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PEDEPAT

[TosicHiOBasibHA 3amMcKka 1O AUIUIOMHOI poOoru "Bu3HaueHHs Ta aHawi3
CKJIQJIOBUX Jipeiidy 3MIIIEHHS HYIS MIKPOEJIEKTPOMEXAaHIYHUX aKCEJIEPOMETPIB 3

BUKOpUCTAHHAM Aucnepcii Ammana" mictuth 70 ctopinok, 35 umoctpariiit, 38 mkepern.

AKTYyaJILHICTh TeMHU MOJSITaE B HEOOX1AHOCTI TOYHOTO BU3HAYEHHS CKJIAJIOBUX
IIYMYy CY4aCHHMX BHCOKOSKICHHX aKCEJIEPOMETPIB Uil BU3HAYEHHS IXHbOI TOYHOCTI Ta
HampsIMKIB X 3aCTOCYBaHHS, TaKMX SK HaBITalllifHI CHUCTEMU, KOCMIYHI Ta aBlalliifHi

TEXHOJIOT1i, a TAKOXX MOOYIyBaHHs MOZENEH MOXUOOK JIJIsl IX KOperyBaHHSI.

O0'ekTOM J0CTiAAKEHHS] € aKCeIepOoMEeTp HaBITaliifHOro KJ1acy TOYHOCTI B IO

BXOJIUTH Y CKJIaJ] IHEPIIAIbHOTO BUMIPIOBATILHOMY OJIOKY.

IIpexmeroM pnociaimkeHHst € MeToA Bapiamii AsutaHa Ui BHCOKOSIKICHOTO

AKCCJICPOMCTPA 3 KBAPLHOBUM YYTIIMBUM CIICMCHTOM.

Metoro po0oTHM € BUBYaHHS METONIB aHAI3y Ta MOJEIIOBAHHS BUIAJKOBHUX
MOXMOOK aKCeIEePOMETPIB 3 BUKOPUCTAHHSIM METONY Bapiailii AJutaHa JJisi BU3HAUCHHS
HampsSMKIB 1X 3acTOCyBaHHS Ta TOOymTyBaHHS MoneNell TMOXUOOK 3 METOl iX

KOperyBaHHsI JJIs MiABUIIEHHS] TOYHOCTI.

Metonu nociaigskenHss Po3poOka KOMII'IOTEpHUX Tporpam [JIsl PO3PaxyHKiB
rnapamMeTpiB KOMIIOHEHTIB IIyMYy, T'padiuyHe BHU3HAUCHHS IapaMeTpiB KOMIIOHECHTIB

BUITAJIKOBUX MMOXNOOK, aHATITHYHHMN aHaI3 METOMY Bapiamii AjutaHa.

KawuoBi caoBa: MIKPOEJIEKTPOMEXAHIYHI CHUCTEMMU (MEMCOC),
AKCEJIEPOMETPHN, [HEPLIIAJIbHUI BUMIPIOBAJIbHUI BJIOK,
AJITOPUTMMU, METO/I BAPIALIIT AJIJIAHA.



ABSTRACT

Explanatory note for the qualification paper "The determination and analysis of
microelectromechanical accelerometer bias drift components using the Allan variance™

includes: 70 pages, 35 illustrations, 38 sources.

Relevance of the topic is the need to accurately determine the noise components
of modern high-quality accelerometers to determine their accuracy and areas of
application, such as navigation systems, space and aviation technologies, and to build

error models for their correction.

The object of the study is an accelerometer of the navigation class of accuracy,

which is part of the inertial measuring unit.

The subject of the research is the Allan variation method for a high-quality

accelerometer with a quartz sensitive element.

The aim of the work is study methods for analyzing and modeling random errors
in accelerometers using the Allan variance method to determine their application area

and build error models for increased accuracy.

Research methods are the development of computer programs for parameter
calculations, graphical determination of error components, and analytical analysis of the

Allan variation method.

Key words: MICROELECTROMECHANICAL SYSTEMS (MEMS),
ACCELEROMETERS, INERTIAL MEASUREMENT UNITS, ALGORITHMS, AND
THE ALLAN VARIATION METHOD.
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INTRODUCTION

High performance capacitive MEMS accelerometers are increasingly being used
in various motion sensing applications including medical, industrial, and military
requiring measurement of acceleration, vibration, shock, tilt, rotation etc. In a wide
range of inertial navigation applications, tactical grade MEMS accelerometers are
already the preferred solution due to their small size, low power consumption, and
convenient price; however, in Inertial Measurement Units (IMU) and Inertial
Navigation Systems (INS), which are designed for navigation grade applications,
conventional non-MEMS accelerometers are generally used, such as electromechanical
servo and bulk piezoelectric accelerometers. During the past decade, design and initial
measurement results of closed-loop MEMS accelerometers were presented, showing the
potential of the MEMS technology to deliver a smaller and cheaper sensor while
realizing inertial navigation grade performance.

In order to achieve navigation grade performance, high linearity (<0.1%) is an
important parameter to satisfy. Linearity may be limited by the capacitive nature of
MEMS sensors in which output is inversely proportional to the gap change in the sense
capacitor. Closed-loop MEMS accelerometers, which use electrostatic force feedback,
balance the sensor structure around its nominal position, neutralizing the influence of
the sense capacitor nonlinearity. There is a variety of system design challenges towards
attaining navigation-grade level. Firstly, a linear and stable feedback pass must be
established. In addition to the improved linearity, other parameters such as short- and
long-term bias, scale factor stability, and vibration rectification error (VRE) need to be
addressed from the design level in order to satisfy all the requirements during the

integration of the sensor system.
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SECTION 1

MICROELECTROMECHANICAL ACCELEROMETERS

In today's technological world, microelectromechanical accelerometers (MEMS
accelerometers) occupy a special place among sensors, playing an important role in
many areas of science and technology. Their applications range from consumer
electronics devices to industrial systems, from medical equipment to autonomous

vehicles.

MEMS accelerometers can measure acceleration with high accuracy and speed,
making them indispensable for many applications where measurement accuracy and

device miniaturization are important.

This paper is devoted to an overview of the types of MEMS accelerometers,
including pendulum and vibration accelerometers, their operating principles and
practical applications. By exploring their structure, functioning and capabilities, we will
gain a deeper understanding of these important devices and their role in the current

technological paradigm.

This paper will present an analysis of current achievements in the field of MEMS
accelerometers, their advantages, disadvantages and prospects for further development.
Specific examples of MEMS accelerometers in various fields will also be considered,

which will allow to present a wide range of possibilities of these devices.

Aerospace Control Systems Explanatory Note
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Submitted  JZherevchuk Sheet Sheets
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1.1. Definition of accelerometers

An accelerometer serves as a sensor detecting specific force or changes in
velocity over time. When vibrations or shifts in motion occur, the sensor records the
force exerted, typically by compressing a piezoelectric material, which generates an
electric charge proportional to the force experienced. As charge aligns with force, and
mass remains constant, the charge also correlates directly with acceleration.
Acceleration is commonly quantified in meters per second squared (m/s*2) or in terms
of g-forces (g), with one g-force on Earth approximately equaling 9.8 m/s"2, though this
value varies slightly with altitude and differs on other celestial bodies due to

gravitational differences.

Accelerometers find utility in various scenarios, including vibration analysis in
systems and determining orientation. Their applications span from space stations to
handheld gadgets [1].

The principle of operation

An accelerometer can be thought of as a test mass attached to a spring (see in

Fig.1.1.1). The displacement is measured to estimate the acceleration. [2].

m Proof Mass A/\M—E Proof Mass

Fig. 1.1.1. The principle of accelerometer operation

Accelerometers possess the capability to measure acceleration along one, two, or

three axes. The increasing popularity of 3-axis devices is attributed to diminishing

12



development costs. Typically, accelerometers integrate capacitive plates, some
stationary while others tethered to tiny springs internally, responding to acceleration
forces. Movement of these plates relative to each other causes fluctuations in

capacitance, serving as a gauge for acceleration determination.

Moreover, certain accelerometers leverage piezoelectric materials as their base.
These minuscule crystalline structures produce an electric charge under mechanical

stress, including acceleration [3][4].
Main applications of accelerometers

Accelerometers play a crucial role in various sectors including industrial,
manufacturing, commercial, and laboratory applications. Here are some examples of

their diverse applications:

« Digital devices: Accelerometers integrated into smartphones, digital cameras, and
other mobile devices enable automatic screen rotation based on the device's

orientation.

