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ABSTRACT 

The text part of the work: 69 pages, 25 figures, 3 formulas 

Research object: Application of genetic algorithms for solving the problem of 

path planning for autonomous robots. 

Research subject: Navigation algorithms for mobile robotic systems. 

The aim of the study is to devise an obstacle avoidance algorithm for ground 

mobile robots in MATLAB. 

Research methods: Mathematical modeling and optimization techniques 

An algorithm for controlling a mobile robot and simulation have been developed, 

allowing for efficient obstacle avoidance along the robot's path. 

The materials from the qualification work can be utilized for conducting simulation 

modeling in the design of control systems for the motion of mobile ground robots. 
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INTRODUCTION 

In the modern world, the automation of ground moving objects, such as 

robots, cars, and drones, is becoming increasingly important. However, one of the 

main problems with automated movement is the need for effective obstacle 

avoidance, such as other objects, people, vehicles, or even natural barriers. 

In some situations, obstacles may appear unexpectedly or change their 

position, complicating the task of trajectory planning. For example, in urban 

environments, cars must react quickly to other vehicles, pedestrians, and obstacles 

on the road to avoid accidents. 

It is also important to consider that control systems must be able to operate 

in real-time and reliably respond to changes in the surrounding environment. This 

creates a need for the development of efficient and reliable automatic control 

systems that ensure the safe movement of the object around obstacles. 

The research goal is to develop and test an automatic control system for 

ground moving objects in obstacle avoidance mode. Specific objectives aimed at 

achieving this goal may include: 

1. Development of obstacle avoidance algorithms: Creating effective 

algorithms that allow the object to automatically determine the optimal path 

for avoiding obstacles in various conditions. 

2. Sensor integration: Developing obstacle detection systems for the object's 

path using various sensors such as radars, LiDARs, cameras, etc. 

3. Implementation of control system: Creating software and hardware for 

effective real-time control of the ground object's movement. 

4. Testing and validation: Conducting system tests on specially created test 

sites or in simulators to verify its functionality and reliability. 

5. Performance evaluation: Analyzing test results to evaluate the speed, 

accuracy, and safety of the system under different conditions and scenarios. 

6. Capability demonstration: Demonstrating the operation of the developed 

system in real conditions or on virtual platforms. 

Relevance of the automatic control system for ground moving objects in 

obstacle avoidance mode: 

1. Safety and accident avoidance: In a world where automotive vehicles, 

robots, and other moving objects coexist closely with humans and other 

obstacles, effective accident avoidance and safety become critically 

important tasks. 
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2. Increased productivity: Automatic control allows moving objects to work 

more efficiently and effectively in conditions of limited space and time. 

3. Technological development and artificial intelligence: The development of 

automatic control systems stimulates the advancement of advanced 

technologies and methods of artificial intelligence, which can have broad 

applications in other fields. 

4. Modernization of the transportation system: In the modern world, the need 

for modernization of transportation infrastructure and management systems 

to ensure an efficient and safe transportation system becomes increasingly 

evident. 

5. Economic benefits: Reducing the number of accidents and improving 

productivity can lead to economic benefits for companies and society as a 

whole. 
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CHAPTER 1. DESCRIPTION OF THE PROBLEM OF CREATING SYSTEMS 

OF AUTOMATIC CONTROL OF GROUND MOVING OBJECTS IN THE MODE 

OF BYPASSING OBSTACLES 

1.1 Basic terms and definitions 

    An automatic control system consists of a controlled object and automatic 

measuring and controlling devices. Unlike automated systems, this operates 

independently, executing predefined process functions automatically, without human 

intervention, apart from initial setup and adjustments. Such systems are commonly 

known as Automatic Control Systems (ACS).Automatic regulation involves 

maintaining or adjusting specific levels of physical or chemical quantities characterizing 

the process according to predetermined laws. It encompasses various influences on the 

process selected from a predefined set. A control device generates a control effect on 

the controlled object based on its operational algorithm. When operating independently, 

it's referred to as an automatic control device. 

    An Automatic Control System (ACS) comprises a controlled object and a 

control device, interacting to achieve predefined objectives.  
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Additionally, it includes a reference device that establishes the necessary 

laws to alter the initial state of the controlled object. The concept of "control" 

encompasses "regulation," ensuring system parameters align with specified values. 

An automatic regulation system maintains parameters necessary for the desired 

technological process course, without human intervention. 

The progression of a technological process or operation in a machine is 

viewed as a series of states, changing sequentially based on predefined criteria. 

Controlling a technological machine involves two tasks: ensuring the required 

sequence of transitions between states and maintaining the machine within specific 

states. Program control systems ensure the former task, orchestrating purposeful 

changes in the controlled object's state, enabling predefined sequences of 

operations. 

Automatic regulation systems detect deviations in controlled parameters, 

influencing the object or process to rectify these deviations. 

Elements of automatic control systems 

Any control system consists of three main components: control program, 

control device, and controlled object.(Fig.1) 

 

Fig. 1 Elements of control systems 

 

The control program encompasses a series of instructions, providing a detailed 

step-by-step guide for a technological machine or a system of machines to execute 

specific technological operations or processes. 
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The control device interprets the control information from the program into a 

format understandable to the technological machine. It translates this data into 

commands for the various mechanisms, units, and components of the machine. The 

control unit's output signals are linked to the executive elements of the 

technological machine. To ensure the accurate execution of commands, feedback 

signals are sent back to the control device through dedicated channels. 

Consequently, the control device interacts with the controlled object by exchanging 

signals, including: 

"u": commands from the control system to the executive mechanisms of the 

machine. 

"u'": information about the execution of commands from the executive 

system to the control system. 

This exchange of signals facilitates effective communication and 

coordination between the control device and the controlled object, ensuring the 

precise execution of commands within the technological process(Fig. 1.1). 

 

Fig. 1.1 Controlled technological machine 
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Automatic control system (Fig. 1.2): 

 

Fig. 1.2 Functional scheme of ACS 

The automatic control system (ACS) provides for the automatic collection 

and processing of information, as well as the generation and implementation of 

control influences on the controlled object according to the control quality 

criterion. Therefore, it includes a measuring device, control, and executive 

elements (Fig. 1.3). 

 

Fig. 1.3 The structure of the automatic control system 

The measuring component serves the purpose of gauging technological 

parameters (such as velocity, temperature, etc.) and output variables of the 

controlled entity, which depict its condition. In practical automatic control setups, 

a sensor typically fulfills this role by transforming non-electric quantities (like 

displacement, speed, force, pressure, temperature, etc.) into electrical signals. 
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Control elements produce governing inputs for the executive component. 

Typical control components comprise conversion and summation segments. A 

shared characteristic among technical or technological systems engaged in control 

processes is the transmission of data regarding the ongoing procedures within 

distinct sections of the system via signals. In technical systems, tangible conveyors 

of information are denoted as signal carriers, capable of being modified based on 

the conveyed data. These carriers may encompass electrical voltage and current, 

pressure, mechanical shift, among others. The structural constituents of the system 

aim to translate one physical quantity and its corresponding signals into others. 

This process finds reflection in the cybernetic concept of system links. 

A link represents a control part integrated into the automatic control system, 

where the input parameter undergoes conversion into the output parameter in a 

specified manner. While the graphic depiction of a link as a block does not capture 

the intricacies of its construction, the crucial aspect lies in the association between 

the input effect on the link and its resulting reaction at the output. This 

methodology facilitates the development of models for elements across diverse 

technical systems, independent of their particular technical realization. 

Executive components directly execute the control effects of the automatic 

control system on the controlled entity. The prevalent devices utilized in technical 

systems encompass:  

• DC and AC motors,  

• Hydraulic drives and mechanisms,  

• Pneumatic drives,  

• Heating elements. 

1.2 Types of automatic control 

In control theory, automatic control types are categorized based on both the 

intended goal of control and the method of generating control inputs for the 



15 
 

controlled object. Concerning the control objective, automatic control is segmented 

into stabilizing, tracking, programmatic, coordinating, optimal, extreme, terminal, 

emergency, and restorative types. Regarding the generation of control inputs, all 

varieties of automatic control rely on just two fundamental principles:  

 

• Disturbance regulation;  

• Error detection 

Disturbance regulation  

Involves controlling the system while considering the disturbance 

magnitude. The disturbance level is gauged, and its value is relayed to the control 

device. This device assesses the disturbance signal and initiates a control action on 

the controlled object. This approach is often referred to as the Poncelet principle or 

compensation control, as it involves compensating for the disturbance's effect 

through control. 

The main advantage of this method is its rapid response. Any change in the 

disturbance magnitude triggers an immediate reaction from the control device. 

However, this form of control doesn't permit alterations to the object's operating 

mode. 

Despite its advantages, disturbance management has its drawbacks. Firstly, 

numerous factors can disturb the object, such as load variations, environmental 

temperature changes, or fluctuations in tank levels. To ensure effective control, 

each disturbance must be accounted for, necessitating a separate control loop for 

each one. This task is practically infeasible due to the multitude of potential 

influencing factors on any given object. Secondly, implementing disturbance 

control requires a thorough understanding of how the system responds to 

disturbances of varying magnitudes, which often demands meticulous 

investigation. Developing a regulator entails studying the system's behavior under 
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diverse disturbance conditions, a task that may not always be achievable with the 

required precision.(Fig. 1.4) 

 

Fig. 1.4 Functional scheme of SAC with disturbance control 

Error detection 

In accordance with this principle, the output quantity's value is assessed at 

the system's output. Information regarding this value is transmitted to the control 

device. The control device generates a control signal based on the disparity 

between the setpoint signal and the output signal (feedback signal). This control 

principle is known as the Pozhunov-Watt principle. 

Under this principle, control is executed based on the divergence between 

the output and setpoint values, regardless of the underlying cause of this deviation. 

It operates irrespective of the number or nature of disturbances influencing the 

deviation in the operational mode. Control is solely contingent upon the difference 

in values and can accommodate any influences on the system, constituting the 

advantage of error control. 

However, error control suffers from system inertia, resulting in a time delay 

between disturbance changes and control actions, leading to oscillations and 

instability in system behavior. This is due to the fact that, according to this 

principle, the control device only intervenes with the object once its operational 

mode shifts and a difference between the output and setpoint quantities emerges. 
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Systems employing the error control principle are commonly known as 

closed-loop systems, featuring feedback between the system output and the control 

device(Fig. 1.5). 

 

Fig. 1.5 Functional diagram of SAC with deviation control 

Combined control principle 

A combined control system(Fig. 1.6), operating on a combined principle, 

integrates two distinct control systems. Information regarding both the disturbance 

value and the output quantity value is transmitted to the control device. Each signal 

operates within its own control loop. 

 

Fig. 1.6 Functional scheme of the SAC with a combined control principle 

1.3 Process machine control program and classification of systems 

Programmatic control involves orchestrating deliberate state changes within 

a technological system, resulting in the execution of a predetermined sequence of 

tasks. In this approach, the control program dictates the sequence of state 

transitions of the technological system, essentially outlining the sequence of 
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technological actions constituting the technological cycle. Systems that oversee the 

step-by-step progression of successive states in a technological machine are known 

as program control systems, commonly found in automatic machines producing 

discrete products. 

