the deviation of the actual trajectory from the

programmed one can be used directly at the executive level to generate control signals

to the drives when executing the program in order to correct the movement of the

robot’s working body.

Figure 1.1 – Functional diagram of the robot’s hierarchical control system

17

Regardless of how the video sensors are placed, the information obtained with

their help is used to control the adaptive robot in accordance with one of the following

two principles. The first is based on continuous (or quasi-continuous) input of a video

feedback signal to correct the robot’s trajectory. Servo systems operate on this principle,

minimizing deviations of the current position from the desired one, which is determined

based on visual observation of the target object.

The second principle is based on inputting information from the video sensor into

the robot control device in discrete portions. Each such portion serves to develop

programmed movements for the next time interval, during which the robot moves to the

next target position “blindly,” i.e., without continuous visual feedback. Each of these

principles of using video information to control robots has its own area of application.

Although systems with “visual servo control” are undoubtedly promising, video

sensors based on the second principle described above, “kissing,” are still much more

widespread. In the simplest case, based on the results of the operation of the video

sensor, based on a priori specified conditions, a decision is made only on starting or

stopping (interrupting) a predetermined program of robot actions, switching to one or

another rigid subroutine, changing the sequence of execution of commands of the

control program, complete information about each of which should be entered into the

control device before the robot starts operating [3]. Wider capabilities are provided by

adaptively changing the robot’s control programs themselves in accordance with the

actual situation, determined from information from the video sensor. Adaptive robots

are capable of automatically generating movements during operation without the need

for a priori human indication of detailed laws of change in all controlled coordinates.

18

1.2. Obstacle detection

There are many ways to detect obstacles. These may include ultrasonic, radar,

optical and other sensors.

In the practice of controlling a mobile robot, the problem appears of quickly

collecting information about the space around it in order to correctly complete the task.

To increase the speed of completing a task, it is necessary to increase both the speed of

movement of its mechanical parts and the speed of collecting and processing

information [2]. As a result, the mechanical impact of physical contact between the

robot and an obstacle or objects being manipulated can be destructive to the system. In

addition, a mobile robot must be able to obtain information about all objects around it,

both stationary and moving, which would allow it to learn and plot the shortest course

to speed up the task. Cases when information about the environment is pre-installed by

developers into the program are increasingly becoming an exception, since such devices

are not sufficiently universal and safe [10].

The main methods for detecting obstacles and identifying their coordinates are

considered. Let’s assume that the video sensor is located on the mobile base and is

directed in the direction of its movement. In this case, obstacles that must be avoided or

navigation beacons come into view. To do this, it is necessary to determine the presence

of the obstacle itself and the distance to it. Let’s assume that the outline or characteristic

points of the obstacle can be determined from the image. In this case, there are two main

approaches to determining the distance to this obstacle. One of them is based on the use

of stereo vision methods and a method related to stereo vision – triangulation, and the

second is based on the use of a number of frames in processing, rather than just one,

along with measuring the parameters of the robot’s movement.

19

1.3. Stereo vision method in the problem of determining the distance to an

obstacle

The stereo vision method for determining the distance to an obstacle is based on

the fact that a video camera, just like a photo camera, is essentially an angular device.

Each point of the real object 𝑂 is mapped to point 𝐼 of the real image, located behind the

focus 𝑓 of the objective or lens, by means of the light emitted or reflected by this object,

as shown in fig. 1.2.

Figure 1.2 – Formation of an optical image point

To construct an optical image, an optical objective or a collecting lens is used. In

optics, these devices are considered equivalent, but the lens consists of a set of lenses

(in some lenses, mirrors), designed to mutually compensate for aberrations and

assembled into a single system inside the frame [10].

The image of one plane perpendicular to the main optical axis of the lens is

constructed in one plane of the actual image, which for the imaged plane is called the

plane of best vision. The image of any other plane will be shifted along the main optical

axis of the lens. To input an image into a computer (convert an optical image into a

graphic image), in most cases, a charge-coupled device (CCD) is used. Devices with

charge injection (CI) and others can also be used. The CCD is located in a plane

perpendicular to the main optical axis behind the lens focus. In the CCD plane, a real

image of a plane located at a certain predetermined distance from the lens will be

20

constructed. This distance is determined by the lens and the location of the CCD relative

to it. Any other plane will be depicted in the CCD plane as a spot, the larger the further

its plane of best vision is from the CCD plane. As long as the spot produced on the CCD

does not exceed the size of one photosensitive element, the image will be sharp,

otherwise it will begin to blur. The distance between the extreme optical image planes

in which the CCD image remains sharp is called the depth of field of the lens. Each of

these planes corresponds to a plane in the space of objects. The image of a scene

constructed in the space of objects between these planes, taken from a CCD, will be

sharp. Objects located outside these planes will be blurred by the (X) axis of the graphic

image. If a feature point is identified in each image, an equivalent triangle can be

constructed, shown in fig. 1.3.