« \ehicles: Accelerometers are instrumental in vehicle safety systems, particularly
airbags, where they trigger the deployment of airbags upon sensing a sudden

impact, thus contributing significantly to saving lives.

« Drones: Accelerometers aid drones in stabilizing their orientation during flight,

ensuring smooth and controlled movement.

« Rotating equipment: Accelerometers are utilized in rotating machinery to detect
undulating vibrations, helping in identifying potential issues and ensuring optimal

performance.

« Industrial platforms: Industrial accelerometers are employed to measure the
stability or tilt of platforms in industrial settings, which is crucial for maintaining

safety and operational efficiency:.

« Vibration monitoring: Accelerometers are valuable for monitoring vibrations

generated by moving machinery. Detecting and analyzing these vibrations are

13



essential for preventing equipment damage and optimizing maintenance
schedules. They are increasingly adopted in facilities such as industrial plants and

turbines for vibration monitoring and analysis [5].

1.2. Micro-electromechanical systems (MEMS)

MEMS (microelectromechanical systems) technology involves microscopic
devices integrating electronic and movable parts. These systems consist of components
sized from 1 to 100 micrometers (0.001 to 0.1 mm), while actual MEMS devices
typically range from 20 micrometers to a millimeter (0.02 to 1.0 mm) in size. Notably,
components organized in arrays, like digital micro-mirror devices, may exceed an area
of 1000 mm"2 [6].

Primarily, MEMS technology encompasses miniature mechanical and
electromechanical elements, including devices and structures, manufactured using
micro-manufacturing techniques. These systems incorporate various components (see
Fig. 1.2.1) such as microsensors, microprocessors, microactuators, data processing
units, and elements capable of interfacing with external components. Integrating these
components at the microscale empowers MEMS devices to execute diverse functions

across an extensive array of applications.

Components of MEMS

MicroActuators

MicroSensors

MicroStructures

MicroElectronics
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Fig. 1.2.1. Components of MEMS

The critical dimensions of MEMS devices can vary from below one micron to
several millimeters. Consequently, the diversity of MEMS devices ranges from simple
structures without moving parts to complex electromechanical systems with multiple

moving parts controlled by integrated microelectronics.

The defining feature of MEMS is the inclusion of mechanical functionality in at
least some elements, regardless of their ability to move. The terminology used to
describe MEMS may differ across regions. In the United States, they are primarily
known as MEMS, while terms like "microsystems technology" or "micromechanical

devices" may be preferred elsewhere.

Key components integral to MEMS include microsensors and microactuators,
both classified as "transducers,” which convert energy from one form to another.

Microsensors typically convert mechanical signals into electrical ones.

Designing MEMS technology poses unique challenges due to its large surface
area to volume ratio. This characteristic amplifies the impact of ambient
electromagnetism forces, such as electrostatic charges and magnetic moments, and
hydrodynamics effects like surface tension and viscosity, compared to larger mechanical
devices. It's important to distinguish MEMS technology from molecular
nanotechnology or molecular electronics, which also consider surface chemistry in their

design and operation.
Principle of MEMS-accelerometer operation

MEMS accelerometers, also known as microelectromechanical system
accelerometers, are small, highly accurate sensors used to measure angular velocity and
orientation. A MEMS accelerometer works on the principle of angular momentum.
Angular momentum is a measure of an object's rotational motion and is defined as the
product of the object's mass, velocity, and radius. When an object rotates, it has angular
momentum, and the amount of angular momentum depends on the object's mass,

velocity, and radius.
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A MEMS accelerometer consists of a small microscopic device that is suspended
from a flexible structure. This device, called a "test mass,” can move freely in any
direction. When the test specimen is subjected to an angular acceleration, a force
proportional to the angular acceleration and the mass of the test specimen is applied to
the test mass. This force causes the test mass to move, and the movement of the test

mass is detected by sensors that measure the displacement of the test mass.
Capacitive MEMS technology

In typical MEMS accelerometers, a capacitive design is employed (refer to Fig.
1.2.2), where a mobile comb is linked to a fixed comb via a spring. When there's no
acceleration, the mobile comb remains centered, resulting in uniform capacitance across
all capacitors. However, when acceleration is applied along the sensing axis, the mobile
comb moves, leading to varying capacitance levels on each side of the comb. This

disparity in capacitance is directly proportional to the acceleration.

To translate this variance in capacitance into acceleration measurements in
standard units, an array of analog components and analog-to-digital converters is
utilized. These components collaborate to precisely convert the capacitance variances

into meaningful acceleration readings [9].

C1 C2
C1 C2

I | L
LI ILIL

Mobile Comb Mobile Comb

| No acceleration | < Acceleration |

Fig. 1.2.2. Capacitive design
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1.3. Introduction to Pendulum MEMS accelerometer

A pendulum accelerometer functions by harnessing the principles of a pendulum'’s
oscillating movement to measure linear acceleration. Its core idea centers on the
reactive oscillations of a pendulum induced by external acceleration. By assessing the
pendulum's displacement or positional changes, one can infer information about the

magnitude and direction of the applied acceleration.
The principle of operation

The mechanism of a pendulum accelerometer (Fig. 1.3.1) rentals a mass
suspended from either a rigid or flexible support structure, often a beam or rod. This
suspended mass has the freedom to swing around a designated pivot point. When
subjected to acceleration, a force acts upon the pendulum, causing it to deviate from its
equilibrium position. This deviation or displacement of the pendulum correlates directly

with the magnitude of the applied acceleration.

Fig. 1.3.1 Accelerometer pendulum unit

The pendulum accelerometer's fundamental component is its sensing element,
which comprises a mass attached to the support frame (base) through suspension
elements. These suspension elements can adopt either a cantilever or bridge scheme,

each with its specific characteristics.

17



In the bridge suspension scheme, the mass moves solely along the measuring
axis, providing a straightforward measurement setup. On the other hand, the cantilever
mass suspension scheme offers high sensitivity but is susceptible to disturbances in the

alignment of the frame and mass during significant movements.

Most pendulum micromechanical accelerometers employ a cantilever suspension
scheme for their sensing elements. In this scheme, elastic elements resembling beams
function in bending or torsion, contributing to the accelerometer's sensitivity and

precision.

The design of a pendulum accelerometer, as depicted in Fig. 1.3.2, is tailored to
serve as a robust sensing element suitable for various classes and applications within

inertial aircraft systems.

Buxid [IK
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Fig. 1.3.2. Functional diagram of the pendulum accelerometer

The sensing component of the device consists of a physical pendulum (pos.1)
suspended elastically (pos.2) with one degree of freedom. When subjected to the Earth's
gravitational component along the X-X measuring axis, the pendulum deflects

concerning the housing. This deflection is converted into an electrical signal using a
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capacitive angle sensor composed of a differential capacitor (item 6) and a differential
transformer (item 7), where the AC voltage and phase are determined by the pendulum’s
deflection direction. The signal from the angle sensor, specifically from the output
winding of the differential transformer (item 7), is routed to an amplifier-converter,
tasked with amplifying and converting the signal. The amplified signal is then directed
to the windings of the magnetoelectric force sensor (pos. 4,5). The resulting moment
from the interaction between the current flowing in the force sensor windings and the
permanent magnet's field (pos. 5) balances the Earth's gravity component. Thus, the
current's magnitude is proportional to the pendulum arm's deviation angle from the
vertical. The accelerometer's sensitivity threshold denotes the minimum acceleration it

can detect.

The kinematic diagram of the pendulum accelerometer, as depicted in Fig. 1,
outlines the configuration of its sensing element, comprising a flat pendulum formed by
an inertial mass (m). The pendulum’s center of mass is offset from the rotation axis by a
distance (I). Two horizontal springs with stiffness (c/2) constrain the pendulum’s
rotation angles (¢) relative to the Ox axis, intersecting at point O perpendicular to the

drawing plane [10].

The primary role of the pendulum accelerometer is to measure the acceleration
projection onto its measuring axis, aligned with the perpendicular to the pendulum arm

in the neutral position of the element's center (axis Ou in Fig. 1.3.3).
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Fig. 1.3.3. Pendulum accelerometer

A notable drawback of pendulum suspensions is their sensitivity to acceleration
components along the Oz axis, perpendicular to the sensitivity axis Ou, when the mass
deviates from its equilibrium position. This sensitivity increases with the angle ¢. To
mitigate this issue, accelerometers employing such suspensions are often paired with

force compensation mechanisms.
Advantages and disadvantages of pendulum accelerometers
Advantages:

« Simple design: Pendulum accelerometers have a straightforward design with few

components, making them relatively easy to manufacture and maintain.