Control schemes can be open-loop, where the previous state isn't monitored, 

and the transition to the next state occurs incrementally. More commonly, control 

schemes employ monitoring of each state of the technological machine, proceeding 

to the next state only after verification. Each state corresponds to the execution of a 

specific segment of the working cycle. Notably, modern packaging machines 

feature a distributed work cycle segmented into controlled stages, sometimes 

employing as many as 120-150 sensors. 

Programmatic control ensures that the technological machine adheres to the 

planned sequence of technological actions. The control program must anticipate 

potential production scenarios; hence, most control systems incorporate feedback 

loops to provide information about completing each program step before 

proceeding to the next. 

The control program encompasses a set of rules for issuing control 

commands to the machine's executive mechanisms, facilitating its operation in 

achieving the specified technological objective. Consequently, the movements of 

executive mechanisms in machines are governed by the control program, 

necessitating it to contain all essential information for coordinating these 

movements. 

Automatic control systems can be classified based on various criteria, 

including the principle of informativeness, the number of controlled parameters 

and loops, the nature of static and dynamic characteristics, and structural features. 

Given the rapid advancements in information technologies, one prevalent 

classification principle is the informativeness principle, distinguishing systems 

with complete and incomplete initial information. Ordinary systems possess 
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sufficient initial information to solve tasks for the system's entire operation, while 

cybernetic systems require additional information acquisition during operation to 

formulate necessary control commands. 

 

Water supply and drainage systems, as objects of automation, fall into the 

category of ordinary systems with complete initial information. They can be 

further divided into closed-loop automatic control systems, operating on the 

feedback principle by controlling deviations from the output quantity, and open-

loop automatic control systems, which control disturbances regarding the same 

quantity. 

Closed systems 

Closed-loop systems, in turn, can be of three types: stabilization, 

programmed, and tracking. 

Stabilization systems are intended to provide a constant value of the 

controlled variable (Y) of the control object: Y = const. Examples of such systems 

can be automatic control systems for air temperature in residential premises, 

automatic pressure control systems in the suction pipeline of pumps, and so on. 

Programmed automatic control systems are designed to provide a change in 

the controlled variable through a pre-known program: Y = var. 

Tracking automatic control systems also provide Y = var, but their main 

difference from programmed systems is that the law of change of the controlled 

variable required for operation is not known in advance and is formed during the 

system operation. 

Open-loop systems 

Open-loop systems can be of two types: compensatory and programmed. 

Compensatory systems provide the formation of control signals at the input of the 

object, which compensate for the effect of the corresponding disturbance on it. 
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Programmed control systems, unlike programmed automatic control 

systems, besides having an open-loop scheme, must also provide a change in the 

operating mode of the object according to a predetermined program. Examples of 

such systems can be elevator lifting installations, where the final switches provide 

the necessary changes in the operating mode of the electric drive depending on the 

position of the elevator cabin. 

Static and astatic automatic control systems 

The primary feature of these systems is the control characteristic, illustrating 

the relationship between the controlled variable (Y) at a static position and the flow 

rates of the working medium. 

A system is deemed static if, when external disturbances alter the object, the 

controlled variable (Y) fluctuates within specific permissible limits after the 

transient process concludes, contingent upon the external disturbance. Typically, 

the control characteristic takes the form: 

Y= Ȳ + Δ(Y)     

1.1 Perturbation function         

Here, Ȳ represents the average value of the controlled variable, while Y 

denotes the disturbance function, delineating the deviation of the controlled 

variable from its average value based on the disturbance within the control zone. 

The level of static stability is gauged by the ratio of the deviation of the controlled 

variable within the control zone to its average value, expressed as a percentage: 

 

1.2 The amount of statism 

A system is considered static if the controlled variable Y settles on a strictly 

constant value after completing the transient process, regardless of different 

external disturbances. In such static systems, the control characteristic manifests as 

a horizontal straight line. 
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Сontinuous and discontinuous action 

Regarding continuous and discontinuous action, a continuous system 

maintains a consistent structure of connections during operation, with each 

element's output being a continuous function of the disturbance and time. In 

contrast, discontinuous systems allow changes in connection structures during 

operation, leading to discontinuous signals at the outputs of elements or the system 

itself. Discontinuous systems can be further classified into relay and pulse systems, 

which incorporate relay or pulse elements respectively, impacting their 

characteristics. 

Multi-dimensional systems 

In terms of dimensionality, systems can be single or multi-dimensional. 

Multi-dimensional systems can be categorized as unlinked or linked regulation 

systems. Unlinked regulation systems feature several controlled coordinates and 

autonomous controllers that operate separately, though the controlled coordinates 

may be interconnected through the object. Linked regulation systems involve 

automatic controllers for different coordinates linked by additional connections, 

enabling autonomous regulation of individual variables. 

Linear and nonlinear systems 

Linear and nonlinear systems represent another classification criterion. 

While real systems often contain nonlinear elements, linear systems are those 

described by linear dependencies. These systems adhere to the principle of 

superposition, where the system's reaction to a combination of external actions 

equals the sum of reactions to each applied separately, akin to an additive function. 

• Linear systems are described by linear dependencies, adhering to the 

principle of superposition. This principle states that the system's response to any 

combination of external actions equals the sum of responses to each action applied 

separately. This is equivalent to an additive function, expressed as:  
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x(U, Z) = x(U) + x(Z), (1-2) 

• Nonlinear systems contain at least one element with nonlinear 

characteristics. To facilitate analysis and synthesis tasks, nonlinear characteristics 

are often linearized. This process involves replacing the real nonlinear system with 

an equivalent linear (or linearized) system, simplifying the analysis. 

1.4 Modules for autonomous navigation 

To prevent collisions with obstacles, it's essential to outfit the operation with 

specialized modules designed to scan the surrounding environment and identify 

obstacles. Various sensors can be employed for obstacle detection, including an 

image sensor (camera), ultrasonic sensor, lidar, and Time-of-Flight (ToF). 

Time-of-Flight (ToF) is a technique for measuring the distance between the 

sensor and an object. It relies on the time difference between emitting a signal and 

receiving its reflection from the object. ToF sensors utilize different types of 

signals, commonly light or sound. They measure distances by calculating the time 

it takes for photons to travel from the sensor emitter to the target and back to the 

sensor receiver. 3D ToF cameras can provide depth data in three dimensions. 

When using light, ToF is highly effective for distance and range determination. 

Compared to ultrasound, it offers a greater range, faster readings, and higher 

accuracy, all while maintaining a compact size, low weight, and minimal power 

consumption. ToF sensors find applications in robot navigation, vehicle 

monitoring, people counting, and object detection. 

For distance measurement in robotics, ToF sensors such as the Teraranger 

Evo and IND-TOF-1 from Terabee company are suitable choices. The Teraranger 

Evo offers precise, high-speed distance measurement and object detection at close 

range, making it ideal for mobile robotics applications. Terabee offers several 

models of this sensor, varying in the distance range for object detection, with a 

maximum detection distance of up to 60 meters. 
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Fig. 1.7 TeraRanger Evo 

The TeraRanger Evo sensors comprise an optoelectronic sensor module and 

a rear panel that seamlessly connects to provide communication channels and 

power management capabilities to the sensor, eliminating the need for adapters or 

intricate wiring. The choice of rear panel can be tailored to individual 

requirements, with options including USB, I2C, and UART interfaces. Moreover, 

the sensor is compatible with popular platforms such as Arduino, Raspberry Pi, 

Pixhawk, and ROS (Robot Operating System). Notably, one of its advantages is its 

ability to operate effectively in low light conditions and even in complete darkness. 

LiDAR  

Light Detection and Ranging, is a remote sensing technology that employs 

laser pulses to collect measurements, used for creating 3D models, object maps, 

and environmental maps. Similar to radar and sonar, LiDAR utilizes laser light 

waves instead of radio or sound waves. The system calculates the time taken for 

light to hit an object and return to the scanner, utilizing the speed of light to 

determine distance. LiDAR systems can generate approximately 1,000,000 pulses 

per second, with each measurement forming a point in a three-dimensional point 

cloud, representing shapes or objects. These point clouds consist of points with 

their own X, Y, and Z coordinates, and sometimes additional attributes. LiDAR 

finds applications in various tasks, including automotive radar. 



24 
 

In contrast to GPS, which provides location accuracy within a circle 

diameter of about 5 meters, LiDAR achieves accuracy up to 10 centimeters. Its 

advantages include high speed and accuracy of data collection, high penetration 

capability, independence from ambient light intensity, absence of geometric 

distortions, and seamless integration with other data collection methods. 

Additionally, LiDAR minimizes human involvement, which proves beneficial in 

certain fields. 

One notable example of LiDAR technology is the LeddarTech Vu8, a 

compact semiconductor LiDAR capable of detecting multiple targets in eight 

independent segments. With a detection range of up to 215 meters and weighing 

only 75 grams, the Vu8 offers nearly double the range in half the volume compared 

to its predecessor, the Leddar M16. 

 

 

Fig. 1.8 LeddarTech Vu8 

The Vu8 utilizes a stationary laser light source, significantly enhancing the 

sensor's reliability and cost-effectiveness. Its design offers high resistance to noise 

and obstacles, rendering it impervious to interference from other sensors, varying 

lighting conditions (including direct sunlight), and ensuring consistent detection 

accuracy in diverse weather conditions, including rain and snow. 
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On the other hand, the LeddarOne is a full-beam sensor module tailored 

specifically for point measurement tasks, making it well-suited for applications 

such as level determination, security and surveillance, and presence detection. 

The LeddarOne module boasts seamless integration into nearly any system 

due to its compact size, low power consumption, and high accuracy. These features 

provide developers and integrators with ample opportunities to enhance their 

products' performance and functionality. 

Ultrasonic Sensors 

Ultrasonic sensors are widely recognized for their remarkable reliability and 

versatility across various industrial sectors. Their capabilities extend to complex 

tasks such as object recognition or level measurement with millimeter precision, 

owing to the robustness of their measurement method, which operates effectively 

under diverse conditions. 

Functioning on the basis of emitting high-frequency sound pulses, ultrasonic 

sensors excel at distance measurement. These pulses, emitted in a conical beam, 

reflect off surfaces they encounter. The sensor's operation relies on measuring the 

time taken for the signal to travel, enabling both object detection and distance 

measurement from the sensor to the objects. 

Among the most prominent ultrasonic sensors for Arduino is the HC-SR04, 

prized for its widespread availability and affordability. With a measurement range 

spanning from 2 to 400 cm, this sensor remains operational even in the presence of 

electromagnetic radiation or solar energy, underscoring its  

GPS Modules 

GPS modules are employed for location determination by establishing 

connections with satellites and receiving location coordinates. Among the most 

prevalent GPS modules is the u-blox NEO-6m-001. It requires a duration to 

establish a connection with satellites. A cold start of this module typically takes 
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from 5 to 20 minutes, assuming it's under open sky or close to a window. 

Conversely, a hot start takes approximately 1 second. While this module aids in 

determining location, its accuracy may not be exceptionally high. 

 

Fig. 1.9 NEO-6m-001 

 

For enhanced accuracy in measurements, higher-priced models are necessary. 