The coordinate of a point along each axis in the image is a function of the angle

between the optical axis and the projection of the ray forming this point onto the plane

formed by the optical axis and the perpendicular to it corresponding to the considered

axis of the image. The idea of the stereo vision method is: there are two cameras, each

of which has a characteristic obstacle point in its field of view, and the cameras

themselves are located at a known distance from each other. Conveniently, let’s assume

that the cameras are oriented in such a way that the optical axes of the lenses are

collinear, the line connecting the focal points of the lenses is perpendicular to both

optical axes, and the lines parallel to it, passing through the optical axes and falling into

the field of view of both cameras, coincide with the horizontal axis (X) graphic image.

If a feature point is identified in each image, an equivalent triangle can be constructed,

shown in fig. 1.3.

21

Figure 1.3 – Equivalent triangle (point A is the position of camera 1, point B is

camera 2, point C is the projection of a point in object space onto the plane in which the

optical axes of the lenses lie).

The base “c” of the triangle is equivalent to the distance between the cameras,

and the angles at basis – determined by the image from each camera. Now that one side

and two angles have been defined for a triangle, any of its characteristics can be

calculated, including its height [10]. The height corresponds to the distance from the

line connecting the centers of the CCD matrices to the projection of a point in the space

of objects onto the plane in which the optical axes of the lenses lie, and is determined by

the equation:

 =
𝑐∙𝑡𝑔𝛽 ∙𝑡𝑔𝛼

𝑡𝑔𝛽 +𝑡𝑔𝛼
 (1.1)

Now, using the angle 𝛾 of the elevation of a point in space above its projection

onto the plane in which the optical axes of the lenses lie, the required distance L to the

point itself in the space of objects can be calculated using the equation:

𝐿 =

𝑡𝑔𝛾
 (1.2)

The angle 𝛾 is determined by the vertical coordinate (Y) on the graphic image

obtained from any camera or by the average value. One of the problematic areas in

stereo vision is determining the relationship between the coordinates in the image and

the angular coordinates of the ray coming from the imaged point. The most rational

method of solving this problem is experimental.

22

For a camera-lens pair, in a plane perpendicular to the optical axis of the camera,

at a given distance, a calibration surface with a uniform grid applied to it is placed. Grid

nodes located on the image axes have, on the one hand, a known coordinate in the

image, and on the other, a known coordinate in space, which means a table of

correspondence between angles and coordinates along each image axis can be compiled.

At intermediate points the function is found by linear interpolation. Another

problem is the very definition of a common point in two images. The most

straightforward way to solve this problem is to directly recognize patterns from two

images. However, this task is quite complex, and its solution directly from images is

complex, resource-intensive, and has a significant error in determining coordinates. In

addition, even with successful detection of objects (especially those of similar shape and

color), if several of them fall into the field of view of the camera, especially in cases

where some of them fall into the field of view of only one camera, the problem of

establishing correspondence with each other arises images of the same object detected

on different cameras. To solve this problem, active or passive beacons are used, which

mark obstacles or navigation beacons [10]. These can be multi-colored emitters or

colored corner reflectors, if there is a spotlight on the mobile robot itself. The main

condition is the ability to easily distinguish one beacon from another and from

background radiation in the image. What is used for is a variation of simple geometric

shapes, easily recognizable, and colors. In the case where you intend to work near

sources of interference, it is advisable to choose beacons or a searchlight that emit in a

wavelength range different from the one inherent in the interference. For example, if the

robot is working in a crowded environment, it is not wise to use infrared. In addition, it

is necessary to equip the system with optical filters that cut off wavelengths not used by

beacons. These can be bandpass filters or, in the case of using beacons of the same

color, line filters – allowing you to isolate almost only one wavelength and completely

filter out background radiation at other wavelengths. Since a typical CCD matrix

perceives radiation in a fairly wide range of wavelengths, even with significant

brightness of a monochromatic beacon, the intensity of the light flux from a seemingly

insignificant interference, when integrated over the entire wavelength range, can

23

generate false images of beacons. Thus, the use of optical filters makes it possible to

organize the search for beacons even in a very noisy environment.

1.4. Triangulation method in the problem of determining the distance to an

obstacle

Another method used to detect points belonging to an object in a video image and

the distance to them is the triangulation method [6,9], using illumination with a laser

beam or scanning of a laser beam. Similar methods are good for determining distances

to objects at which the beam is directed, but are increasingly used in rangefinders or

profilometers.