« High sensitivity: Certain types of pendulum accelerometers, such as torsion and
inverted pendulums, exhibit high sensitivity to acceleration, making them suitable

for precise measurements.

« Wide range of applications: Due to their versatility, pendulum accelerometers
find use in various applications, from educational purposes to high-precision

scientific experiments.
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Disadvantages:

« Size and weight: Pendulum accelerometers are typically larger and heavier than
other types of accelerometers, limiting their suitability for compact or portable

applications.

« Sensitivity to external factors: Pendulum accelerometers can be sensitive to
changes in temperature, airflow, and other environmental factors, affecting their

accuracy.

o Limited bandwidth: Pendulum accelerometers have a restricted frequency

response, making them less suitable for high-frequency or dynamic applications.

Despite their limitations, pendulum accelerometers remain valuable tools in many
industries. While they may not excel in compactness or high-frequency applications,
their simplicity, sensitivity, and broad applicability make them essential for various
engineering and scientific endeavors. Understanding the principles of pendulum
accelerometers enables engineers and scientists to optimize their designs, enhance

performance, and explore new applications [11].

In terms of latest trends, manufacturers are focusing on developing miniature and
high-performance accelerometers to cater to the demand for compact and lightweight
applications. The integration of advanced micro-electromechanical systems (MEMS)

technology in these accelerometers is also a key trend in the market.

Today, MEMS sensors are rapidly evolving in the scientific and technical
domains, emerging as promising devices within modern microsystems technology
(MST). The advancement of MEMS sensors and actuators has catalyzed a revolutionary
shift in contemporary inertial technology. Leading manufacturers of MEMS
accelerometers include Inertial Labs, ENDAQ, Analog Devices Inc. (ADI), CEC
Vibration Products, CELIANS, CEMB, AMOT, BeanAir GmbH, CESVA, and CME
Technology Co., Ltd [12].
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1.4. Inertial Measurement Unit (IMUs) based on pendulum MEMS

accelerometers

Tables 1.4.1 and 1.4.2 show the IMUs and the momentary characteristics for each
unit [13].

Table 1.4.1

IMUs based on three pendulum accelerometers
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IFOS-5

IFOS-6

IFOS-10

Inertial measurement
unit IFOS-5 is based
on Fiber Optical Solution’s
three axis closed loop fiber
optic gyroscope TFOS-
5 and three pendulum

accelerometers.

Inertial measurement
unit IFOS-6 is based
on Fiber Optical Solution’s
three closed loop fiber optic
gyroscopes SFOS-6 and
three pendulum

accelerometers.

High-precision inertial
measurement unit IFOS-
10 is based on Fiber Optical
Solution’s three fiber optic
gyroscopes SFOS-10 and
three pendulum

accelerometers.

Table 1.4.2

Momentary characteristics of IMUs based on three pendulum accelerometers

Parameter IFOS-5 IFOS-6 IFOS-10
Range Of. measured +10g to +40g +10g to +40g +10g to +40g
acceleration, g
Bias drift at constant <0.5 <0.1 <0.05
temperature, mg - - -
Velocity random walk,

< < <
ngHz <20 <20 <15
Scale factor error in <300(*<100) <300(*<100) <100
temperature range -40°C
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to +60°C (lo), ppm

Physical Characteristics

Misalignment, ° <0.08(*<0.015)

Output sample rate up to 2000 Hz

Power supply, V 5 or 24~36 27+5 27+5
Power consumption, W <10 W L20W 20 W
Digital output interface RS-485 or RS-422 RS-422 RS-422
Dimensions, mm 110 x 110 x90 140 x 140 x 110 | 171 x 224 x 233

1.5. Introduction to Vibratory MEMS accelerometer

Vibratory or seismic accelerometers are designed specifically to measure
sinusoidal accelerations. They find applications in a wide range of fields, including
structural testing, earthquake detection, and tsunami monitoring [14]. Fig. 1.5.1 present

a vibrating string.
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Fig. 1.5.1. A vibrating string

Micromechanical vibrating accelerometers (MMVA) have gained significant
attention in recent years due to their unique properties and operational characteristics,
which distinguish them from conventional micromechanical capacitive accelerometers
(MMCA) currently in use. MMVA offers several advantages, including significantly
higher sensitivity, exceeding that of traditional capacitive accelerometers by an order of
magnitude, as well as a high dynamic range and stability [15].

The principle of operation

The principle of operation of a vibration MEMS accelerometer involves several
key steps:

1. Vibrating Mass: The accelerometer contains a mass that is attached to elastic
elements, such as a membrane or a beam. When subjected to acceleration, the

mass vibrates, causing a change in distance between itself and the stationary part
of the device.

2. Change in Distance: Acceleration causes the vibrating mass to move relative to

the stationary part. For instance, downward acceleration causes the mass to move
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upward relative to the stationary part, while upward acceleration causes the mass

to move downward.

. Change in Capacitance: The movement of the mass alters the electrical
parameters, particularly the capacitance, between the mass and the stationary part.
This change in capacitance is directly proportional to the change in distance and

serves as a measure of the applied acceleration.

. Capacitance Measurement: The accelerometer incorporates a capacitance
sensor designed to detect and measure the change in capacitance resulting from
the mass movement. This sensor is often integrated into a MEMS chip and
employs various techniques like piezoelectric or liquid-based sensors for precise

measurements.

. Data Processing: The changes in capacitance detected by the sensor are
converted into an electrical signal. This signal is then processed by the electronic
components of the accelerometer to determine the magnitude and direction of the

applied acceleration.

By following this operational principle, vibration MEMS accelerometers achieve

accurate acceleration measurements with high sensitivity and reliability, making them

valuable tools in various applications requiring precise acceleration sensing.

For several years, ONERA has been engaged in the development of two

monolithic quartz sensors (Fig. 1.5.2), namely the "VIA" accelerometer (Vibrating

Inertial Accelerometer) [16]. The utilization of quartz crystal presents two primary

advantages: firstly, it facilitates easy excitation and detection of suitable vibrations

through the piezoelectric effect, and secondly, it capitalizes on the highly stable

mechanical properties inherent to quartz. Consequently, the incorporation of quartz

enables the creation of cost-effective, high-performance vibrating sensors.
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Quartz Wafer (1,5x1,5 inch?)
within 16 VIA accelerometers

Fig. 1.5.2. Quartz Vibrating Inertial Sensors developed at ONERA

The accuracy of the VIA accelerometer is approximately 300 pg (within a

measurement range of =100g).

Vibrating Beam Accelerometers (VBAS) are particularly attractive for their
precision in scale factor accuracy and frequency output. They function by detecting
changes in the resonance frequency of a vibrating beam under acceleration, often using
a dual-beam configuration to counteract typical parasitic sensitivities like temperature,

pressure, and aging. Achieving reliable VBASs requires three key beam insulations:

1. Thermal stress insulation: Thermal variations induce stresses in the structure due
to material expansion differences between the quartz and its base. Effective
insulation against these stresses is crucial for optimal thermal behavior,

minimizing thermal sensitivity and hysteresis.

2. Vibration insulation of the beams: To maintain the high-quality factors of quartz
beams and ensure accelerometer stability, minimizing energy losses from the

quartz structure is imperative.

3. Insulation between the two beams: Differential VBAs utilize a push-pull
configuration with two beams. Consequently, frequency crossover occurs within
the measurement range, potentially leading to the "lock-in" phenomenon where

mechanical coupling causes a frequency lock and diminishes measurement
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accuracy. Hence, substantial insulation between the beams is necessary to reduce

the "lock-in" effect and enhance measurement precision [17].

Vibration accelerometers utilizing quartz crystal technology harness the
resonance properties of quartz crystals to measure acceleration. The fundamental
principle involves two quartz crystal beams attached to separate support masses in a

parallel setup (refer to Fig. 1.5.3).

Each quartz beam, referred to as a bundle, resonates at its unique frequency when
oscillating along the input axis. When the accelerometer is stationary, these frequencies
are identical. However, when acceleration occurs along the axis parallel to the beams

(the sensor’s sensing axis), one beam compresses while the other stretches.