Take, for instance, the NEO-8m module, boasting a data update frequency of up to 

18 Hz (Single satellite) and 10 Hz (Multiple satellites). It has the capacity to 

connect to up to 72 satellites, a significant leap from the NEO-6m, which can only 

connect to 12. This increased satellite connectivity results in more precise location 

data. Moreover, the cold start time for the NEO-8m module is a mere 26 seconds, 

remarkably swift compared to other models. 

Camera 

Additionally, for analyzing surrounding objects, a conventional camera can 

be utilized. Through this camera, a computer equipped with a neural network can 

recognize various objects. Utilizing information about these objects and their 

positions within the frame, it can determine the appropriate direction to move or 

whether to remain stationary. Specifically designed for the Raspberry Pi 

microcomputer, the Pi High-Quality Camera (Figure 1.12) is available. This 

camera seamlessly connects to the Raspberry Pi and is easily configurable. It 

features a Sony IMX477R sensor matrix and requires lenses for operation with C 
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or CS type adapters. The module boasts a 12.3-megapixel sensor, with the 

Raspberry Pi High-Quality Camera offering a maximum resolution of 4056 x 3040 

pixels (5K). 

 

Fig. 1.10 Pi High Quality Camera without a lens 

Accelerometer, magnetometer 

Furthermore, to ascertain the device's orientation, both an accelerometer and 

a magnetometer are essential components. 

An accelerometer gauges acceleration, which is the rate of change of 

velocity. By measuring dynamic acceleration's magnitude, it enables the 

determination of how rapidly and in which direction the device equipped with the 

accelerometer is moving. 

On the other hand, a magnetometer measures the strength of the magnetic 

field. Modern electronic magnetometers, constructed using MEMS 

(Microelectromechanical Systems) technology, facilitate measurements along three 

perpendicular axes. They output projections of the magnetic field along these three 

axes within the magnetometer's coordinate system. 

Through the accelerometer, the device's spatial position can be determined, 

while the magnetometer enables determination of the device's orientation. 
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Together, these sensors provide comprehensive information about the device's 

movement and direction. 

Architecture of Intelligent Robots 

Today, it is assumed that intelligent robots should consist of the following 

systems: 

Actuators - these are manipulators, locomotion systems, and other devices 

through which a robot can interact with objects in its environment. Structurally, 

these are complex technical devices that include servo drives, mechatronic 

components, sensors, and control systems. Analogous to living organisms, these 

are the arms and legs of the robot. 

1. Sensors - these are systems of technical vision, hearing, touch, distance 

sensors, locators, and other devices that allow gathering information from 

the surrounding world. 

2. Control system - this is the brain of the robot, which should receive data 

from sensors and control actuators (effectors). This part of the robot is 

usually implemented through software. Components of the control system of 

an intelligent robot should include: 

3. World model - reflects the state of the surrounding world for the robot in 

terms convenient for storage and processing. The world model serves the 

function of memorizing the state of objects in the world and their properties. 

4. Recognition system - includes image recognition systems, speech 

recognition, etc. The task of the recognition system is identification, i.e., 

"recognizing" objects surrounding the robot and their positions in space. The 

operation of the recognition system components builds the world model. 

5. Action planning system - performs a "virtual" transformation of the world 

model to obtain some action. At the same time, the feasibility of the set goal 

is usually checked. The result of action planning is the construction of plans, 

i.e., sequences of simple actions. 
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6. Action execution system - attempts to carry out planned actions by issuing 

commands to actuators and controlling the execution process. If the 

execution of a basic action turns out to be impossible, the entire process is 

interrupted, and new (or partially new) planning should be performed. 

7. Goal management system - determines the sequence, i.e., the significance 

and order of achieving the set goals. Important properties of the goal 

management system include the ability to learn and adapt, i.e., the ability to 

generate action sequences for the set goal and adjust its behavior to changing 

environmental conditions to achieve the set goals. 

8. Navigation system - designed to orient the robot in a three-dimensional 

world and to plan rational routes for the robot's movement. 

1.5 Statement of problems of autonomous robots in their field 

The problem of creating artificial intelligence  

Creating a program for the autonomous operation of a robot requires writing 

new algorithms each time: the machine has no freedom of will even within the 

confines of executing assigned tasks; it merely follows the program code and 

explores options for the most rational execution of the given task. Once the task is 

completed, the robot loses its motive for functioning. It's impossible to give 

abstract instructions to a robot because there's no interpretation of the concept of 

"abstract instruction" as a "specific instruction." The solution is to create a system 

that will generate action (behavior or judgment) algorithms for itself for each 

specific case; this system should also accumulate information (experience) and 

analyze conclusions and generalizations from the accumulated information. Such a 

system, which generalizes, performs abstract constructions, not arithmetic 

calculations; it should be regarded as intelligence. Its artificial nature determines 

its characterization as "artificial intelligence." The autonomy of robots largely 

depends on the creation of artificial intelligence (AI). 



30 
 

Scientific developments in the field of artificial intelligence have reached an 

impasse. There is no universally accepted definition of what AI is. Instead, each 

new conference or symposium spawns new "concepts" with a common drawback. 

Very rarely do new ideas emerge, such as the concept of neural networks. 

Computers are getting better and better at playing chess. However, no computer 

learns or invents new chess algorithms on its own; they use schemes and methods 

provided by talented chess players or programmer-mathematicians, who are 

carriers of real intelligence. Computers simply explore options. Yet in the world, 

often what's needed is not just exploring options, or there are too many options, 

and the input data are unknown. Improvisation is needed, abstract thinking, which 

machines are not yet capable of and a way out of this situation has not yet been 

found either philosophically or mathematically. 

The problem of power supply  

One of the main problems in creating fully autonomous robots is providing 

them with power. One possible solution is to supply the robot with solar panels, 

but unfortunately, this method of obtaining energy may not always be available in 

the absence of a sufficiently bright light source. In countries close to the equator, 

this may not be a problem, but most developed countries are located in temperate 

zones, so the power supply problem for autonomous robots is urgent due to the 

current low efficiency of solar panels. A promising approach is to teach robots to 

generate energy independently, as animals do. However, in this case, there arises 

the problem of obtaining quality biological material for nutrition. There is an idea 

to teach the robot to feed on what can be easily found almost everywhere: for 

example, burnt leaves, dead insects, or human waste. 

In 2004, Professor Chris Melhuish from the University of the West of 

England and his team developed the "EcoBot II" robot, which generated energy for 

its "life" from flies or pieces of rotten apples. A more advanced version was the 

"EcoBot III." In 2010, this robot was taught to dispose of the waste products of 

bacteria so that the bacteria supplying the operation of microbial fuel cells (MFC) 
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did not die from their own "impurities." Today, a new model of the robot "EcoBot-

IV" is already being assembled, the fuel cells of which (as the developers assume) 

will be able to work for 20-30 years because there are no moving parts in MFC. 

Only bacteria function—meaning practically nothing can break[31]. 

Navigation Problem  

The primary problem with all currently available mobile devices that move 

autonomously is navigation. Attempts to create autonomous means of 

transportation give rise to a series of problems collectively termed "navigation 

tasks." Navigation is the science of controlling the movement of a mobile robot 

(or, in other words, an autonomous object) in space. For successful navigation in 

space, the onboard system of the robot must be able to construct a route, control 

motion parameters (set the angle of wheel/rudder rotation and the speed of their 

rotation), correctly determine information about the surrounding world obtained 

from sensors, and constantly track its own coordinates. Typically, navigation tasks 

involve two subtasks that can be temporally divided: localization in space and path 

planning. Localization involves assessing the current position of the robot relative 

to certain known reference points in the environment, given in absolute 

coordinates. Planning involves searching for the shortest route possible and 

advancing to the destination point. 

In goal-directed navigation, a minimum of three hierarchical levels of 

problem representation is distinguished: obstacle traversal, local navigation, and 

global route planning. Global planning algorithms involve information about the 

entire space to determine areas where movement is possible and then select the 

optimal path. Exact algorithmic solutions have been found for the planning task. 

However, precise algorithms have high computational complexity and also require 

accurate algebraic models of obstacles. Heuristic methods do not guarantee 

completeness of search and optimality even in global planning when all 

environmental data are available. However, heuristic global planning methods 

reduce the complexity of the task and sensitivity to errors in data in various ways. 
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By using genetic algorithms, an optimal route can be found, considering minimal 

travel time with various scenarios of real traffic conditions and different vehicle 

speeds. 

Issues of Direct Danger from Machines  

With the relentless development of robotics, robots and other automated 

systems are becoming increasingly intelligent and advanced. At the same time, 

they are being entrusted with more and more duties: driving cars, assisting with 

childcare, home security, and possibly even participating in military operations. 

The problem of complete trust in robots arises: there is no certainty that robots will 

never make decisions that harm humans[33]. 

First and foremost, the problem concerns combat robots. In modern armies, 

robots are primarily used for mine and bomb disposal, as well as for 

reconnaissance; however, they are increasingly being used as fully-fledged combat 

machines equipped with modern weapons. Currently, a living operator usually 

controls the combat robot, who is responsible for all actions of the entrusted 

device. However, if the machine is given the ability to autonomously select a 

target, the situation changes completely. Modern warfare must be conducted in 

such a way that those responsible for the deaths of civilians killed in the conflict 

can be identified—and the degree of their guilt determined. Since killings 

committed by autonomous robots cannot be assessed from this perspective, the 

concept of "responsibility" is fundamentally inapplicable to them. Therefore, the 

development of such machines should be banned on ethical grounds. Meanwhile, 

autonomous machines capable of killing already exist. For example, unmanned 

reconnaissance aircraft armed with missile weapons programmed to destroy targets 

that meet certain criteria. Such devices have been widely used by US troops during 

conflicts in the Middle East. 

A direct consequence of the absence of human traits, and a potentially 

dangerous one, is the possibility of using robots in operations to suppress human 
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freedoms and rights. If the opportunity arises, robots will undoubtedly be used for 

illegal seizure and retention of power. International law does not guarantee 

protection from aggression by morally bankrupt individuals endowed with 

authority. Human rights activists consider "soulless machines" to be the ideal tool 

for suppressing rebellions, repression, etc., because (unlike most humans) a robot 

will not question orders and will execute everything it is instructed to do. The robot 

itself is not a sentient being capable of understanding the essence of punishment 

and reforming itself; punishing the military personnel who sent it on a mission is as 

futile as punishing the developers of its hardware and software. 

Wendell Walla, an ethics expert from Yale University, and Colin Allen, a 

historian and philosopher of cognitive science at Indiana State University, speak of 

the inevitability of the widespread introduction of autonomous robots into our 

lives. As a partial solution to the danger posed by autonomous robotic systems to 

humans, they propose new laws of robotics, adopting which could reduce the 

danger from our high-tech creations[30]: 

Locating robots in places where there is initially a low risk of developing 

hazardous situations: Before assigning tasks to robots, it is necessary to ensure that 

all computers and robots will never have to make decisions whose consequences 

cannot be predicted in advance. The workplace and tools used by robots should 

prevent even accidental harm to bystanders. 