In the orientation of mobile robots, triangulation using laser illumination is not

very suitable, since it is necessary to organize laser scanning of space, which, along

with the low speed of household video cameras (25 frames per second), gives a rather

low resolution. In addition, additional drives and moving parts appear, which means the

weight increases, additional dynamic moments and forces arise, as well as weak points

of the structure, since it is the mechanical components that have the least reliability. The

use of a video sensor in such a system is redundant, since instead of a video sensor/laser

pair, a laser lidar [8] can be used, which provides greater scanning speed and accuracy.

Another approach is the triangulation method using a light strip. The use of

illumination, made in the form of a laser beam scan in a plane parallel to the floor,

similar to that shown in figures 1.4, 1.5, except in cases where the presence of obstacles

is expected below or above this plane, is quite acceptable.

24

Figure 1.4 – Image of a nearby object illuminated by a laser scan

From Figures 1.4-1.5 it can be seen that the laser scan line in the image has a

broken character. The areas between the line breaks in the image correspond to

individual objects illuminated by the laser scan. This provides a mechanism for

selecting individual objects and estimating their size. In addition, from Figures 1.4-1.5 it

is clear that when an object is removed, the image of the intersection of the object with

the laser illumination plane moves away from the latter, which provides a mechanism

for estimating the distance to the identified object. This method looks quite simple, but

it should be remembered that when using household cameras and lenses, the image of

the line will be sharp enough only within the finite limits determined by the depth of

field of the lens.

25

Figure 1.5 – Image of a distant object illuminated by a laser scan

The computational part of the triangulation method practically repeats the

computational part of the stereo vision method. An additional advantage of this

approach is that there is no need to use two cameras. Instead, the sweep is arranged so

that in the equivalent triangle in Fig. 1.3, it originates from the base and coincides with

the height. Then three quantities are known: the angle 𝛼, as before determined from the

image, the distance from the vertex A to the height h (from the focus of the video

camera to the laser scan), which will note as l, as well as the angle between the height

and the base, equal to 90 degrees. Thus, the following equation is valid:

 = 𝑙 ∙ 𝑡𝑔𝛼 (1.3)

The main disadvantage of this approach is the detection and determination of

distance only to objects in the laser scanning plane, which is why instead of two

equations (1.1)–(1.2), one (1.3) appears here. In order to capture the return beam in such

a system, suitable lighting conditions and reflectivity of the target surface are necessary

so that the fringe is the brightest in the image. In practice, this is achieved by treating

the target surface with a matte finish, using high-contrast cameras, or reducing the level

of ambient lighting. When using the system in a robot to recognize objects in a room

environment, there is a large amount of noise that makes work difficult: smooth

26

surfaces can cause secondary reflections, edges and textures can have a hatched

appearance, and in the end, crosstalk is possible when more than one robot is working

with a similar system. Several approaches have been found to increase the robustness of

such systems. Using a stereo pair to register a band allows you to remove false

reflections but is highly dependent on user information on the object given a priori [8].

You don’t have to mix images from two cameras but use one as a checker for the other.

Robustness is achieved through sequential checks of the received ranging information,

the most important of which require independent conversions from one of the cameras.

Another limitation is that the error correction method does not provide a way to get rid

of multiple fringe images resulting from secondary reflections. As a result, all

measurements indiscriminately during secondary reflections are not taken into account.

Also, the elimination of incorrect information can be achieved through the interaction of

independent scanning devices [12]: two laser stripes and one camera are used. In

addition to robust ranging, surface normals can be obtained. The disadvantage of this

method is that the distance can only be obtained from the image to the point where the

stripes intersect, so it will take much more time to obtain a complete distance map.

Some other methods of interest propose using a single camera with a single stripe.

Reflections can be recognized by moving the sensor relative to the environment and

analyzing changes in the converted ranging information. By modulating the periodic

intensity of the beam, extraneous noise is eliminated [12]. Both of these methods obtain

ranging information from multiple images, making them prone to errors. Moreover,

modulating the beam intensity does not eliminate secondary reflections, which change

in unison with the primary reflection. To eliminate secondary reflections from metal

surfaces, linearly polarized light can be used, so that with each new reflection such a

beam changes its polarization. However, the registration method at the receiver is

difficult: several measurements through different polarization filters are required.

27

CONCLUSION

The task of navigation remains a key problem in mobile robotics, which implies

determining the position of a mobile robot in the workspace – localization and drawing

up a representation, description of the surrounding world – cartography. Information

about the current position of the robot is necessary to solve most encountered control

problems: passing a given path, finding a path to a given point, returning to the starting

position. Information about the surrounding world, which is most often presented in the

form of a map or terrain plan is necessary to remember the route taken, plan a trajectory

around static obstacles and track dynamic objects.