This discrepancy in the beams' conditions results in frequency changes. The
difference between these modified frequencies is directly proportional to the
acceleration along the sensing axis. Thus, by measuring the variation in the quartz
beams' oscillation frequencies, the accelerometer accurately determines the acceleration

affecting the sensor.

The use of quartz crystals enables the creation of highly sensitive and precise
accelerometers. Quartz crystals exhibit stable resonant frequencies and demonstrate
excellent linearity in frequency change concerning acceleration. These traits make
quartz-based sensors ideal for applications requiring meticulous and reliable
acceleration measurements. They are extensively utilized in various measurement
systems necessitating elevated levels of accuracy and reliability in acceleration sensing
[18].
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Fig.1.5.3. Vibrating beam accelerometer

Currently, microelectromechanical systems (MEMS) are being manufactured by
leading companies in the USA, Japan, Korea, China, and other countries. One notable
organization in the USA is the Draper Laboratory, a not-for-profit research and
development institution that was among the first to delve into silicon micro-machined
capacitive accelerometers (MMCA). The accelerometers developed by Draper

Laboratory are known for their exceptional stability, with scaling factors of at least 1

ppm.

In addition to Draper Laboratory, the University of California, Berkeley, has
made significant contributions to MEMS technology with their Micromechanical

Vibrating Accelerometer (MMVA). This accelerometer boasts a sensitivity of 17 Hz/g
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and incorporates dual oscillators to mitigate thermal sensitivity, enhancing its

performance in various environments.

Researchers from Seoul National University in South Korea have also made
notable strides in MEMS accelerometer development. They have designed a
micromechanical resonator silicon accelerometer with a sensitivity of 70 Hz/g and a
resonance frequency of 12 kHz, showcasing advancements in sensitivity and frequency

response.

Chinese MEMS developers, particularly institutions like Tsinghua University in
Beijing, are actively engaged in modeling and prototyping silicon accelerometers.
Collaborating with the Institute of Microelectronics, Tsinghua University has produced
an MMVA prototype with a sensitivity of 27.3 Hz/g and an impressive resolution of
167.8 pg. This prototype showcases the ongoing advancements in MEMS technology,
highlighting the focus on achieving higher sensitivity and resolution while maintaining
cost-effectiveness. Additionally, institutions in China, such as Tsinghua University, are
contributing significantly to the global landscape of MEMS accelerometers, driving
innovation and expanding the capabilities of these sensors across various industries and

applications.

Over the past decade, MEMS technologies have witnessed remarkable progress
due to their high reliability and cost-effectiveness. These advancements have paved the
way for innovative applications across industries, from consumer electronics to
aerospace and healthcare, highlighting the continuous evolution and potential of MEMS

accelerometers in modern technology.

1.6. Conclusion

Microelectromechanical accelerometers (MEMS accelerometers) therefore
encompass a wide range of devices, including pendulum MEMS accelerometers and
vibration MEMS accelerometers, each with its own unique operating principle and

application. Pendulum MEMS accelerometers use the concept of a pendulum to
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measure linear acceleration, offering simplicity and versatility across a variety of
industries. Vibration MEMS accelerometers, on the other hand, use the principles of
vibration to provide high sensitivity and accuracy for specific applications requiring

sinusoidal acceleration measurement.

Numerous manufacturers specialize in the production of MEMS accelerometers,
such as Inertial Labs, ENDAQ, Analog Devices Inc. (ADI) and others, contributing to
the development of MEMS-based inertial measurement units (IMUs). These IMUs
combine MEMS accelerometers with other sensors, such as gyroscopes, to provide
comprehensive motion sensing capabilities for applications ranging from consumer

electronics to aerospace and defense.

The performance parameters of MEMS accelerometers, including sensitivity,
dynamic range, stability and frequency response, play a critical role in determining their
suitability for specific applications. Engineers and researchers are constantly striving to
improve these parameters to meet the growing demands of industry for accurate and

reliable motion measurement solutions.

As such, MEMS accelerometers have revolutionized inertial technology, offering
compact, cost-effective and high-performance solutions for a wide range of applications
in a variety of industries. Their further development and integration into modern IMUs
are making a significant contribution to the development of navigation, robotics,
automotive safety systems and many other industries that depend on accurate motion

measurement and control.
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SECTION 2

THE ALLAN VARIANCE AND RANDOM ERRORS DESCRIPTION

2.1. Introduction to Allan Variance

In the realm of modern science and technology, ensuring the accuracy and
stability of sensors and measuring systems is paramount. This necessitates sophisticated
methods for analyzing and modeling random errors, which can significantly impact

measurement precision.

One standout approach in this domain is Allan's method of variational analysis. It
serves as a powerful and widely adopted tool for assessing the variational stability of
measurement systems. By employing this method, researchers can delve into the
characteristics of random errors within measuring instruments, identify key parameters,

and construct models that elucidate their influence on measurement accuracy.

This chapter aims to delve into the intricate world of random error models
delineated by the Allan variance curve. Starting with an overview of primary noise and
error models, the discussion progresses to their mathematical analysis and subsequent
impact on measurement accuracy. Utilizing the Allan analysis of variance method not
only aids in pinpointing random errors but also facilitates the formulation of effective

strategies to mitigate and rectify these errors.
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The core objective of this chapter is to foster a comprehensive understanding of
variational stability in measuring systems through the lens of Allan's analysis of
variation method. Additionally, it seeks to explore novel approaches to modeling and
controlling random errors, thus contributing to advancements in sensor accuracy and
stability [19].

The Allan variance is a measure of the variance of the difference between
successive samples in a time series, normalized by the time interval between samples. It
is defined as the square of the Allan deviation, which is the standard deviation of the

differences between adjacent sample values.

One of its key features is that it examines how the variance changes as a function
of the averaging time. By averaging over different time intervals, the Allan variance can

reveal underlying patterns in the frequency stability of a system.

Random errors, also known as white noise or short-term fluctuations, contribute
to the Allan variance. These errors are typically unpredictable and can arise from
various sources such as electronic noise, environmental factors, or inherent

characteristics of the system.

The Allan variance helps distinguish between different types of errors based on

their characteristic time scales. For example:

« Short-term errors (with time scales shorter than the averaging time) contribute

to the initial decrease in Allan variance at small averaging times.

o Medium-term errors (with time scales comparable to the averaging time)

affect the stability over intermediate averaging times.

« Long-term errors (with time scales longer than the averaging time) become
dominant at longer averaging times and may indicate drift or systematic

biases.
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In summary, the Allan variance is a valuable tool for understanding and
quantifying random errors in frequency sources, providing insights into their stability

characteristics across different time scales.

2.2. The Allan variance understanding curve and its components

The Allan Variance, named after David W. Allan who developed it, serves as a
statistical technique crucial for evaluating the stability and accuracy of clock sources
and dynamic systems over time. Initially devised in the 1960s to analyze atomic clock
stability, this method has become indispensable across a range of fields, including
telecommunications, navigation, and metrology. Its principal function remains assessing
clock performance, ensuring precision for devices reliant on accurate timekeeping in

modern technology.

This method proves invaluable for measuring RMS random drift errors over
varying time spans. Its computational simplicity and straightforward interpretation
make it a favored approach for characterizing different types of noise observed in data
from inertial sensors. Through specific operations applied to the dataset, the Allan
variance method produces a distinctive curve (see Fig. 2.2.1). Analyzing this curve
systematically enables a comprehensive understanding of the various random errors

Inherent in inertial sensor output data.