Do not give robots weapons: Although it is already too late to stop the 

construction of robots as weapons, it is not too late to limit their use to only certain 

types of weapons or restrict situations in which robots' weapons can be used. 

Give robots the laws of robotics as in Asimov's works: Although Asimov's 

rules are poorly applicable due to the complexity of defining morality—good, evil, 

values, priorities, etc.—nevertheless, the rules can successfully restrict the 

behavior of robots and put them in very limited conditions. 
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Robotics laws should incorporate certain principles (rather than simple 

instructions): Adding motivation to robots, such as "doing the greatest good for the 

greatest number of people," is likely to be safer than setting simplified rules. 

Teach robots like children (instead of loading them with a ready-made basic 

package of algorithms): Machines that learn and gradually "grow up" can develop 

an understanding of actions that humans consider right and wrong. Programming 

neuromorphic processors, promising bases for creating state-of-the-art autonomous 

robots, only allows for this approach (as opposed to algorithmic programming of 

instruction sets). The likelihood of success of this provision is quite promising, 

although this strategy requires several technological breakthroughs. Currently, 

there are almost no tools capable of teaching robots similar to humans. 

Endow machines with emotions (artificial psyche):  

Human abilities (such as empathy, emotionality, and the ability to read non-

verbal signals of social communication) should give robots much greater abilities 

to interact with humans. Work in this direction has already begun, and it is planned 

that household robots in the future will possess such "emotional" properties. The 

likelihood of success of this approach is quite high. The development of 

emotionally sensitive robots will undoubtedly help implement the previous three 

laws of robotics. We use a lot of information to make choices and cooperate with 

other humans. Choice stems from our emotions as well as our ability to read 

gestures and intentions, representing events from another person's perspective. 

1.6 Progress in commercial autonomous robots can be observed in 

various areas, including self-maintenance, environmental sensing, and task 

completion. 

Self-maintenance is a critical aspect of robot autonomy, involving the ability 

to address their own needs independently. Today, many robots equipped with 

batteries can autonomously locate and connect to power sources, such as Sony's 

"Aibo" toy, which docks with charging stations. This capability relies on 
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proprioception, allowing robots to assess their internal status and take appropriate 

actions. For instance, a robot can recognize low battery levels and initiate charging 

by finding its docking station. Effective temperature control is also essential for 

managing heat exchange with the environment, particularly in challenging 

conditions or near humans. 

Proprioceptive sensors play a crucial role in self-maintenance, including 

temperature sensors, Hall effect sensors, optical sensors, and touch sensors for 

object interaction. Additionally, environmental scanning, or exteroception, is vital 

for assessing surroundings and avoiding obstacles. Robots use a variety of sensors, 

such as those for the electromagnetic spectrum, sound, touch, chemicals, 

temperature, distance, and position estimation, to navigate and perform tasks 

effectively. For example, robotic lawnmowers adjust their operations based on 

grass growth rates, while cleaning robots analyze dirt levels to optimize cleaning 

durations. 

Advancements in task completion involve mastering specific tasks 

autonomously. Compact vacuum robots like "iRobot" and "Electrolux" introduced 

in 2002 demonstrate progress in navigating homes using various sensors despite 

facing intelligence challenges. These robots efficiently cover large areas and tight 

spaces by devising work algorithms tailored to specific situations. Further progress 

involves robots handling complex conditional tasks, such as security robots 

identifying intrusions and responding based on intruder location and actions. 
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CONCLUSION 

This chapter of my thesis focuses on the analysis of ground mobile objects. 

It covers general information about autonomous robots for ground movement, 

highlights automatic control, and thoroughly examines the navigation modules, 

their characteristics, and applications. 

From this analysis, it is evident that ground mobile objects and robotic 

platforms are a significant area in robotics with substantial application potential. 

They are essential in industry, logistics, research, and the military sector, 

enhancing automation, improving efficiency, and ensuring safety across various 

fields. 

Based on the current state and future development prospects of ground 

mobile objects, it is clear that they will continue to advance and improve. The 

integration of cutting-edge technologies such as artificial intelligence, machine 

learning, and sensor technology will result in more efficient, maneuverable, and 

autonomous robots. These advancements will expand their applications in different 

industries and play a crucial role in advancing industry, logistics, research, and 

other sectors of human activity. 
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CHAPTER 2: GENERAL STATEMENT OF THE PROBLEM OF PATH 

PLANNING BY AN AUTONOMOUS MOBILE ROBOT IN THE ENVIRONMENT 

 

A crucial component of any navigation system is ensuring the destination is 

reached without getting lost or crashing into objects. Additionally, there may be other 

restrictions on a given route, such as speed limits or uncertain areas where routing is 

theoretically possible but not recommended. 

Typically, the robot's path is autonomously planned using pre-existing data, 

without accounting for real-time obstacles. This approach can be effective, but only if 

the environment is perfectly known, unchanging, and the robot can follow the route 

precisely. In reality, however, conditions are far more complex. 

Due to the limitations of autonomous planning, researchers have explored real-

time planning (or online planning). This technique uses real-time data from the robot's 

sensors to navigate around unexpected obstacles as it moves through its environment. 
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2.1 Adaptive autonomous mobile control system 

The autonomous mobile robot (AMR) system is designed to navigate along a 

predefined path in an unknown environment. Developing models that mimic 

human thinking is a significant scientific goal[34]. A critical component of modern 

robots is their sensor system, which gathers and processes data about the 

surrounding environment. This enables the robot to identify objects that may pose 

obstacles. The primary function of this system is to guide the AMR along the 

predetermined path. Human intelligence naturally excels at making decisions with 

incomplete and unclear information. A key requirement for AMRs is their ability 

to make decisions based on formalized data. The challenge is addressed using 

fuzzy logic and fuzzy knowledge bases. The fuzzy model is built upon expert 

knowledge of the process (system). This approach allows for the mathematical 

formalization and modeling of fuzzy information[35]. In this project, we will 

utilize a neuro-fuzzy system, which integrates fuzzy logic with a neural 

network[36]. The structure of this hybrid neuro-fuzzy network is illustrated in 

Figure 2.1. 

 

Fig. 2.1 The structure of a hybrid neuro-fuzzy network 

Fuzzy hybrid neural networks are transparent in their logic, enabling them to 

absorb new knowledge effectively. They readily adjust to changes in the 

environment. 
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The system is structured in a neuro-like format, comprising 5 layers. These 

layers create a functional framework responsible for tasks such as: 

- Assessing the degree of input signal membership in fuzzy sets, 

- Determining rule validity, 

- Normalizing rules, 

- Generating the output fuzzy set and forming control decisions. The 

research was conducted using ANFIS models implementing Takagi-Sugeno rules. 

The training process was conducted in two stages. Initially, the input signal 

values from the training dataset were fed into the control module. Based on this 

input, an output (control) action was generated. This signal propagated through the 

network in a forward direction, sequentially calculating the output values of the 

intermediate layers and the final output signal. The second stage involved 

backpropagation of the error. During this stage, the output response was compared 

with the reference value, and the comparison results were used to modify the 

weights. Subsequently, the weights of the connections and parameters of the 

network elements were adjusted, and the process moved to the next training 

sample. These iterations repeated until the artificial neuro-fuzzy network was 

properly trained. The training objective was to minimize the neural network error, 

which was determined using the least squares method. For a network with a single 

output (as in our case), the error is defined by the following ratio: 

 

2.1 The Error 

Where yi denotes the output value of the neural network for each element of 

the output vector, while bi stands for the desired output value of the neural 

network. Upon finishing the training process, the neural network generated a set of 

additional rules and established corresponding extra connections. The 
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configuration of the hybrid neuro-fuzzy network post-training. The training of the 

neuro-fuzzy network was carried out over 2500 cycles. The training error after this 

number of cycles for the specified sequence amounted to 4.3% (see Figure 2.2). 

 

Fig. 2.2 An error based on the results of learning a neuro-fuzzy network 

The research involved comparing two control methods for a robotic 

technical system: one employing fuzzy logic with the Mandmani algorithm, and 

the other utilizing the ANFIS model incorporating Takagi-Sugeno rules. 

 

Fig. 2.3 The simulated motion trajectory of the autonomous model using 

fuzzy logic based on the Mandmani algorithm (first graph), the motion trajectory 

of the autonomous model using the ANFIS model where Takagi-Sugeno rules are 

implemented (second graph). 

The application of the ANFIS model in constructing the control system 

displays superior qualitative features, evident in its minimal deviation from the 

desired movement trajectory. Compared to the control system implemented using 

fuzzy logic based on the Mandmani algorithm, there's a notable 40% reduction in 

the time taken for the model to reach the specified trajectory. The average 

deviation of the model's movement from the reference trajectory stands at 5%, 

which is half that of the classical algorithm using finite automata to compute 
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control actions. The outcome of this study is an enhanced solution for obstacle 

avoidance tasks (AMR). Further advancement involves integrating additional input 

values and rules to improve control precision. Consequently, this approach 

facilitates the development of a robot control system founded on a neuro-fuzzy 

(hybrid) network with adaptable properties. 

2.2 Research and development of trajectory planning methods for 

autonomous mobile robots 

The advancement of automation and research in autonomous navigation 

technology has significantly increased the use of mobile robots in various 

industrial applications. A crucial aspect of autonomous navigation is trajectory 

planning, which involves finding a feasible path for a mobile robot from a starting 

point to a destination within a given environment. This process considers 

optimization parameters such as path length, time, and trajectory smoothness. 

Trajectory planning is generally divided into two categories: global and local 

planning. Global planning requires complete information about the environment, 

including the positions of obstacles, while local planning deals with environments 

where such information is only partially known or unknown. 

Finding paths that are both computationally feasible and optimal is a 

complex problem. A straightforward approach involves creating a connectivity 

graph where each node represents a working position and each link represents a 

pre-determined path of a specific length. Pathfinding can then be achieved by 

searching for the shortest path or using a table of precomputed optimal paths 

between all possible points. However, this method has limitations: it cannot handle 

arbitrary starting and ending points, and changing the list of working positions is 

time-consuming. This approach is effective in environments where robots follow 

repetitive routes with minimal changes. 

Another method involves constructing a graph where nodes represent 

positions that can be connected by straight lines. This method, while simpler, 
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requires the graph to be updated with new nodes and links whenever new start and 

end points are specified, leading to a large and complex graph.A more recent 

approach divides the free space into convex polygons. In a convex shape, any two 

points can be connected by a straight line without leaving the shape, allowing the 

robot to navigate freely within these polygons. This method involves creating a 

connectivity graph where nodes represent convex polygons and arcs connect 

polygons with shared edges. However, this approach fails to fully utilize convexity 

and cannot dynamically reconfigure paths for optimality, particularly in large free 

areas. 

R. Brooks proposed a method that combines the benefits of previous 

techniques by using generalized cones to represent free areas and considering the 

robot as a rectangular area rather than a point. This method avoids obstacles by 

moving the robot along the axis of free cones but sacrifices some optimality as it 

doesn't fully utilize convexity[52]. 

D. Kuan and colleagues improved Brooks's method by using cones for 

narrow spaces and non-overlapping convex polygons for larger areas. While 

effective in complex environments, this method still suffers from the drawbacks of 

non-overlapping areas and high graph complexity[53]. 