28

SECTION 2

PLANNING THE PATH OF A MOBILE ROBOT

Every modern enterprise is looking for all possible ways to make its work as

efficient as possible. Autonomous mobile robots (AMRs) are coming to the aid of

healthcare institutions, agricultural companies, manufacturing warehouses and logistics

organizations. Such devices successfully replace outdated equipment and improve

characteristics such as speed, accuracy and safety.

The task of creating robots that can move without human assistance from point A

to point B, avoiding collisions with obstacles, consists of many different subtasks.

2.1. Description of the movement of a moving object

Two types of moving objects are considered [11]: tracked and wheeled mobile

robots. The robot’s movement was studied in a Cartesian coordinate system centered at

point (0,0) on the environment map.

Equations of motion of a moving object:

{𝑣 = 𝑎 𝜔 = 𝜀 𝜑 = 𝜔 𝑥 = 𝑣 ∗ 𝑐𝑜𝑠(𝜑) 𝑦 = 𝑣 ∗ 𝑠𝑖𝑛(𝜑) (2.1)

Where 𝑥, 𝑦 are the coordinates corresponding to the center of the circle describing

the mobile robot, 𝜑 is the heading angle, 𝑣, 𝑎 are the linear speed and acceleration, 𝜔, 𝜀

are the angular speed and acceleration.

A tracked mobile robot can move in any direction on a plane, subject to the

constraints imposed by the equations of motion.

Unlike a tracked robot, a wheeled robot has limited capabilities in choosing the

direction of movement (fig. 2.1). The robot is presented in the shape of a rectangle with

an aspect ratio of 1:2.

29

Figure 2.1 – Possible directions of movement of a wheeled robot

It was considered a movement in which the angle of rotation relative to the

coordinate system under consideration is maintained after moving in any of the possible

directions.

2.2. Navigation system structure

The resulting structure of the navigation system of an autonomous mobile robot is

shown in the fig. 2.2.

30

Figure 2.2 – Navigation system structure

Elements of this system are [2]:

 Laser range finder – a device that allows to scan the surrounding space and

receive data about objects (obstacles) located in a given space in the form of distance

vectors;

 SLAM algorithm (Simultaneous Localization and Mapping) – an algorithm

developed for localizing a mobile robot in space, as well as constructing a dynamic map

of the environment;

 The obstacle tracer, based on the available data on the current location of the

robot and the current scan of the environmental map, builds a list of moving obstacles

and predicts their location at the next time;

 Obstacle avoidance algorithm – an algorithm that allows to construct a

trajectory for a mobile robot to avoid obstacles given the available data on the robot’s

location at a given time and the current scan of the environment map.;

 Mobile robot – an autonomous robot moving along a given trajectory with the

help of some control.

31

2.3. SLAM algorithm

The SLAM algorithm is necessary to create mobile robots that can move

autonomously in a non-deterministic environment.

There are two kinds of fundamental characteristic SLAM navigation methods.

These are methods that use various types of filtering and methods using Bundle

Adjustment.

MonoSLAM. The very first visual monocular SLAM method was an algorithm

developed back in 2002 called MonoSLAM [13]. This method is a typical

representative of VSLAM methods that work using a filtering process. The

MonoSLAM algorithm has six degrees of freedom of the camera position (DOF) and

the coordinates of the position of singular points in three-dimensional space are

represented as a state vector of an extended Kalman filter (EKF).

The camera position calculation is based on the received motion model data. As a

result of the calculated new camera position, new special points are added. It is also

worth noting that the initial construction of the environment map occurs based on the

visible special points on the current frame.

The following stages of this algorithm can be distinguished:

 the initialization process occurs with previously known special points on

the map;

 estimation of the camera movement and three-dimensional positions of the

object’s special points is performed using an extended Kalman filter.

The main disadvantage of this algorithm is the increase in the number of

calculations as the surrounding space expands, which leads to an increasing number of

calculations of new singular points. Because of this, the size of the state vector

increases, which does not allow the use of this algorithm in real-time systems.

PTAM. To solve the main problem of the MonoSLAM method, an algorithm

called PTAM took the path of dividing the tasks of mapping and tracking between two

CPU threads [13]. Because of these two threads execute in parallel, the computational

cost of mapping does not have a significant impact on the tracking task. Therefore,

32

during the mapping process, can use Bundle Adjustment. This means that the tracking

task can be performed in real time while 3D modeling of singular points occurs at a

high computational cost.

The PTAM algorithm was the first algorithm to use Bundle Adjustment in real

time. Subsequently, the multithreading approach began to be often used in other

VSLAM algorithms. The construction of the initial map of the environment in PTAM

occurs using the five-point algorithm [13]. To clarify the camera position,

environmental map points are projected onto the image and a cloud of supposed visible

points is constructed from them. During the matching process, the position of new

points is determined by triangulation on specific frames, which are called key points.