Mathematically, it is represented as follows:

The Allan Deviation (ADEV), also known as sigma-tau, is the square root of the
Allan Variance. Just like standard deviation is the square root of variance, the Allan
deviation is the square root of the Allan variance [20]. Mathematically, it is expressed

as:
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The Allan variance method serves as a valuable tool for quantifying RMS random
drift errors concerning average time. Its computational simplicity and straightforward
interpretation make it a preferred choice for characterizing different types of noise
within inertial sensor data. By applying specific operations across the dataset's entirety,
this method generates a distinctive curve. Analyzing this curve systematically enables a
thorough characterization of the various random errors inherent in the output data of

inertial sensors. [21]

Frequency Stability

w
o
—
- Tau Sigma
1 1.39e=09
2 9.4%-10
4 8§, 75e=10
— 8 3.82e-10 ||
= 16 2.2 10
% P 39 1.20&a=10
bﬁé 1 g4 7.0Be=11
= il 78 4. 94e—11
g B, 256 4.87e-11
. . 512 5.90e—11
‘3 b 1024 8.07e-11
= . 2048 1.04e-10
2 .
P -
R . 3
5.' T g ¥
=
o
—
10° 10! 10? 103 104

Averaging Time, T, Seconds

Fig. 2.2.1. Allan deviation curve

The resulting plot is known as the Allan deviation curve, and it typically has a
characteristic shape that reveals important information about the stability and accuracy
of the oscillator. For short averaging intervals, the Allan deviation is dominated by the
short-term noise in the oscillator signal, which causes the variance to increase rapidly as
the averaging interval decreases. As the averaging interval increases, however, the noise
begins to average out, and the Allan deviation reaches a minimum value, known as the
Allan variance floor. This floor represents the fundamental limit on the accuracy and

stability of the oscillator and is determined by its underlying physics.
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Hence, Allan variance is a powerful tool for measuring the stability and accuracy
of oscillators and other time-varying systems. By providing a quantitative measure of
the noise and error in these systems, it helps engineers and scientists to optimize their
performance and to ensure that they meet the stringent requirements of modern

technology. [22]

The Allan variance methodology incorporates cluster analysis in its computation

process. Here are the steps involved in computing the Allan variance:

Divide the data stream into clusters of a specified length. If there are N
consecutive data points, each with a sample time of t0, form groups of n consecutive
data points where n<N/2. Each group member constitutes a cluster, as illustrated in Fig.
2.2.2 [21].
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Fig. 2.2.2. Schematic of the data structure used in the derivation of Allan variance

The Allan variance curve and its components

The Allan variance is a key metric used to assess the stability of a clock or
oscillator over a specific time period. It's computed by taking half of the time average of
the squared deviations between successive frequency readings obtained at regular
intervals (the sampling period). Rather than a single value, it's a function reliant on the
sample period (often denoted as t) and the distribution under examination, typically

depicted graphically to illustrate data trends.

A low Allan variance indicates good stability of the clock or oscillator over the
measured period. It is commonly represented as an Allan deviation plot, usually in a
log-log format for clarity and ease of comparison with other error sources. For example,

an Allan deviation of at an observation time of 1 second (t = 1 s) signifies
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an instability in frequency between two observations one second apart with a relative
root mean square (RMS) value of . For a 10-MHz clock, this translates to an

RMS movement of 13 mHz.

It's important to note that if phase stability is required, time deviation variants
should be consulted and utilized. Additionally, Allan variance and other time-domain
variances can be converted into frequency-domain measures of time (phase) and
frequency stability, offering a comprehensive understanding of the system's

performance [23].

The Allan variance method offers a detailed depiction of various noise
components inherent in inertial sensor data. Below are the fundamental solutions for

specific noise terms:

(a) Quantization noise: The Allan variance for quantization noise (Fig. 2.2.3) is

given by:

where is the quantization noise coefficient;
T is the sample interval.

A log-log plot of o(T) against T, displaying a slope of -1.
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Fig. 2.2.3. o(T) plot for quantization noise

(b) Angle (velocity) random walk (Fig. 2.2.4): This noise arises from high-
frequency terms with correlation times much shorter than the sample time. A log-log
plot of versus T shows a slope of -1/2. The Allan variance for angle (velocity)

random walk is:
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Fig. 2.2.4. o(T) plot for angle (velocity) random walk

(c) Bias instability (Fig. 2.2.5): Originating from electronics or components with
random flickering, bias instability manifests as low-frequency bias fluctuations. The
bias instability value is determined from the root Allan variance plot where the slope is

zero. The Allan variance for bias instability is:

0.018
0.0 0.1 1 10
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Fig. 2.2.5. o(T) plot for bias instability

(d) Rate random walk (Fig. 2.2.6): Resulting from integrating wideband
acceleration PSD, rate random walk's Allan variance is:

where K is the rate random-walk coefficient. A log-log plot of versus T shows a

slope of +1/2, with K given in units of .
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Fig. 2.2.6. o(T) plot for rate random walk

(e) Rate ramp (Fig. 2.2.7): More deterministic than random noise, a log-log plot

of versus T exhibits a slope of +1, rate ramp's Allan variance is:
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Fig. 2.2.7. o(T) plot for drift rate ramp

The five sources of error, although accurately defined mathematically along the
Allan deviation curve using the slope method, require visual inspection of the graph for
resolution. This involves creating specific slopes of interest for each parameter,
followed Dby back-solving to estimate their values. This manual process, often
necessitated by sensor characteristics and application specifics, underscores the need for
careful analysis and human-visual assessment to ensure accurate parameter
determination [21][24].

Understanding the Allan Variance Curve

The Allan deviation versus the cluster time (T) is commonly plotted in a log-log
graph. Generally, the Allan variance curve is U-shaped. Typically, a range of random
processes can manifest within the data, resulting in a varied Allan variance plot akin to
the depiction in Fig. 2.2.8. This visual representation facilitates the straightforward
identification of different random processes embedded in the dataset. In actual data
scenarios, smooth transitions between distinct Allan standard deviation slopes are
observable. Additionally, the plot curve may exhibit a degree of noise or irregularity

attributed to the inherent uncertainty associated with the measured Allan variance [21].

41



CORRELATED

H@LRQM BIAS
| [ INSTABILITY, |

Fig. 2.2.8. Standard form of curve of Allan deviation

The Allan variance plot depicts a spectrum of noise frequencies, with high-
frequency noise represented on the left and low frequencies on the right, corresponding
to short and long-time intervals, respectively. Quantization noise (QN) appears at the far
left of the plot, indicated by a slope of -1. Determining the quantization coefficient
involves fitting a line to the data at a specific cluster time, typically t = sqrt(3). This

noise component may not always be evident in actual data.

Moving towards the center of the plot, the contribution of white noise becomes
apparent, manifested in the gyroscope's angle random walk (ARW) or accelerometer's
velocity random walk (VRW). This noise type is associated with a slope of -1/2.

Estimating the random walk coefficient involves fitting a line at t = 1 cluster time.

As the curve reaches its minimum, indicating lower frequencies, bias instability
(BI) becomes discernible. Bias instability results from low-frequency random
fluctuations in electronic components. A line with a slope of 0, fitted to the local minima

points and scaled appropriately, reveals the value of bias instability.

Further along the curve, the presence of rate random walk (RRW) can be
identified by fitting a line with a slope of +1/2 and determining its intersection at t =
sgrt(3). At t = sqrt(2), the +1 slope denotes rate ramp (RR). Exponentially correlated
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noise and sinusoidal noise pose challenges in characterization using Allan variance,
necessitating careful analysis of consecutive slopes (+1/2 followed by -1/2 for
exponentially correlated noise, and repeated +1/-1 slopes for sinusoidal noise) for

identification, which can be challenging in practical data analysis.

The Allan variance analysis offers flexibility in selecting units on its horizontal
axis (T), ranging from microseconds to hours, depending on the application. On the
vertical axis, units represent angular velocity (e.g., rad/s or °/h) for gyroscopes or

acceleration (measured in g or m/s?) for accelerometers.

The slope of the Allan variance curve varies with the cluster time (T), providing
Insights into the nature of noise in the data. This approach helps identify and quantify

different noise terms within the dataset.

Common random errors include quantization noise, angle random walk, bias
instability, rate random walk, and rate ramp. Among these, quantization noise, bias
instability, and rate random walk often have the most significant impact on gyroscope

output accuracy and stability.

The analysis of the Allan Variance curve involves delineating its three key
segments. The initial segment of the curve displays a negative slope from the starting
point, denoted as o, to points near the minimum. Each point, represented as 6”2 (1),
signifies the deviation or variance within a set of averaged values derived from the
dataset. For instance, the second point on the curve corresponds to the averaged values
of consecutive pairs (x_m + x_(m+1))/2 for all in N. Averaging over two samples
attenuates the highest frequency noise components, resulting in a lower deviation
represented by the second point compared to the first, and similarly, the third point

exhibits reduced deviation from the second, and so on.

The middle segment of the Allan Variance curve covers the vicinity of the
minimum point. Ideally, one would expect that increasing the number of samples for
averaging would progressively diminish the variance and deviation of the averaged

samples, approaching zero in an exponential manner. However, in systems with non-
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convergent noise, this reduction does not occur as anticipated due to various factors

contributing to this divergence.