Building on these findings, a new path planning methodology is proposed 

that leverages convexity by identifying the largest rectangular free areas. A graph 

is created with nodes representing these areas, and intersecting shapes are 

connected as adjacent nodes. Path planning involves finding the best route from the 

source to the destination node through this graph. This method simplifies collision-

free path planning by treating obstacles as enlarged and the robot as a point. 

Dynamic cost allocation ensures the optimal path is quickly determined. The 

proposed method effectively identifies near-straight paths when they exist, 

balancing optimality and computational efficiency. 
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2.3 Application of evolutionary algorithms for navigation problems 

An evolutionary navigator is designed as a genetic algorithm system that 

integrates both autonomous and online planning modes, utilizing a simple, high-

precision map and an efficient planning algorithm. The first component 

(autonomous planner) identifies the optimal global path from the start to the 

destination, while the second component (online planner) manages potential 

collisions or the avoidance of previously unknown objects by adjusting the global 

path with an auxiliary route. Notably, both parts of the evolutionary navigator use 

the same evolutionary algorithm but with different parameter settings. 

Recently, other researchers have explored evolutionary computation 

methods for path planning. For instance, Davidor employs dynamic chromosome 

structures and variations in the crossover operator to optimize real-world 

processes, including path planning[13]. Other studies have introduced genetic 

algorithms for path planning and real-time multi-heuristic search strategies. These 

methods typically use maps made up of nodal points. Some researchers have 

applied classifier systems or genetic programming paradigms to tackle the path 

planning issue. The selected approach is unique because the evolutionary navigator 

operates across the entire free space without prior assumptions about permissible 

nodal points, combining both autonomous and online planning modes. 

2.4 Selection of the genetic algorithm for the implementation of the 

evolutionary navigator 

I'm choosing Zbigniew Michałewicz's evolutionary algorithm as the 

foundation for creating the evolutionary navigator (EN), detailed in the article 

"Path planning in a mobile robot environment"[17]. This approach stands out for 

its ability to operate across the entire free space without any predefined 

assumptions about permissible path nodes, seamlessly integrating both 

autonomous and online planning modes. Before delving into the algorithm's 
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intricacies, let's examine the map structure. To enable pathfinding in the 

continuous free space, we utilize vertex graphs to represent environmental objects. 

Currently, we simplify the environment to create a two-dimensional depiction of 

object areas. Consequently, while the robot is represented as a point, 

environmental objects can dynamically scale. We assume the mobile robot is 

equipped with sensors for environmental scanning. Known objects are described 

by an ordered list of their vertices, while online encounters with unknown 

obstacles are modeled as "wall" segments. Each segment, straight in nature, is 

delineated by its two endpoint vertices. This representation aligns with known 

objects, and in real-time, the robot updates the map with environmental data, 

though only partial information regarding unknown obstacles can be obtained 

through localized sensing. Ultimately, the environment is conceptualized as a 

rectangular area (the map). 

Now, it's pivotal to define the paths that the EN should generate. A path 

comprises one or more straight-line segments, originating from the starting 

position, reaching the target, and potentially intersecting neighboring segments – 

referred to as nodes. A feasible path encompasses possible nodes, while an 

infeasible path contains at least one unattainable node. 

Consider a path p = (m1, m2, ..., mn) (n ≥ 2), where m1 and mn denote the 

initial and final nodes, respectively. A node mi (i = 1, ..., n-1) is deemed infeasible 

if it's unattainable, unable to connect to the subsequent node mi+1 due to obstacles, 

or located within (or dangerously close to) an obstacle. We presume the initial and 

final nodes lie beyond obstacles and maintain a safe distance from them. However, 

it's noteworthy that the initial node isn't required to be feasible (if transitioning to 

the next node isn't possible), whereas the target node must invariably be feasible. 

Moreover, distinct paths may exhibit varying node counts. 
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  Description of the evolutionary navigator algorithm 

The evolutionary algorithm discussed here functions as an evolutionary 

navigator, integrating both autonomous and online planning modes with a 

straightforward high-precision map and an effective planning algorithm. 

In the first segment of the algorithm (autonomous planner), it seeks optimal 

paths globally from the outset to the destination, while the second segment (online 

planner) manages potential collisions or previously unknown objects by 

substituting part of the original global path with an optimal subpath. It's worth 

noting that both components of the EN utilize the same evolutionary algorithm but 

with varying parameter values. 

Initially, the EN reads the map and obtains the initial and target locations. 

Subsequently, the autonomous evolutionary algorithm (AEA) generates a nearly 

optimal global path, comprising partially straight paths consisting of permissible 

nodal points or nodes. Figure 1 demonstrates the operation of genetic algorithms in 

the evolutionary navigator. 

 

Fig. 2.4 Visualization of the evolutionary navigator 

When the robot approaches an object in its vicinity, the AEA algorithm 

effectively expands the representation of this object on the map, shifting the local 

path away from it. This adjustment ensures that the path remains aligned with the 

original intention of the AEA algorithm, maintaining a straight trajectory. 
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Consequently, the robot can proceed along the current path to reach the next 

planned node successfully. 

2.5 The use of machine learning tools to simulate the adversarial 

environment between robotic means and monitoring objects 

Machine Learning (ML), a subset of artificial intelligence (AI) research, 

focuses on developing and studying statistical algorithms capable of learning from 

data and extrapolating to unseen data, thereby performing tasks without explicit 

instructions. Recently, generative artificial neural networks have surpassed many 

previous approaches in terms of productivity. 

Machine learning methods have been applied across various domains, 

including large-scale language models, computer vision, speech recognition, email 

filtering, agriculture, and medicine, where developing algorithms for essential 

tasks would be prohibitively expensive. ML is widely known for its commercial 

applications, often referred to as "predictive analytics." Although not all machine 

learning relies on statistics, computational statistics serves as a crucial source of 

methods in this field. 

The mathematical principles of ML provide techniques for mathematical 

optimization (mathematical programming). Data mining, a related field, focuses on 

exploratory data analysis through unsupervised learning. From a theoretical 

standpoint, a framework for describing machine learning offers probabilistically 

approximate correct learning. 

The term "machine learning" was coined in 1959 by Arthur Samuel, an IBM 

employee and pioneer in computer gaming and artificial intelligence. During this 

era, the term "self-teaching computers" was also used interchangeably. While the 

earliest machine learning model was introduced in the 1950s by Arthur Samuel, 

who developed a program to calculate the odds of winning in checkers for each 

player, the history of machine learning spans decades of human curiosity and 

endeavor to understand human cognitive processes[54]. In 1949, Canadian 
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psychologist Donald Hebb published "The Organization of Behavior," proposing a 

theoretical neural structure formed by specific neuron interactions. Hebb's model 

laid the groundwork for how AI and machine learning algorithms function at the 

node level, or artificial neurons, which computers utilize to transmit data[55]. 

Other researchers exploring human cognitive systems also contributed to modern 

machine learning technologies, including logicians Walter Pitts and Warren 

McCulloch, who proposed early mathematical models of neural networks to 

develop algorithms simulating human thought processes[55]. 

Artificial Intelligence 

As a scientific domain, machine learning has emerged from the quest for 

artificial intelligence (AI). During AI's early days as an academic field, certain 

researchers were intrigued by the idea of machines learning from data. They 

experimented with various symbolic techniques and what later became known as 

"neural networks," primarily perceptrons and similar models, which were 

essentially variations of generalized linear models from statistics. Additionally, 

probability-based reasoning was explored, particularly in the realm of automated 

medical diagnosis. 

However, a shift towards a knowledge-based logical approach created a 

divide between AI and machine learning. Probabilistic systems encountered both 

theoretical and practical challenges in data gathering and presentation. By around 

1980, expert systems took precedence in the AI domain, while statistics fell out of 

favor. Although work on symbolic or knowledge-based learning persisted within 

AI, leading to the development of inductive logic programming, the statistical 

orientation of research now lay beyond the traditional AI realm, focusing instead 

on tasks like pattern recognition and information retrieval. Concurrently, research 

on neural networks was sidelined by both AI and computer science. This line of 

inquiry, known as "connectionism," continued outside the AI and computer science 

realms, spearheaded by researchers such as Hopfield, Rumelhart, and Hinton. 
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Their significant breakthrough came in the mid-1980s with the reemergence of 

backpropagation[56]. 

Machine learning (ML Fig. 2.5), restructured and acknowledged as an 

independent field, began to thrive in the 1990s. Its focus shifted from achieving AI 

to tackling practical problems. Departing from symbolic AI approaches, ML 

embraced methods and models borrowed from statistics, fuzzy logic, and 

probability theory. 

 

 

Fig. 2.5 Machine learning as a sub-branch of AI 

Data extraction 

Machine learning and data mining often utilize similar methodologies and 

significantly overlap, yet they have distinct focuses. While machine learning 

emphasizes making predictions based on known features learned from training 

data, data mining is centered around uncovering previously unidentified 

characteristics within data, constituting a step in knowledge discovery within 

database analysis. Data mining employs numerous machine learning techniques, 

albeit with different objectives. Conversely, machine learning also incorporates 

data mining techniques, either as "unsupervised learning" or as a preprocessing 

phase to enhance learning accuracy. Much of the confusion between these two 

research communities arises from their underlying assumptions: in machine 

learning, performance is typically assessed based on the ability to replicate 
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established knowledge, whereas in knowledge discovery and data mining, the 

primary goal is to unveil previously undisclosed insights. While unsupervised 

methods may struggle against supervised methods when evaluated against 

established knowledge, in typical knowledge discovery tasks, the use of supervised 

methods is impractical due to the absence of training data. 

Additionally, machine learning is closely linked to optimization, as many 

learning objectives involve minimizing a loss function over a training dataset. 

These loss functions quantify the disparity between the model's predictions and the 

actual instances of the task. For example, in classification tasks, models are trained 

to accurately predict the pre-assigned labels of example instances. 

The approaches in machine learning are traditionally divided into three 

broad categories, which correspond to learning paradigms and depend on the type 

of "signal" or "feedback" available to the learning system: 

- Supervised Learning: In this approach, the computer learns a general rule 

mapping inputs to outputs by being provided with samples of inputs and their 

corresponding desired outputs, given by a "teacher." 

- Unsupervised Learning: Algorithms in this category autonomously 

discover patterns or structure within the input data without being provided with 

explicit labels. Unsupervised learning can either be the main objective itself, such 

as identifying hidden patterns, or it can serve as a means to an end, like learning 

features. 

- Reinforcement Learning: In this paradigm, a computer program interacts 

with a dynamic environment, aiming to achieve a specific goal, such as controlling 

a vehicle or playing a game. As the program navigates through tasks, it receives 

feedback, similar to rewards, which it seeks to maximize. 

While each algorithm has its own set of advantages and limitations, no 

single algorithm is universally effective for all tasks. 
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Supervised Learning 

Supervised learning algorithms develop a mathematical model based on a 

dataset containing both inputs and desired outputs. These datasets, termed training 

data, comprise a series of training examples. Each example includes one or more 

inputs along with an expected output, also referred to as a supervisory signal. In 

the mathematical representation, each training example is depicted by an array or 

vector, sometimes denoted as a feature vector, while the training data is 

represented by a matrix. Through iterative optimization of the objective function, 

supervised learning algorithms acquire knowledge of a function capable of 

predicting outputs for new inputs. This optimal function enables the algorithm to 

accurately infer outputs for inputs not included in the training data. An algorithm 

that progressively enhances the precision of its outputs or predictions is considered 

to have mastered this task shown in Fig. 2.6. 