An important development in the history of the development of SLAM algorithms,

thanks to the experience of developing PTAM, is the introduction of a keyframe-based

mapping system. To determine a key frame, the input frame is compared with another

key frame and if the difference is large, then the input frame is taken as a key frame. To

perform triangulation, there must be a significant difference between the input and key

frames. In PTAM, optimization of the three-dimensional position of special points

occurs by applying a global Bundle Adjustment with certain key frames, as well as with

all key frames on the environment map. It is also worth noting that the PTAM algorithm

uses a relocalization method for the camera tracking process [2].

In the task of finding the most suitable key frame of the resulting image, a

randomized tree search classifier is used. As a result, the following modules can be

distinguished in the PTAM method: 1) application of the five-point method for the task

of initializing an environment map; 2) the position of the video camera is estimated

using the coincidence of special points of the environment map and the resulting image;

3) using triangulation, the three-dimensional positions of object points are estimated,

and the already estimated positions are optimized using Bundle Adjustment; 4) when

using a randomized tree search classifier, the tracking process is restored.

The SLAM algorithm uses a Kalman filter to build a solution.

The Kalman filter is an efficient recursive filter that estimates the state of a

dynamic system based on a series of imprecise measurements. It was developed in 1960

33

and named after Rudolf Kalman. This filter is necessary to eliminate the error of the

SLAM algorithm caused by odometry. The Kalman filter processes the input data, i.e.,

the position of the robot and the singular points, and returns their estimated values.

The operating principle of the SLAM algorithm:

 The robot is in some unknown place. Using the data received by the sensors, a

visible section of the map is constructed from a given position;

 Using the trajectory obtained at this step, the next position for movement is

selected;

 There is a movement to a new position and a comparison of the current position

with the expected one obtained at the previous step;

 Based on the received data and data from the previous iteration, the map is

updated.

2.4. Constructing an environmental map in the form of a grid map

The environmental map is presented in the form of a grid map. The cell size is

selected depending on the required accuracy. Moreover, the smaller the cell size, the

longer the obstacle avoidance algorithm will work.

The resulting cells are divided into two types (fig. 2.3):

 free – these are the cells through which the robot can move unhindered);

 cells containing obstacles.

Figure 2.3 – Example of an environmental map

34

For robots that can move in all directions on a plane, the cell size usually

corresponds to the dimensions of the robot, that is, the robot’s outline can be fit into this

cell. To achieve higher accuracy, it is possible to reduce the cell size, but the algorithm

for constructing the trajectory must be changed.

2.5. Obstacle tracing

Tracing moving obstacles allows to determine the location at the following

moments of time and the movement parameters of a mobile robot in a coordinate

system related to the environment. Most obstacles move without changing direction.

Thanks to this it is able to use obstacle tracing to predict their movement.

It may be apply tracing to an obstacle if:

 The obstacle is a rigid body;

 Submits to the equations of robot motion;

 Cannot change speed abruptly;

 It can be inscribed in a circle.

Each such obstacle has the following set of parameters:

{𝑣 = 𝑎 𝜔 = 𝜀 𝜑 = 𝜔 𝑥 = 𝑣 ∗ 𝑐𝑜𝑠(𝜑) 𝑦 = 𝑣 ∗ 𝑠𝑖𝑛(𝜑) (2.2)

Where 𝑥, 𝑦 are the coordinates corresponding to the center of the circle describing

the obstacle, 𝜑 is the heading angle, 𝑣, 𝑎 are linear speed and acceleration, 𝜔, 𝜀 are

angular speed and acceleration.

The obstacle state vector looks like this:

𝑠 = (𝑥 𝑦 𝜑 𝑣 𝜔 𝑎 𝜀 𝑅)𝑇

35

Operating principle of the obstacle tracer:

 Creating a list of moving obstacles;

 Determining the radius of the circle R describing obstacles from the resulting

list;

 Constructing a state vector s for each obstacle.

2.6. General planning structure

Although different algorithms are designed to construct a trajectory in different

situations. The flow diagram of the rapid path planning algorithm is as shown in fig. 2.4

Figure 2.4 – Flow diagram of the rapid path planning algorithm

36

2.7. Algorithms for avoiding obstacles

To build trajectories in different situations, it is necessary to use different

algorithms:

 Deterministic environment with stationary obstacles – Dijkstra’s algorithm,

Algorithm A*;

 Non-deterministic environment – D* algorithm.

In addition, the algorithm can change due to various dynamic properties of the

moving object under consideration, for example, when considering problems of

constructing a trajectory for a wheeled and tracked robot.

2.7.1. Dijkstra’s algorithm

Dijkstra’s algorithm is currently one of the most popular algorithms for finding

the shortest path in a graph.