The final segment of the Allan Variance curve encompasses the region where the
slope becomes positive, ascending from the minimum point. This ascent is primarily
attributed to the growing influence of 1/f noise and other low-frequency noise sources
such as random walk at low frequencies and extended sampling times. When sample
averages are computed over very low frequencies but less than a full cycle, they
demonstrate a range of values spanning from the maximum amplitude of the low-
frequency components to the minimum. This variability across a band of low
frequencies contributes to a measurable noise distribution, resulting in the observed rise

in the Allan Variance curve.

The total measurement time Tmeas involves collecting or calculating n samples
over a specific duration. This period is divided into intervals determined by the constant
sampling time Ts, with the maximum number of time-averaged samples ns being ns =

Tmeas / Ts.

Increasing the sampling time Ts decreases the high-frequency cutoff of the
algorithmic low-pass filter, resulting in more effective averaging of higher frequency

noise components for convergent noise.

For the shortest sample averaging time T1, the noise contributing to the Allan
deviation includes all frequency components limited by the sample averaging time.
However, for s > 1, higher frequencies are progressively averaged away, resulting in the

variance due to noise being primarily composed of lower frequency components.

The two-sample deviation measures the deviation between successive averaged
samples, capturing noise frequencies equal to or greater than 1/(two sample periods +
any dead time). Lower noise frequencies of interest lead to smaller two-sample
deviations, while lower sampling frequencies for a given noise frequency of interest

result in greater deviations.
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1/f noise exhibits an inverse relationship between amplitude (or power) and
frequency. Thus, the two-sample deviation increases as the sampling period increases or

as the sampling frequency falls.

There is a low-frequency cut-off determined by Tmeas, where frequencies
significantly lower than 1/(Tmeas x 4) contribute minimally to signal deviation due to

their slow-changing nature.

The variance of low-frequency noise becomes significant on long timescales,
especially in systems exhibiting 1/f noise. This variance grows with increasing Tmeas,
highlighting the importance of considering non-convergent noise sources in systems
with very slow-changing time-dependent characteristics, such as oscillators responding

to temperature variations or gravimeters affected by celestial motions [26].

2.3. Allan VVariance Method for Accelerometer Data

A graph of a function (Allan variance) built by measurement data in log-
log scale indicates a type of random component, which is in the gyro output signal. It is
usually built a graph of a square root of the Allan variance c(T) versus a length of time
interval T (i.e. averaging time) on a log-log scale.

Different noise components appear on the Allan variance graph at different
intervals of the averaging time variable T. This allows one to detect on the Allan curve
various random components which are present in the measurement data. Assuming that
the above noise components are independent of each other, the total Allan variance can

be written as the sum of the variances of its components as follows:

As can be seen from (2.3.1), the contribution of each subcomponent to total noise
Is quantitatively determined by corresponding coefficients Q, N, B, K, and R. These
coefficients are computed by the square root of the Allan variance graphed in log-log

scale versus averaging time T such as described below.
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Q is a random drift due to quantum (quantization) noise measured in

(it is present only for digital accelerometers);

N is a random drift due to velocity random walk measured in

B is a random drift due to bias instability measured in

K is a random drift due to acceleration random walk measured in

R is a random drift due to acceleration drift ramp measured in

The Q value is determined as an ordinate of an intersection point of a tangential
line with slope to curve and a vertical line originating from the
point T=3"%h (hour). Its dimension is g*h, when accelerometer output signal is in g and
in g/Hz, when accelerometer output signal is in m/s If Q value for T=3"%h is located
out of graph frame, then T=3"?s can be taken and, in this case, Q dimension is g/NHz or
in m/s/Hz.

The N value is determined as an ordinate of an intersection point of a tangential
line with a slope to curve and a vertical line originating
from the point T=1h. Its dimension is g/vh, when accelerometer output signal is in g and
in (m/s®)/Nh, when accelerometer output signal is in m/s® If N value for T=1h is located

out of graph frame, then T=1s can be taken and, in this case, N dimension is m/s*/Hz,
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when accelerometer output signal is in m/s® or in g/\s, when accelerometer output

signal is in g.
The B value is determined as an ordinate of a minimum of a curve (it's flat
part) divided by a constant . Its dimension is g, when accelerometer

output signal is in g, and in m/s®, when accelerometer output signal is in m/s”.

The K value is determined as an ordinate of an intersection point of a tangential
line with a slope of to curve and a vertical line originating
from the point T=3 h. Its dimension is g/\h, when accelerometer output signal is in g,
and in m/s?/Nls, when accelerometer output signal is in m/s® If K value for T=3 h is
located out of graph, then T=3s can be taken, and in this case, K dimension is g/'s, and
in m/s?/'s, when accelerometer output signal is in m/s.

The R value is determined as an ordinate of an intersection point of a tangential
line with a slope to curve and a vertical line originating from the
point T=2"2 h. Its dimension is g/h, when accelerometer output signal is in g, and in
m/s’/h, when accelerometer output signal is in m/s% If R value for T=2"2h is located out
of graph, then T=2"2 s can be taken, and in this case, R dimension is g/s, when
accelerometer output signal is in g, and in m/s/s, when accelerometer output signal is in
m/s’.

As a practical example, let us consider the data that was collected for eight hours
of the MMAB8451Q MEMS accelerometer of NXP company presented in Fig. 2.3.1.
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Fig. 2.3.1. The measured accelerometer bias drift.

The orientation of the accelerometer was such that its sensing axis was not

aligned with Earth gravity, and was unchanged. Thus, this will not influence on

accelerometer noise components analysis.
Allan standard deviations for the data presented in Fig. 2.3.1, is depicted in Fig.

2.3.2.

Standard deviation, g

Averaging time, T, S

Fig. 2.3.2. Allan standard deviations of accelerometer data
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This Allan curve does not contain quantum (quantization) noise or it is too small

relative to others because there is not a part of the Allan curve with tilt angle equal to

Example of velocity random walk noise coefficient N determination in

correspondence to abovementioned description is presented in Fig. 2.3.3. It is equal to

Standard deviation, g

Averaging time, T, s

Fig. 2.3.3. Determination of velocity random walk for accelerometer

Example of a bias instability coefficient B determination in correspondence to

abovementioned description is presented in Fig. 2.3.4. It is equal to

Standard deviation, g
5

10—4 = . .o 1 - . ' 'O . "
10 10 10

Averaging time, T, s

10" 10° 10

Fig. 2.3.4. Determination of accelerometer bias instability
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Example of an acceleration random walk coefficient K determination in

correspondence to abovementioned description is presented in Fig. 2.3.5. It is equal to
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Fig. 2.3.5. Determination of acceleration random walk for accelerometer
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Example of an acceleration drift ramp coefficient R determination
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correspondence to abovementioned description is presented in Fig. 2.3.6. It is equal to

Fig. 2.3.6. Allan standard deviations of accelerometer data
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There can be other noises in acceleration data such as exponentially correlated

noise, sinusoidal noise; however, this accelerometer data has not such noises
[27][28][29].

2.4 Application the Allan variation analysis to MEMS accelerometers

Measuring accelerometer dynamic range from seismic data using Allan deviation

involves several steps and considerations:

1.

Data Acquisition: Obtain seismic data using accelerometers. Ensure that the data
acquisition system is calibrated and properly configured to capture a wide range

of seismic vibrations.

. Preprocessing: Preprocess the seismic data to remove any noise or artifacts that

may affect the accuracy of the analysis. This may include filtering, noise

reduction, and data cleaning techniques [28].

. Segmentation: Divide the seismic data into segments or windows of equal

duration. The size of the segments will depend on the specific characteristics of

the seismic signals and the desired analysis resolution.

. Allan Deviation Calculation: Calculate the Allan deviation for each segment of

seismic data. The Allan deviation is a statistical measure that quantifies the
variance of a signal as a function of averaging time. It helps in characterizing the

dynamic range and noise characteristics of the accelerometer.

. Plotting and Analysis: Plot the Allan deviation results on a graph with the

averaging time (tau) on the x-axis and the Allan deviation on the y-axis. Analyze
the graph to identify different regions that represent noise-dominated, signal-

dominated, and other characteristics of the accelerometer's dynamic range.