 

Fig. 2.6 A supervised learning model that divides the data into regions separated by 

a linear boundary. 

Supervised learning encompasses active learning, classification, and 

regression algorithms. Classification methods are utilized when outputs are 

confined to a specific range of values, whereas regression approaches are 
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employed when outputs can span a continuum of numerical values within a defined 

range. For example, in the context of an email filtering system, a classification 

algorithm would analyze incoming emails, assigning them to specific folders based 

on their content. 

Similarity learning, a subset of supervised machine learning, is closely 

linked to regression and classification but focuses on deriving insights from 

examples using a similarity function that measures the likeness or correlation 

between two objects. It finds practical application in various domains, including 

ranking systems, recommendation engines, visual identity tracking, facial 

recognition, and speaker authentication. 

Unsupervised learning  

Unsupervised learning algorithms identify patterns in data that haven't been 

tagged, classified, or categorized. Instead of reacting to feedback, they identify 

commonalities in the data and respond to the presence or absence of such 

commonalities in each new data point. Primary applications of unsupervised 

machine learning include clustering, reducing dimensionality, and estimating 

density. Unsupervised learning algorithms have also improved the process of 

identifying large haplotypes of a specific gene from the pangenome based on 

indels. 

Cluster analysis involves dividing a set of observations into subsets, called 

clusters, so that observations within one cluster are similar based on one or more 

predetermined criteria, while observations from different clusters are dissimilar. 

Different clustering methodologies make various assumptions about the data 

structure, often defined by a measure of similarity and evaluated based on factors 

such as internal compactness or the similarity of cluster members, and separation, 

which denotes the difference between clusters. Other methods rely on estimated 

density and graph connectivity. 
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Fig. 2.7. Clustering with large indel permutation slopes turns the alignment image 

into a regression learning problem. 

Semi-supervised learning 

Semi-supervised learning falls in the middle ground between unsupervised 

learning, which lacks labeled training data entirely, and supervised learning, which 

relies on fully labeled training data. In this approach, some training examples are 

without labels, yet many machine learning experts have discovered that 

incorporating unlabeled data alongside a small portion of labeled data can notably 

enhance the accuracy of the learning process. 

In weakly supervised learning, training labels are either noisy, scarce, or 

imprecise. Nonetheless, acquiring these labels is often more economical, leading to 

more cost-effective training datasets. 

Reinforcement Learning 

Reinforcement learning involves how software agents should make 

decisions in an environment to maximize cumulative rewards. This field is studied 

across various disciplines like game theory, control theory, operations research, 

information theory, model-based optimization, multi-agent systems, swarm 

intelligence, statistics, and genetic algorithms due to its broad applicability. In 

reinforcement learning, the environment is typically represented as a Markov 

decision process (MDP), and many algorithms in this field use dynamic 

programming techniques. These algorithms are utilized when precise models are 

not available. Reinforcement learning methods find application in autonomous 

vehicles and teaching agents to compete in games against human opponents. 
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2.6 Models 

Engaging in machine learning often entails constructing a model trained on a 

set of training data, which can then analyze further data to make predictions. 

Various models have been explored and utilized in machine learning systems 

through research and application. 

 

Artificial neural networks 

Artificial neural networks (ANNs), also known as connectionist systems, are 

computational systems that draw inspiration from biological neural networks found 

in animal brains. These systems "learn" to perform tasks by observing examples, 

typically without being explicitly programmed with task-specific rules. 

ANNs rely on interconnected nodes called "artificial neurons," which mimic 

neurons in the biological brain. Each connection, similar to synapses in biological 

neurons, can transmit information or "signals" from one artificial neuron to 

another. Upon receiving a signal, an artificial neuron can process it and then relay 

it to other connected artificial neurons. In ANNs, the signal passing through 

connections is usually represented by real numbers, and the output of each artificial 

neuron is determined by a nonlinear function applied to the sum of its inputs. 

Connections between artificial neurons are referred to as "edges," and both neurons 

and edges typically have weights that adjust during training. These weights 

modulate the strength of signals transmitted through connections. Additionally, 

artificial neurons may have thresholds, ensuring that signals are sent only when the 

cumulative signal surpasses a certain threshold value. Typically, artificial neurons 

are organized into layers, with each layer performing specific transformations on 

its inputs. Signals propagate from the input layer through hidden layers to the 

output layer, often undergoing multiple transformations along the way. 

Initially, the primary objective of ANNs was to solve problems in a manner 

similar to the human brain. However, the focus has shifted towards achieving 



54 
 

specific task goals, leading to deviations from biological processes. ANNs have 

been applied to various tasks, including computer vision, speech recognition, 

machine translation, social network analysis, gaming, and medical diagnostics. 

Deep learning, a subset of ANNs, involves the incorporation of multiple 

hidden layers into the network architecture. This approach aims to emulate the 

process by which the human brain processes sensory inputs such as light and sound 

into visual and auditory perception. Successful applications of deep learning 

include tasks such as computer vision and speech recognition.(Fig. 2.8.) 

 

Fig. 2.8. Artificial neural network 

Resistance vector machines 

Support Vector Machines (SVM), also referred to as support-vector 

networks and the support-vector method, constitute a collection of related 

supervised learning techniques employed for classification and regression tasks. 

With a given set of training instances, each categorized into one of two groups, the 

SVM training process constructs a model to predict whether a new instance 

belongs to either category. The SVM training algorithm serves as an exceptional 

binary linear classifier, although approaches like Platt scaling are available for 
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utilizing SVMs in probabilistic classification scenarios. Furthermore, apart from 

conducting linear classification, SVMs can proficiently handle nonlinear 

classification through a method known as the kernel trick, which indirectly maps 

their inputs to high-dimensional feature spaces. 

 

Regression analysis 

Regression analysis encompasses a wide array of statistical techniques used 

to assess the relationship between input variables and associated features shown in 

Fig. 2.9 . Its most prevalent form is linear regression, which involves fitting a 

single line to the data based on a mathematical criterion like ordinary least squares. 

This method is often extended through regularization techniques to mitigate issues 

like overfitting, as seen in ridge regression. When dealing with nonlinear problems, 

common models include polynomial regression (e.g., for trend line fitting in 

Microsoft Excel), logistic regression (frequently used in statistical classification), 

or kernel regression, which introduces nonlinearity through a kernel trick to map 

input variables into a higher-dimensional space implicitly. 

 

Fig. 2.9. Illustration of linear regression on a data set 

Gaussian processes 

A Gaussian process functions as a stochastic process where each finite 

collection of random variables within it adheres to a multivariate normal 

distribution. It relies on a predetermined covariance function, also known as a 

kernel, which dictates the relationship between pairs of points based on their 

positions. 
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Given a specified set of observed points or input-output pairs, the 

distribution of the output for a new, unseen point based on its input data can be 

directly calculated by considering the observed points and the covariance between 

these points and the new one. 

Gaussian processes serve as popular surrogate models in Bayesian 

optimization, utilized for optimizing hyperparameters(Fig. 2.10.). 

 

Fig. 2.10. An example of Gaussian regression (prediction) compared to other 

regression models 

2.7 Creation of a mathematical model 

Developing a mathematical model of the environment for utilization in 

reinforcement learning encompasses several stages. 

1. Objective and Task Specification: This phase entails defining the 

objectives and tasks, such as tracking mobile entities, navigating towards objects, 

avoiding obstacles, and identifying objects. 

2. Environment Modeling: 

  - Spatial Representation: This involves constructing a map of the area that 

may include obstacles, visibility zones, and various surface types. 

  - Dynamic Components:Identifying the parameters of moving entities, such 

as velocity, direction, and behavior. 

  - Sensor Models: Simulating the robots' sensors used for object detection 

and navigation, such as lidars, cameras, and ultrasonic sensors. 
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3. Definition of States, Actions, and Rewards: 

  - States: Establishing the possible states observable by the robots within the 

environment. 

  - Actions: Determining a set of actions that the robots can execute, such as 

forward movement, turning, or object grasping. 

  - Rewards and Penalties: Establishing a reward system to incentivize 

desired robot actions and penalize errors or ineffective actions. 

Additionally, we will provide a verbal articulation of the system's goals and 

tasks: 

Goals of Robotic Systems: The primary aim of robotic systems is to 

efficiently detect and track moving objects. This encompasses minimizing the time 

and distance required to reach a sufficient proximity for object identification. This 

includes the capability of robotic systems to traverse terrain affecting speed and 

maneuverability, and employing sensors for precise object localization. 

Tasks of Robotic Systems: 

1. Navigating towards objects while considering terrain and obstacles. 

2. Avoiding obstacles and other robotic systems during movement. 

3. Identifying objects as robotic systems approach a sufficient distance. 

Goals of Moving Objects: Moving objects seek to evade close proximity to 

robotic systems by adjusting their speed, direction, and utilizing terrain for 

concealment. 

From a mathematical formalization perspective, we will introduce the 

following notations and functions: 

Spatial Modeling involves constructing a virtual map that accurately 

represents real-world conditions. This may involve: 
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- Data Collection: Utilizing available mapping services (e.g., Google Maps, 

OpenStreetMap) to acquire a foundational map of the area. 

- Data Augmentation: Integrating data from stationary sensors, including 

cameras and motion detectors, to incorporate information regarding obstacles, 

visibility zones, and other pertinent features. 

- Map Annotation: Manually or automatically appending metadata to the 

map, such as surface types, object heights, and additional physical attributes. 

Dynamic Elements: The dynamic components of the environment 

encompass moving entities, which can be characterized by parameters such as: 

- Velocity (v): A scalar or vector quantity denoting the rate at which the 

entity is moving through space. 

- Direction (θ): A vector indicating the entity's direction of movement. 

- Behavior: A set of rules or algorithms dictating the entity's response to 

environmental changes. 

Following these steps, we will undertake a mathematical formalization of the 

environment for robotic systems and surveillance entities. 

The environment states S comprise all potential observations accessible to 

the robot. These encompass: 

- the robot's location pr and the positions of mobile objects po ; 

- the velocity of the robot vr and that of mobile objects vo ; 

- the status of obstacles M and other environmental components; 

- data regarding the recent positions of mobile objects. 

Actions denote the array of feasible maneuvers the robot can execute, like 

advancing, turning, or seizing an object. 
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The reward function is devised based on diminishing the gap between the 

robot and mobile objects, relative to the "optimal" distance that would 

hypothetically exist if both entities were converging at maximum velocity 

unimpeded. 