How the algorithm works [5]:

1. Building a map of the environment, also marking on it the initial position of the

robot and the target point (fig. 2.5)

Figure 2.5 – An initial environmental map

37

2. Creating two lists of cells – open and closed. The open list initially contains

only the cell corresponding to the initial position of the robot, while the closed list

contains all cells containing obstacles (fig. 2.6).

Figure 2.6 – An initial graphical display of the environment

3. Introducing the function 𝑙, which displays the distance from the initial cell

to the given one.

4. Sorting the open list in ascending order by function 𝑙. Taking the first cell

from this list as the cell in question.

5. Placing this point in a closed list. We consider all neighboring points that

do not belong to the closed list (fig. 2.7). Adding them to the open list. If one of the

points considered is the target, go to point 6, otherwise – to point 4.

Figure 2.7 – Changing open and closed lists

38

6. Based on the data obtained, is building the initial trajectory.

2.7.2. Algorithm A* (A-star)

The “A*” algorithm is an improved modification of Dijkstra’s algorithm,

designed to more quickly find the optimal trajectory using heuristics. This paper

considers the heuristic function 𝐻 = (𝑥 − 𝑥к)2 + (𝑦 − 𝑦к)2, where 𝑥, 𝑦 – coordinates

of the point under consideration, 𝑥_𝐾, 𝑦_𝐾 – coordinates of the target point.

How the algorithm Works [1]:

1. Building a map of the environment, also marking on it the initial position

of the robot and the target point (fig. 2.5)

2. We create 2 lists of cells – open and closed. The open list initially contains

only the cell corresponding to the initial position of the robot, while the closed list

contains cells containing obstacles (fig. 2.6).

3. We introduce the function 𝐿 = 𝐻 + 𝑙, where 𝐻 is a heuristic function, 𝑙 is

the distance from the robot’s initial position to the current one, which displays the

minimum distance from the starting point to the target when constructing a trajectory

through a given point.

4. We sort the open list in ascending order of the function 𝐿. We take the first

cell from this list as the cell in question.

5. We place this point in a closed list. We consider all neighboring points that

do not belong to the closed list (fig. 2.7). Add them to the open list. If one of the

considered points is the target, go to point 6, otherwise – to point 4.

6. Based on the data obtained, build a trajectory.

2.7.3. Algorithm A* (A-star) for wheeled robots

Due to the limitations imposed on the ability to choose the direction of movement

of a wheeled mobile robot, six main directions of movement were identified (fig. 2.8).

39

To determine the location of the robot at the current time, it is only need to know the

coordinate corresponding to the upper left edge of the robot.

Figure 2.8 – Possible directions of movement of a wheeled robot

Since the standard A* algorithm examines eight directions of possible movement,

and we consider only six, it needs to be changed.

Operating principle of the modified A* algorithm:

1. We build a map of the area, marking on it the initial position of the robot

and the target point (fig. 2.5). In this modification, the initial position of the robot will

correspond to the upper left cell belonging to the robot.

2. We create two lists of cells – opened and closed. The open list initially

contains only the cell corresponding to the robot’s initial position, while the closed list

contains cells containing obstacles. An initial graphical display of an open and closed

list is shown in fig. 2.6.

3. Let’s introduce the function 𝐿 = 𝐻 + 𝑙, where 𝐻 is a heuristic function, 𝑙 is

the distance from the initial position of the robot to the current one.

4. We sort the open list in ascending order of the function 𝐿 corresponding to

the cell.

5. Take the first cell from the resulting list as the cell in question.

6. Consider six neighboring cells that can be reached in one iteration. If these

cells, as well as the cells necessary to make a movement from the previous cell to the

current one, do not belong to the closed list, then add them to the opened list, otherwise

– to the closed list (see fig. 2.9).

40

Figure 2.9 – Changing opened and closed list

7. If there is a cell in the open list corresponding to the target point, then go to the

next point, otherwise we return to point 2.

8. Based on the data obtained, we build the desired trajectory.

2.7.4. Algorithm D* (D-star)

The robot can only move along a given grid, that is, at each new step it has four

different options for making a movement – up, down, left, right (fig. 2.10).

Figure 2.10 – Possible directions of movement

41

2.7.5. Algorithm D*

The “D*” algorithm is based on the use of the “A*” algorithm, which allows to build a

trajectory around obstacles that is optimal in terms of the path length.

How the algorithm works:

1. We build an initial map of the environment, marking on it the initial

position of the robot and the target point (Fig. 2.11).