. Dynamic Range Determination: Determine the dynamic range of the

accelerometer based on the Allan deviation graph. The dynamic range represents
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the range of amplitudes or accelerations that the accelerometer can accurately

measure without saturating or losing sensitivity [29].

7. Validation: Validate the dynamic range measurement by comparing it with
specifications from the accelerometer datasheet or known calibration standards.
Ensure that the measured dynamic range aligns with the expected performance of

the accelerometer under seismic conditions.

8. Interpretation: Interpret the Allan deviation results in the context of seismic data
and the specific application requirements. Consider factors such as sensitivity,
noise floor, resolution, and maximum measurable acceleration when interpreting

the dynamic range measurement.

9. Navigation accuracy: the application of Allan variance analysis to MEMS
accelerometers is instrumental in enhancing navigation accuracy by identifying
and mitigating noise-related issues that can impact the reliability and precision of

navigation systems [30].
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SECTION 3

APPLICATION OF THE ALLAN VARIANCE METHOD
TO HIGH ACCURATE QUARTZ ACCELEROMETER

3.1. Allan variance computation algorithm

In today's world, measuring the accuracy and stability of signals is crucial in
many fields of science and technology, especially in telecommunications, navigation,
and metrology. These fields often demand high precision and stability from signals. This
Is particularly relevant for systems relying on precise time and frequency measurements,
such as GPS, high-frequency trading in financial markets, telecommunications
networks, and scientific experiments involving the measurement of fundamental
physical constants. Traditional methods of assessing signal stability, such as standard
deviation, are not always effective for analyzing signals with time-dependent
fluctuations. In such cases, Allan deviation is applied, providing a more adequate

assessment of signal stability under various types of noise.

The object of this study is the Allan deviation calculation algorithm, which is
used to assess the stability of frequency signals and time series. Allan deviation is a
powerful tool that allows separating different noise components in frequency signals

and time series, making it indispensable in many technical and scientific applications.

The method of time-domain analysis using Allan deviation, was created for
assessing the stability of frequency and phase oscillators. This approach gained wide
recognition from IEEE for its ability to analyze parameters of gyroscopes and
accelerometers. By effectively isolating various sources of noise, Allan deviation

accurately determines their characteristic parameters [34].

Aerospace Control Systems Explanatory Note
Department
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Let us remind of key concepts:

Allan Deviation. Defined as half of the mean square difference between
consecutive frequency deviation measurements taken over the sampling period. It

depends on the time between samples and is typically represented graphically.

Allan Deviation. Is the square root of the Allan deviation and is commonly used
for plotting and presenting results as it provides relative amplitude stability, allowing for

easy comparison with other error sources.
Analysis of Allan Deviation
1. Allan Deviation Calculation:

« Compute the Allan deviation for a noise sequence using the corresponding

formula.
2. Logarithmic Transformation:

« Apply logarithmic transformation to determine the slope of the curve for a

specific time z, creating a double-logarithmic curve.
3. ldentification of Noise Types:

« The curve helps identify five types of noise: quantization noise, random
walk (angle) noise, bias instability, random walk (rate) noise, and rate
ramp.

« By studying the different slopes for each type of noise, it's possible to

estimate when errors may occur.
4. Reading Intersection Points:

« Read the intersection points of tangents for each type of noise with the y-
axis, allowing accurate calculation of error coefficients by comparing these

points with noise coefficients [34].
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Explanation
1. Data Collection:

- Collect data with uniformly distributed time values along with measurements
of gyroscopic (or other device) output values, measured in angle/time units (e.g.,

degrees/second).
2. Interval Partitioning:
- Determine the averaging duration ( ).

- Divide the input data into intervals of duration ( ). For example, if ( = 2)
seconds and there are 4000 seconds of data, there will be 2000 intervals of 2 seconds

each.
3. Calculation of Mean Values:

- Compute the mean value of the gyroscope for each interval ( ). If N is the

number of intervals, the mean value for the i-th interval denoted is a(t);:

4. Calculation of Differences between Adjacent Intervals:

- Compute the difference between the mean values of adjacent intervals:

5. Calculation of Allan Deviation:

- Calculate the mean value of the squares of the differences between adjacent

intervals:
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Limitations for Correct Calculation [35]

For correct calculation of the Allan deviation, it's important to adhere to certain

conditions:
1. Minimum number of values in each interval:

- Each interval of duration should contain at least 9 measurement values:

2. Minimum number of intervals:

- The entire dataset should contain at least 9 intervals of duration

Transformation to Allan Deviation

For ease of interpretation of results, Allan Deviation (AD) is often used, which is

the square root of Allan deviation:

You may also want to consider fast algorithms to evaluate AVAR of both regularly

(Fig. 3.1.1) and irregularly (Fig. 3.1.2) sampled data are presented in this section [36].
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Algorithm 1 FAVAR

1:

ol

x s @

10:
11:
12:
13:
14:
15:
16:

vV = [yn—N—Fl Yn—-N+2 -+ Yn-—1
E-J!; —_ N - ]_
while m < 2P~ 1 do

Truncate the data {y;} (i = 1,2,...,n) to one greater
than the nearest integer power of 2 to yield data length
N=2041(peZ").

Set the initial window length m = 2.

Initialize the vector v and its length [,:

]T

Update v and [,:

v 0.5 ([vy vg ... "UEU_%]T—F
CENSRIENTRNN N

z’u — E"U o %

Update the vectors v/ and v?:

vl = [Tf’m+1 Um42 - - "UIU]T

vP =[v; vy ... "Ugv_m]T

Calculate AVAR for a window length m:
ly,—m

ﬁi[m] = m Ej:l (1;; - Tz’?)g

Update window length:

m +— 2m

17: end while

Fig. 3.1.1. Fast algorithm to evaluate AVAR of regularly sampled data
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Algorithm 2 FAVAR-I

1:

—
&

11:
12:
13:
14:
15:
16:
17:
18:

19:
20:
21:
22:
23:

Truncate the processed data {0;,w;} (i = 1,2,...,n)
to one greater than the nearest integer power of 2 to
yield data length N =2 +1 (p € Z7).

Set the initial window length m = 2.

Initialize the vectors v, w and their length [,:

7] ) T
vV = [Qn—N—I—l Qn—N—I—Z s 971—1}

{ T
W = [Wn-N41 Wn-N42 -.. Wp_1]
l":_‘: — N - 1

while m < 2P~ ! do

Update w, [,, and v :

o , T
s = [wivy wavy ... Wy, _mu, _m|"+
( T
[HJ%+1U%+1 UJ%+21J%;2 cow, vy ]
W [wy wp ... wy,—m]T
T
(Wwm g wm o .. wy ]
Ly <1, — %
— [S1L 82 Sty 1T
V—[wl iR wxv]
Update the vectors v/, w/, v®, and w":
_ , T
V'f — [Ufm,—}—l Um+2 --- UIU]
_ T T
w! = [Wyi1 Winpa - wy ]
b . , T
vl =[v; vy ... U, _m]
w? = [wy wy ... wy, ]|t

Calculate total weights and AVAR for a window

length m:

wlm] = Zif“:_lm 'wj-c w;-’

27,1 — _ 1 bo—m  f b f b)2
73 m) = kg T w (o] — o1)
Update window length:

m < 2m

end while

Fig. 3.1.2. Fast algorithm to evaluate AVAR of irregular sampled data
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Non-Overlapping and Overlapping Allan Variance

Allan variance (AVAR) calculates the root mean square value of the random drift
error as a function of averaging time. The graph of AVAR reveals not only the averaging
time that minimizes noise variance but also provides information about different

random processes contributing to the drift at the circuit output.

AVAR was first used to measure the frequency stability of precision oscillators
and is now widely used in other applications, such as analyzing random errors in
MEMS gyroscopes. For gyroscopes, AVAR gives the root mean square random drift

error as a function of averaging time.

There are different versions of AVAR, including non-overlapping and overlapping

Allan variance, which are commonly used to analyze random errors in inertial sensors.
Non-Overlapping Allan Variance

To calculate the non-overlapping Allan variance, we collect a large number of
samples from the gyroscope when it is motionless. Suppose we have a dataset of N
samples from the gyroscope output Q(t) at multiples of the sampling time . The N
samples are divided into K disjoint groups of equal length, where each group (or cluster)

has n samples. If the sampling time is , the total time duration of each group is T=n
Example

For n=3, each cluster has a time duration of 3 . The first cluster (k=1) includes
the first 3 samplesat ,2 ,and 3 . The second cluster (k=2) includes the samples at
4 ,5 ,and6 ,andso on. To find the Allan variance, we calculate the average of each
cluster, denoted by QK(T).