 

Where dt is the actual distance between P3 and PO; dt-1-"ideal" distance k-

positive scaling factor. The simulation ends then 

1) P3 reaches RO (d≤ ∈) 

2) PO goes beyond the defined environment (po∉ Environment Bounds) 

3) P3 falls into an area where it cannot function (M(pr)= «untraversab») 

As a result, this model provides a clear framework for establishing a precise 

reward system, motivating the robot to efficiently pursue mobile objects (MO) 

while encouraging these objects to evade pursuit. It also outlines specific 

conditions for terminating the simulation. Now, by utilizing CNN, we will 

determine the coefficients k that denote how the environment influences the 

parameters of both the robot (RZ) and the mobile objects (MO). 

1. Defining objectives and tasks: This involves setting clear goals for both 

RZ and MO and defining the tasks necessary for RZ to achieve these objectives. 

2. Environment modeling: Creating a visual representation of the 

environment, including obstacles, visibility zones, and various surface types. It 

also entails determining dynamic elements such as the motion parameters of MO. 

3. Defining states, actions, and rewards: Describing the possible states of the 

environment S, which include the positions and velocities of RZ and MO, as well 

as the status of obstacles M . This step also involves establishing the actions A that 
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RZ can undertake and designing a reward system that motivates desired actions 

while penalizing errors. 

4. Formulating state transition functions: Developing equations that depict 

how the environment transitions between different states based on the actions of 

RZ. 

5. Defining the reward function: Establishing a function that rewards 

behaviors leading to the reduction of distance between RZ and MO, among other 

criteria. 

6. Setting termination criteria: Identifying conditions under which the 

simulation concludes, such as MO reaching a specific goal, MO leaving the 

environment boundaries, or RZ experiencing malfunctions. 

7. Integrating the model into RL: Implementing the environment model into 

reinforcement learning (RL) algorithms and leveraging acquired data to optimize 

the behavior strategies of both RZ and MO. This method enables the creation of a 

detailed and adaptable environment model suitable for training RZ under diverse 

conditions and enhancing their real-world performance. 
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CONCLUSION: 

Attempts to develop autonomous moving vehicles or mobile agents present a 

range of challenges known collectively as "navigation tasks." These primarily 

pertain to movement on terrestrial surfaces, though successes in this domain have 

found applications in underwater vehicle navigation and missile guidance, as well 

as in the realm of computer game development. 

Global planning algorithms utilize comprehensive spatial information to 

identify viable movement paths and subsequently determine the most optimal 

route. In contrast, heuristic planning methods address task complexity and data 

error sensitivity using various approaches. Therefore, an evolutionary navigator 

algorithm was chosen to build a versatile navigation system for autonomous 

robots. 

The adoption of this algorithm enables the consideration of numerous 

behavioral variations of robots and environmental factors during path planning. 

However, a primary concern with this algorithm selection remains the 

identification of crucial points. Resolving this issue serves as the cornerstone for 

further research. 

In our study, we devised a comprehensive methodology for environment 

modeling tailored to the task of locating and tracking moving objects using robotic 

means within the framework of reinforcement learning. This methodology 

encompasses goal and task definition, environment modeling, state and action 

delineation, reward formulation, state transition function definition, reward 

function establishment, modeling termination criteria, convolutional neural 

network utilization for environment analysis, and model integration into 

reinforcement learning algorithms. The distinctive feature of our developed 

methodology lies in its adaptability to diverse environmental conditions and 

dynamic changes occurring within it. 
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CHAPTER 3: DEVELOPMENT OF PROGRAM 

One of the primary challenges for these systems is their ability to effectively 

navigate unknown environments and avoid obstacles. Managing ground mobile objects 

automatically in obstacle avoidance mode is a crucial task in this context.Planning 

optimal trajectories for moving objects is complicated by the potential obstacles along 

the route. This requires the development of algorithms and systems that enable efficient 

obstacle avoidance and safe route completion. 

In this regard, a robotic platform serves as a research and experimental subject. 

Leveraging modern sensors, powerful computational resources, and advanced control 

algorithms, it provides opportunities to explore and implement obstacle avoidance 

methods in various conditions. In this study, we will thoroughly explore the concept of 

such a robotic platform, discuss the critical aspects of its operation, including sensor 

equipment and control algorithms, and analyze the outcomes of our experiments. This 

approach will help us better understand the challenges of automatic control of moving 

objects in obstacle avoidance mode and identify potential directions for further research 

and development in this field. 
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     A robotic platform can feature the following characteristics: 

- Mobility: The platform may be designed for walking or wheeled 

movement, depending on specific needs and the intended environment. 

- Sensors: It is equipped with a variety of sensors, such as laser rangefinders 

(LiDAR), cameras, ultrasonic sensors, and distance sensors, to collect data about 

the surrounding environment. 

- Data Processing: The platform includes a powerful computational module 

to process sensor data and make decisions regarding obstacle avoidance routes. 

- Control Mechanisms: It may utilize electronic servos or hydraulic systems 

to enable movement and obstacle avoidance. 

- Control: The platform can be controlled by software that uses artificial 

intelligence and machine learning algorithms for autonomous route planning and 

obstacle avoidance. 

This robotic platform can serve as a foundational tool for research and 

development in automatic control systems capable of avoiding obstacles. 

The subsequent sections of this work will explore the theoretical foundations 

essential for developing control systems within the MATLAB environment. We 

will delve into the use of MATLAB for mathematical modeling and the application 

of Simulink for visual modeling and simulation of control systems. 

Furthermore, we will analyze control methods and algorithms that can be 

implemented in MATLAB and Simulink to achieve efficient obstacle avoidance. 

This theoretical exploration will provide insights into harnessing the power 

of MATLAB and Simulink for the development and testing of automatic control 

systems, including process modeling, result analysis, and system optimization. 
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3.1 Program for Robot - SMR (Small Mobile Robot) 

The program for the robot, known as SMR (Small Mobile Robot), was 

developed and is available at DTU Electrical Engineering to test the solutions 

proposed in this project. This program is already utilized in numerous research 

projects and robotics courses. SMR is a general-purpose differential robot 

operating on a Linux platform, capable of being equipped with various sensors 

such as a line sensor, IR proximity sensors, wheel encoders, cameras, and a laser 

scanner. 

SMR is fitted with a HOKUYO URG-04LX laser scanner, which can 

measure distances up to 4 meters and has a 240° coverage with a resolution of 

approximately 0.36º. 

Two software interfaces are used for testing: smrdemo and the laser server. 

The smrdemo program implements the SMR-Control Language, providing a set of 

high-level commands for robot movement and commands for reading odometer 

data. The laser server offers commands for obtaining information from the laser 

scanner and setting scanning parameters. 

Figure 3.1 illustrates the architecture used for the interaction between the 

SMR robot and MATLAB. Two connections are established between MATLAB 

and the respective servers. The smrdemo program receives commands necessary 

for controlling the robot and returns current odometer data when needed. The laser 

server provides new readings from the scanner as required and can adjust scanning 

parameters, including scan width. 
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Fig. 3.1. The architecture used for the interaction between the SMR robot 

and MATLAB 

3.2 Matlab 

MATLAB is a software package for numerical analysis and also a 

programming language used within the package. Developed by The MathWorks, it 

is an effective tool for working with mathematical matrices, plotting functions, 

handling algorithms, and creating user interfaces with programs in other languages. 

While MATLAB specializes in numerical computation, it can work with Maple 

software through special toolboxes, making it a complete system for algebraic 

tasks. With over a million users in industry and academia, MATLAB is widely 

adopted. The basic commercial version without toolboxes costs around $2000, 

while the educational version with minimal toolboxes is about $100. 
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MATLAB offers a wide range of functions for data analysis that cover 

nearly all areas of mathematics, including: 

- Matrices and Linear Algebra: Matrix algebra, linear equations, eigenvalues 

and eigenvectors, singularities, matrix factorization, and more. 

- Polynomials and Interpolation: Polynomial roots, operations and 

differentiation of polynomials, curve interpolation, and extrapolation. 

- Mathematical Statistics and Data Analysis: Statistical functions, statistical 

regression, digital filtering, fast Fourier transform, and others. 

- Data Processing: Special functions including graph plotting, optimization, 

root finding, numerical integration, and more. 

- Differential Equations: Solving differential and differential-algebraic 

equations, delay differential equations, constrained equations, partial differential 

equations, and more. 

- Sparse Matrices: A special data class in MATLAB used for specialized 

applications. 

- Integer Arithmetic: Performing integer arithmetic operations in MATLAB. 

MATLAB is one of the oldest, most thoroughly developed, and time-tested 

systems for automating mathematical calculations, heavily utilizing matrix 

operations. This is reflected in its name, MATrix LABoratory. However, the 

programming language's syntax is so well-designed that users not focused on 

matrix calculations hardly notice this specialization. Matrices are fundamental in 

complex mathematical calculations, such as solving linear algebra problems and 

modeling static and dynamic systems. They form the basis for automatically 

constructing and solving state equations of dynamic systems. An example of this is 

MATLAB's extension, Simulink. This significantly enhances interest in 

MATLAB, which has incorporated the best advancements in fast matrix problem 

solving. Today, MATLAB has evolved far beyond a specialized matrix system to 
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become one of the most powerful universal integrated computing systems. The 

term "integrated" indicates that MATLAB combines a user-friendly interface, an 

expression and text comment editor, a calculator, and a graphical software 

processor. 

The latest version includes advanced data types such as multidimensional 

arrays, cell arrays, structure arrays, Java arrays, and sparse matrices, opening up 

new possibilities for creating and debugging algorithms for matrix and parallel 

computations and large databases. Overall, MATLAB is a unique collection of 

implementations of modern numerical methods in computer mathematics, 

developed over the past thirty years. It incorporates the experience, rules, and 

methods of mathematical computation accumulated over millennia. This is 

combined with powerful tools for graphical visualization and even animated 

graphics. With extensive documentation, MATLAB can be considered a 

comprehensive multi-volume electronic reference for mathematical software, from 

personal computers to supercomputers. Unfortunately, the complete documentation 

is currently available only in English and partially in Japanese. 

One of the challenges in modern science is developing and implementing 

research methods for the functioning of complex systems. Complex systems 

include technological, production, and energy complexes, automation control 

systems, and other entities. Modeling is one of the most powerful tools for 

studying such systems today. Modeling is a widely used method for studying 

various processes and phenomena. A model of an original object represents the 

object in a form different from its real existence. In engineering practice, a model 

is usually created to: 

1. conducting experiments on the model that are impossible or challenging 

to perform on the actual object (providing the opportunity to acquire new insights 

about the object); 
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2. speeding up, reducing costs, simplifying, and otherwise improving the 

design process by working with a model, which is a simpler representation than the 

original object. 

Today, various types of models and numerous modeling methods are well-

known and widely applied in scientific research and engineering practice. Based on 

the degree of abstraction (the extent of difference from the real object), the 

following types of models can be identified: 

1. physical (prototype) models (reproduce the studied process while 

maintaining its physical nature and serve as tools for physical modeling); 

2. analog models (substitute one object with another that has similar 

properties); 

3. mathematical models (abstract models that exist in the form of specialized 

mathematical constructs). Mathematical modeling involves studying various 

processes by examining phenomena with different physical content but described 

by the same mathematical relationships. 

Among the numerous visual modeling packages, Matlab holds a unique 

position. Initially aimed at research projects, in recent years it has become a 

practical tool for engineers, students, managers, physicists, and communication 

specialists. 