Figure 2.11 – An anitial environmental map

2. Create a history list that stores information about all cells considered during

each trajectory construction. Using the “A*” algorithm, we build a trajectory from the

target point to the starting point (fig. 2.12), adding all the considered cells from the

history list. All elements of this list have the following characteristics:

a. Weight:

{𝑥 = 1, 𝑖𝑓 𝑡𝑒 𝑐𝑒𝑙𝑙 𝑑𝑜𝑒𝑠 𝑛𝑜𝑡 𝑐𝑜𝑛𝑡𝑎𝑖𝑛 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 𝑥 =

999999, 𝑖𝑓 𝑡𝑒 𝑐𝑒𝑙𝑙 𝑐𝑜𝑛𝑡𝑎𝑖𝑛𝑠 𝑎𝑛 𝑜𝑏𝑠𝑡𝑎𝑐𝑙𝑒 ;

b. Previous (𝑘 − 1) cell;

c. path length from target cell: 𝜌 𝑘 = 𝜔(𝑘) + 𝜌 𝑘 − 1 ;

d. current coordinates 𝑥 и 𝑦.

42

3. The movement along the resulting trajectory from the starting point to the target

point is considered. At each step, a check is made (fig. 2.13): if the next cell of this

trajectory does not contain an obstacle and is not a target cell, move on; if it contains an

obstacle, we stop moving and go to step 4; if it is a target cell, we complete the

algorithm.

Figure 2.13 – Making a movement and checking the next point

4. If at least one of the neighboring cells (𝑘𝑛𝑒𝑤) available in the history list and

updated distance from this cell to the target 𝜌 𝑘𝑛𝑒𝑤 ≤ 𝜌 𝑘 + 3, then we go to step 5,

otherwise we make the current cell the initial position of the robot and go to step 2.

5. From the neighboring cells that satisfy the condition from step 4, select the one

whose distance from the target point is the smallest and go to step 6.

6. Using information about the previous cell known for each cell, we recursively

build a new trajectory passing through the cell obtained in step 5 and go to step 3.

2.8. Efficient Path Method

The effective path method presented in [11] makes it possible to optimize the

resulting trajectory in terms of length.

As a reference point, select the second bend of the trajectory obtained using one

of the considered algorithms. Representing the robot in the form of a circle describing

43

it. Denote the distance between the reference point and the current position of the robot

as R. Due to the dynamic limitations of the robot, R is limited from above and below:

{𝑅𝑚𝑎𝑥 𝑣𝑐 = 𝑣𝑐 + ∆𝑡 ∗ 𝑣𝑎 ∗ 𝑇𝑚𝑎𝑥 𝑅𝑚𝑖𝑛 = 𝑣𝑚𝑎𝑥 ∗ 𝑇𝑏𝑚𝑎𝑥
−

1

2
∗ 𝑣𝑏 ∗ 𝑇𝑏𝑚𝑎𝑥

2 ,

Where 𝑣𝑐 – initial speed, 𝑣𝑎 – maximum robot acceleration, 𝑇𝑚𝑎𝑥 – time path to

the nearest obstacle, 𝑇𝑏𝑚𝑎𝑥
 – maximum braking time.

If the robot can move unhindered in a straight line from the current position of the

robot to the reference point, then we change the trajectory, replacing the broken line

leading to the reference point with a straight line. Otherwise, we must find the shortest

possible curve along which the robot can move unhindered. To do this, consider the

robot at the current moment and when reaching the reference point (fig. 2.14).

Figure 2.14 – An efficient path method

To find the shortest trajectory, is need to consider the case when the robot moves

as close as possible to the obstacle, that is 𝑑 = 𝐸𝑃 = 𝑂𝐸∗ − 𝑂𝑃 = 𝑊. Based on the

information received, using geometric calculations, a new polyline is found connecting

the current position of the robot with the reference point.

CONCLUSION

Algorithms for constructing trajectories in different situations are analyzed,

necessary for deterministic and non-deterministic environments.

44

It is concluded that it is impossible to create a universal robot movement

algorithm. The algorithm used will depend on the conditions and purpose of the robot in

each specific case.

A method of using the effective path method is shown to optimize the robot's

trajectory according to the criterion of the minimum route length for a deterministic and

non-deterministic environment.

45

SECTION 3

RESULTS OF SOFTWARE IMPLEMENTATION

Software has been developed in C# language that implements the considered

algorithms for constructing a trajectory to avoid obstacles.

A fragment of the program code is shown in the fig. 3.1-3.8

Figure 3.1 – A fragment of the program code

46

Figure 3.2 – A fragment of the program code

47

Figure 3.3 – A fragment of the program code

48

Figure 3.4 – A fragment of the program code

49

Figure 3.5 – A fragment of the program code

Figure 3.6 – A fragment of the program code

50

Figure 3.7 – A fragment of the program code

Examples of the operation of this software and the results obtained during the

comparison of the studied algorithms are shown.

3.1. Building an obstacle map

An example of constructing a grid map obtained using the created software (Fig.