The Allan variance is then calculated using the following equation:

where K is the total number of clusters.
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Overlapping Allan Variance

The overlapping Allan variance tends to perform better for large datasets (large
N). Similar to the non-overlapping version, the N samples from the gyroscope output
Q(t) are divided into K groups of equal length where each group has n samples.

However, in this case, the clusters overlap.
Example

For n=3, the first cluster (k=1) includes the first 3 samplesat ,2 ,and3 . The
second cluster (k=2) includes the samples at 2 , 3 , and 4 , and so on. Thus, the

clusters overlap.

The average of the k-th cluster is denoted by QK(T). The overlapping Allan

variance is calculated using:

For n=3, the first term of the summation (k = 1) involves the cluster averages (21

(T) and Q4(T). The next term of the summation (k = 2) involves Q2(T) and Q5(T).

Finally, taking the square root of the result from either equation, we obtain the

Allan deviation for a particular value of T [37].

3.2. Research on the effect of temperature on the Sagem accelerator: analysis

of the collected Z-axis acceleration data

In this assignment, we examine the Sagem accelerator's temperature and Z-axis
acceleration measurements. In Fig. 3.2.1 shows an example of a quartz pendulum
accelerometer. First, we will look at the temperature profile of the Sagem accelerator in
the range of -15 °Cto +45 °C as shown in Fig. 3.2.2. Next, we will look at the collected

Z-axis acceleration data for five and a half hours, which is also shown in Fig. 3.2.3. Our
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goal is to calculate and plot the curve for the Z-accelerator and determine (from the

graphs) the error components available for it.

Fig. 3.2.1. Quartz pendulum accelerometer

Termal Cycle
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Fig. 3.2.2. Thermal cycle for Sagem accelerometer
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Let us consider the Allan deviation of the Sagem accelerometer in Fig. 3.2.4.

Standard deviation, o(7), g

Measured acceleration in Z - axis
T

0.5 1 1.5 2
t) S x 10

Fig. 3.2.3. Measured acceleration in z-axis
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Fig. 3.2.4. Allan standard deviation
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The graphs below present an analysis of the three main errors that characterize a
Sagem accelerator: velocity random walk, bias instability, and rate random walk. Each
graph shows how these errors change over time and under different operating
conditions. The results allow us to better understand how these errors affect the

accuracy of acceleration measurements under different circumstances.

Fig. 3.2.5 shows the Velocity Random Walk graph, which demonstrates the
dependence of the random acceleration error on time. This graph indicates the degree of
random variation in the acceleration measurement over time. A low value of Velocity

Random Walk indicates that the accelerator is stable in terms of random displacements.

Allan Deviation with Velocity Random Walk
l() E T R SR U B 341 =TT T T T T

10% ¢

10° N =4*10"gVs =4*10 “mgVs =4*10"m/s/\s

b )
107
tano =-1/2

Standard deviation, 6(t1), g

2
S5

10

1 2 .
10 10
Averaging time, 7, s

Fig. 3.2.5. Calculation of a velocity random walk
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The value of N was determined by finding the point of intersection of the tangent

line with a slope of 0.5 and the vertical line starting at time T=1 on the Allan curve.

This point of intersection indicates the value of N, which in this case is

reflecting the noise level or measurement variations in the system.

Fig. 3.2.6 shows the Bias Instability graph, which displays the change in
acceleration stability error over time. This graph allows you to assess how much the
average value of acceleration measurements changes over time. A low Bias Instability
value indicates that the average value of the acceleration measurements does not change

much over time, which is important for accurate measurements.

Allan Deviation with Bias Instability
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Fig. 3.2.6. Calculation of a bias instability
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Finally, Fig. 3.2.7 shows the Rate Random Walk graph, which illustrates the
effect of random changes in angular velocity on the accuracy of acceleration
measurements. This graph helps determine the stability of the accelerator under random

changes in angular velocity.

Allan Deviations with Rate Random Walk
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Fig. 3.2.7. Calculation of a rate random walk

The rate random walk is represented by a slope of +0.5 on a log-log plot of o(z),

and its deviation is given by the formula:
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In my example, the value was calculated as follows:

First, was determined to be . Using the given formula, we substitute

this value into the equation:

Thus, by following the formula for rate random walk and substituting the

appropriate values, we obtain the rate random walk coefficient:

Analyzing these graphs helps to better understand the performance and behavior
of the Sagem accelerator during acceleration measurements under various operating
conditions [38].

3.3. Interpretation of the results

In this section, we present the following results of calculations related to the
effect of temperature on the Sagem accelerometer and its acceleration measurement
characteristics. Based on the data collected and calculations performed, we determine
the level of stability, accuracy, and reliability of the device under various operating

conditions.

We used the Sagem accelerometer to evaluate its performance: Velocity Random
Walk (VRW), Bias Instability, and Rate Random Walk (RRW). These indicators allow
you to understand what factors affect the accuracy of acceleration measurements and

how the device performs under different operating conditions.

Velocity Random Walk (VRW): This indicator indicates the rate of random

changes in acceleration measurements over time. In your case, a low value of N =

( ) indicates a low degree of noise in the system, making the Sagem
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accelerometer a stable and reliable device for acceleration measurement in applications

where high accuracy is important.

Bias Instability: This indicator indicates the change in the average value of
acceleration measurements over time. A low Bias Instability value ( )
indicates that the average acceleration value is stable over a long period of time. This is
especially important for applications that require accurate acceleration measurement

over a long period of time, such as navigation systems or measuring devices.

Rate Random Walk (RRW): This indicator indicates the effect of random changes
In angular velocity on the accuracy of acceleration measurements. A low RRW value
( ") indicates that the accelerator is not sensitive to changes in
angular velocity. This is important for applications where the object being measured
may be subject to various angular motions, such as in aircraft or automotive

stabilization systems.

In general, low VRW, Bias Instability, and RRW values indicate high stability and
accuracy of Sagem accelerometer acceleration measurements under various operating
conditions. This can have a significant impact on various technical applications,
including navigation systems, vibration monitoring, and aerospace research, where high

accuracy and stability of acceleration measurements are required.

3.4. Conclusion

In this section of the work, calculations were performed using the Allan method
to analyze the characteristics of the gyroscope in real-world operation. The calculated
parameters, such as Velocity Random Walk (VRW), Bias Instability, and Rate Random
Walk (RRW), provided important data on the stability and accuracy of the

accelerometer measurements.

Velocity Random Walk indicates the rate of random changes in acceleration
measurements over time. A low value of this parameter indicates the stability of the

device and its reliability in measuring acceleration.
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Bias Instability determines how much the average value of acceleration
measurements changes over time. A low Bias Instability value indicates that the average

acceleration value is stable, which is important for long-term measurements.

Rate Random Walk indicates the influence of random changes in angular velocity
on the accuracy of acceleration measurements. A small value of this parameter indicates

a low sensitivity of the accelerometer to changes in acceleration.

Thus, our calculations made it possible to determine the characteristics and
behavior of the accelerometer when measuring acceleration under various operating
conditions. This is important to ensure accurate and reliable measurements in various
technical applications. Further research in this area can help improve the technology and

increase the accuracy and reliability of inertial measurement systems.
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CONCLUSION

MEMS accelerometers have revolutionized inertial technology, offering compact,
cost-effective and high-performance solutions for a wide range of applications in a
variety of industries. Their further development and integration into modern IMUs are
making a significant contribution to the development of navigation, robotics,
automotive safety systems and many other industries that depend on accurate motion

measurement and control.

The application of Allan variance analysis to MEMS accelerometers is important
in enhancing navigation accuracy by identifying and mitigating noise-related issues that

can influence the reliability and precision of navigation systems.

A low value of Velocity Random Walk indicates the rate of random changes in
acceleration measurements over time and indicates the stability of the device and its

reliability in measuring acceleration.

A low Bias Instability value indicates that the average acceleration value is stable,

which is important for long-term measurements.

Rate Random Walk indicates the influence of random changes in angular velocity
on the accuracy of acceleration measurements. A small value of this parameter indicates

a low sensitivity of the accelerometer to changes in acceleration.
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