One of the primary reasons for Matlab's widespread use is the extensive 

range of tools it offers for solving diverse tasks across various fields of human 

activity. Within these tools, the Simulink subsystem stands out as particularly 

significant. 

3.3 Simulink 

Simulink is an interactive platform used to model and analyze diverse 

dynamic systems through block diagrams. It offers an interactive modeling 

environment where model behavior and results are displayed in real-time, allowing 
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for parameter adjustments even during execution. Simulink enables the creation of 

customized blocks and block libraries accessible from Matlab, Fortran, or C 

programs, facilitating integration with existing validated models. From version 3.0 

onwards, specialized tools have been integrated into Simulink, enhancing its 

capabilities significantly: 

 

- Stateflow: A graphical tool for designing complex control systems, 

allowing users to model event-driven behavior based on finite state machine 

theory. 

- Stateflow Coder: Generates C code specifically for Stateflow diagrams, 

enabling seamless integration with Simulink models. 

- Real-Time Workshop: Automatically generates C code from Simulink 

models, facilitating the development of code for discrete, continuous, and hybrid 

systems. 

- DSP Blockset: Provides Simulink block libraries for creating and 

simulating digital signal processing systems. 

- Nonlinear Control Design Blockset: Offers an interactive approach to 

automated control system design. 

- Fixed-Point Blockset: Includes Simulink block libraries for modeling 

control systems and dynamic filters using fixed-point arithmetic. 

- Simulink Report Generator: Allows for the creation of reports from 

Simulink and Stateflow models in various formats such as HTML, RTF, XML, and 

SGML. 

3.4 Testing programs 

This section focuses on testing the simulated solutions and strategies 

proposed earlier, alongside real-world testing conditions. Each scenario undergoes 

testing against various obstacle forms, with the most notable changes highlighted 
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in the results. The simulation of robot operations is conducted within the 

MATLAB workspace, with subsequent visualization of the outcomes. Conversely, 

real-world testing employs the SMR robot platform, as outlined in Appendix E. 

The subsection is organized into three primary sections, detailing the evaluation of 

each scenario under both simulated and real conditions, followed by discussions on 

the respective results. Finally, conclusions are drawn based on the findings. 

To start, we'll write code within the programming environment to plot a 

designated route. We'll input the data defining our robot's path from start to end. 

Utilizing the specified points, we can generate the resulting visualization(Fig. 3.2.). 

Program code for rabotic follow waypoints: 

path = [8.00 6.25; 
1.25 1.75; 
5.25 8.25; 
7.25 2.75; 
12.75 4.75; 
15.00 18.00]; 
robotCurrentLocation1 = path(1,:); 
robotGoal1 = path(end,:); 
initialOrientation1 = 0; 
figure(1) 
plot(path(:,1), path(:,2),'m-d','LineWidth',2) 
title('Robot follow waypoints') 
xlabel('X,m') 
ylabel('Y,m') 
xlim([0 20]); ylim([0 20]);grid 
%Trajectory length computation 
m=length(path(:,1)); 
s=0; 
for i=1:m-1 
s=s+sqrt((path(i,1)-path(i+1,1))^2+(path(i,2)-path(i+1,2))^2); 
end 
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Fig 3.2 Robot follow waypoints, S=13.44 meters 

 

 

 

 

3.5 Corridor with obstacles 

The corridor has been filled with multiple obstacles, loaded through a 

specific map code. The modeling environment is configured appropriately. We are 

simulating conditions for the robot, initially opting for automatic movement, 

covering a distance of 16 meters from the starting point to the endpoint. 

In the illustration(Fig. 3.3.), we notice that the robot has covered the distance 

but has come dangerously close to the obstacles, which could potentially lead to it 

becoming stuck. Hence, we will define the points in a way that allows it to travel a 

greater distance of 26 meters, ensuring a more precise arrival at the final 

destination. Automatic movement has been set to observe the robot's motion, 

enabling us to adjust its course as needed. 

Program code: 

filePath 

=fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat'); 
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   load(filePath); 
map = robotics.BinaryOccupancyGrid(simpleMap, 2); 
show(map); 
robotRadius = 0.2; 

  
path=[2.00 2.00; 
2.00 4.00; 
4.00 4.00; 
4.00 9.00; 
8.00 9.00; 
8.00 2.00; 
12.00 2.00]; %(path developed in 2.3) 
startLocation = [2 2]; 
endLocation = [12 2]; 
prm = robotics.PRM; 
prm.Map = map; 
prm.NumNodes = 100; 
path1 = findpath(prm, startLocation, endLocation); 
show(prm, 'Map', 'on', 'Roadmap', 'off');hold on 
robotCurrentLocation = path(1,:); 
robotGoal = path(end,:); 
initialOrientation = 0; 
m1=length(path1(:,1)); 
plot(path(:,1), path(:,2),'m-d','LineWidth',2) 
xlim([0 12]) 
ylim([0 12]) 
m=length(path(:,1)); 
s1=0; 
s2=0; 
% %Trajectory length computation 
for i=1:m1-1 
s1=s1+sqrt((path1(i,1)-path1(i+1,1))^2+(path1(i,2)-path1(i+1,2))^2); 
end 
for i=1:m-1 
s2=s2+sqrt((path(i,1)-path(i+1,1))^2+(path(i,2)-path(i+1,2))^2); 
end 

 

Fig. 3.3. Corridor with obstacles, s1=16.1251 meters (autopoint), 

s2=24 meters(point not auto). 

 

3.6 Labyrinth 
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We repeat the same experiment as with the corridor. The result is shown in 

the picture Figure 3.4. 

Matlab code: 

filePath 

=fullfile(fileparts(which('PathPlanningExample')),'data','exampleMaps.mat'); 
load(filePath); 
map = robotics.BinaryOccupancyGrid(complexMap, 1); 
show(map); 
robotRadius = 0.2; 

  
path=[7.00 5.00; 
  7.00 9.00; 
  31.00 9.00; 
  31.00 18.00; 
  45.00 18.00; 
  45.00 28.00; 
  31.00 28.00; 
  31.00 39.00]; %(path developed in 2.3) 
startLocation = [2 5]; 
endLocation = [31 39]; 
prm = robotics.PRM; 
prm.Map = map; 
prm.NumNodes = 100; 
path1 = findpath(prm, startLocation, endLocation); 
show(prm, 'Map', 'on', 'Roadmap', 'off');hold on 
robotCurrentLocation = path(1,:); 
robotGoal = path(end,:); 
initialOrientation = 0; 
m1=length(path1(:,1)); 
plot(path(:,1), path(:,2),'m-d','LineWidth',2) 
xlim([0 50]) 
ylim([0 40]) 
m=length(path(:,1)); 
s1=0; 
s2=0; 
% %Trajectory length computation 
for i=1:m1-1 
s1=s1+sqrt((path1(i,1)-path1(i+1,1))^2+(path1(i,2)-path1(i+1,2))^2); 
end 
for i=1:m-1 
s2=s2+sqrt((path(i,1)-path(i+1,1))^2+(path(i,2)-path(i+1,2))^2); 
end 
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Fig. 3.4. Robot move in labyrinth, S1=84.1 meters, S2=86 meters; 

3.7 Improvement of the passage of the path with the help of the 

controller 

We'll build upon the previous content and improve the program. Establishing 

a path for the robot, it will traverse the distance independently using the controller. 

We'll set the desired speed, angular velocity, and scanning distance. The 

outcome is illustrated on the diagram: the route is represented by the blue line, with 

our object depicted by an arrow. 

Program code: 

path = [2.0 1.0; 
3.2 5.7; 
6.3 6.7; 
8.2 7.7; 
12.7 14.7; 
18.5 16.3]; 
robotRadius = 0.4; 
robot = ExampleHelperRobotSimulator('emptyMap',2); 
robot.enableLaser(false); 
robot.setRobotSize(robotRadius); 
robot.showTrajectory(true); 
robotCurrentLocation = path(1,:); 
robotGoal = path(end,:); 
initialOrientation=0; 
robotCurrentPose = [robotCurrentLocation initialOrientation]; 
robot.setRobotPose(robotCurrentPose); 
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plot(path(:,1), path(:,2),'k--d') 
xlim([0 20]) 
ylim([0 20]) 
grid on 
controller = robotics.PurePursuit 
controller.Waypoints = path; 
controller.DesiredLinearVelocity = 0.6; 
controller.MaxAngularVelocity = 5; 
controller.LookaheadDistance = 0.4; %; 
goalRadius = 0.1; 
distanceToGoal = norm(robotCurrentLocation - robotGoal); 
controlRate = robotics.Rate(10); 
while( distanceToGoal > goalRadius ) 
% Compute the controller outputs, i.e., the inputs to the robot 
[v, omega] = step(controller, robot.getRobotPose()); 
% Simulate the robot using the controller outputs. 
drive(robot, v, omega); 
% Extract current location information ([X,Y]) 
% from the current pose of therobot 
robotCurrentPose = robot.getRobotPose(); 
% Recompute the distance to the goal 
distanceToGoal = norm(robotCurrentPose(1:2) - robotGoal); 
waitfor(controlRate); 
end 

  
%Trajectory length computation 
%delete(robot); 
m=length(path(:,1)); 
s=0; 
for i=1:m-1 
s=s+sqrt((path(i,1)-path(i+1,1))^2+(path(i,2)-path(i+1,2))^2); 

 

 

 

Fig. 3.5. Robot follow a way with help of controller 

The effectiveness of a straightforward method for placing temporary points 

in a one-way maze to reach an exit is assessed in both simulated and real-world 

environments. In the practical scenario of "escaping a room," if there is a lack of 

positional reference relative to the robot's actual position, the map may become 

misaligned. 
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The diverse range of configurations that have successfully passed testing for 

this scenario demonstrates that solutions devised for task completion perceive the 

surrounding environment differently. Significant efforts have been made to 

improve the performance of the planned route, particularly when dealing with a 

real robot, to minimize task completion time while maintaining the robot's ability 

to navigate dynamic environments. Testing results from SMR suggest that while 

we can implement automatic robot movement, in certain situations, we opt for 

safer movements and guide the robot accordingly to prevent collisions with walls. 

 

SUMMARY 

An autonomous mobile robot operates in partially unknown environments, 

employing diverse strategies to tackle simple tasks.  

Consequently, considerable effort has been devoted to optimizing the 

planned route, ensuring the robot completes tasks swiftly while retaining its 

adaptability to dynamic surroundings. A profound comprehension of the prevalent 

control scheme in mobile robots and the array of functions simulating robot 

behavior has been attained, laying the groundwork for testing new scenarios prior 

to real-world deployment. Furthermore, accurate methods were employed to map 

points across various coordinate systems within the environment. Substantial 

endeavors were also directed towards code optimization for addressing real-world 

challenges, drawing from extensive technical resources on linear indexing and 

vectorization in the MATLAB environment. 

The primary aim of modeling is to showcase the functionality of the selected 

strategy for specific tasks. However, adapting these strategies to suit all possible 

configurations necessitates a significant time investment. 

Lastly, it's worth mentioning that the SMR robot platform serves as a 

comprehensive tool for understanding autonomous mobile robots, even for users 

with limited knowledge of such equipment. 
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