15):

Figure 3.1. – An example of a grid map

51

3.2. Implementation of the considered algorithms

This section presents the key points in the operation of the following algorithms:

● Dijkstra’s algorithm (Fig. 3.2);

● Algorithm A* (Fig. 3.3);

● Algorithm D* (Fig. 3.4-3.8).

Figure 3.2 – Trajectory construction using Dijkstra’s algorithm

Figure 3.3 – Trajectory construction using the A* algorithm

52

Figure 3.4 – The robot builds an initial trajectory in a non-deterministic

environment

Figure 3.5 – While moving, the robot finds an obstacle in the next step

53

Figure 3.6 – The robot avoids an obstacle using a neighboring point from the

history list

Figure 3.7 – While moving, the robot finds an obstacle in the next step

54

Figure 3.8 – The robot avoids an obstacle by constructing a new trajectory.

3.3. Comparison of accuracy and speed of algorithms

Based on the data obtained using software that implements these algorithms, we

can conclude that the “A*” algorithm in most cases builds a trajectory around obstacles

in a shorter time than Dijkstra’s algorithm (fig. 3.9). The length of the resulting path is

the same for the algorithms.

Figure 3.9 – Comparison of the running time of Dijkstra’s algorithm and the A*

algorithm.

 Using the developed software that implements the operation of the D*, A* and

LPA* algorithms in a non-deterministic environment, the operating time of these

55

algorithms was compared in different situations. The information obtained is shown in

fig. 3.10 (time is in milliseconds).

Figure 3.10 – Comparison of running time of algorithms in a non-deterministic

environment.

56

CONCLUSION

● A navigation system is presented that allows a moving object to

autonomously build an optimal path length to avoid obstacles from the starting point to

the target point.

● The considered algorithms have been researched and implemented in

software. Some results of the software are shown.

● A comparative analysis of the operating time of the algorithms was carried

out.

● A navigation system is considered that allows you to apply the obtained

theoretical information in practice.

57

REFERENCES

1. A* Pathfinding Algorithm. [Electronic resource]. – URL:

https://www.baeldung.com/cs/a-star-algorithm

2. Alferov G. V., Malafeyev O. A. The robot control strategy in a domain

with dynamical obstacles // Lecture Notes in Computer Science, 2003. №35. С. 4-23.

3. An architecture for a robot hierarchical system. [Electronic resource]. –

URL: https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-23.pdf

4. All You Need To Know About Obstacle Detection Sensor. [Electronic

resource]. – URL: https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-

sensor/

5. Dijkstra's Shortest Path Algorithm - A Detailed and Visual Introduction.

[Electronic resource]. – URL: https://www.freecodecamp.org/news/dijkstras-shortest-

path-algorithm-visual-introduction/

6. Dissanayake M.W.M.G., Newman P., Clark S., Durrant-Whyte H.F.,

Csorba M. A. Solution to the Simultaneous Localisation and Map Building (SLAM)

Problem // Australian Centre for Field Robotics Department of Mechanical and

Mechatronic Engineering The University of Sydney NSW, 2006. С 1-14.

7. Kalman filter: simple words about digital mathematics. [Electronic

resource]. – URL: https://mp-lab.ru/filtr_kalmana_dlya_nachinayushchih/

8. Lee T-L., Wu C-J. Fuzzy motion planning of mobile robots in unknown

environments // Journal of Intelligent and Robotic Systems, 2003. Vol. 37 (2), P. 177-

191.

9. Montaner M. B., Ramirez-Serrano A. Fuzzy knowledge-based controller

design for autonomous robot navigation//Expert Systems with Applications, 1998. Vol.

14 (1-2), P. 179-186.

10. Obstacle Avoidance Based on Stereo Vision Navigation System.

[Electronic resource]. – URL:

https://journal.umy.ac.id/index.php/jrc/article/viewFile/17977/8265

https://www.baeldung.com/cs/a-star-algorithm
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nbsspecialpublication500-23.pdf
https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-sensor/
https://dreamvu.com/all-you-need-to-know-about-obstacle-detection-sensor/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://www.freecodecamp.org/news/dijkstras-shortest-path-algorithm-visual-introduction/
https://mp-lab.ru/filtr_kalmana_dlya_nachinayushchih/
https://journal.umy.ac.id/index.php/jrc/article/viewFile/17977/8265

58

11. Optimal and efficient path planning for partially-known environments A

Stentz - Robotics and Automation, 1994. P. 3310-3317.

12. Stereo vision. [Electronic resource]. – URL:

https://link.springer.com/article/10.1007/s42452-020-2815-z

13. SLAM algorithm. [Electronic resource]. – URL:

https://medium.com/@nahmed3536/the-types-of-slam-algorithms-356196937e3d

https://link.springer.com/article/10.1007/s42452-020-2815-z
https://medium.com/@nahmed3536/the-types-of-slam-algorithms-356196937e3d

