Please use this identifier to cite or link to this item: https://er.nau.edu.ua/handle/NAU/38899
Title: The estimation of microalgae cultivation productivity for biofuel production in nigerian congitions
Authors: Boichenko, Sergii
Shamanskyi, Sergii
Adeniyi, Christiana
Keywords: Biofuel
Microalgae
Microalgal Biomass
irradiance
solar radiation
Issue Date: 2019
Publisher: Наукоємні технології
Series/Report no.: Екологія, хімічна технологія біотехнології та біоінженерія;1(41)
Abstract: Microalgae constitute the main source of materials that can be used as raw materials for many high value bioproducts, the most prominent ones of which are vitamins, lipids, chlorophyll and carotenoids.The key to economic production of biomass and bioproducts from microalgae is to optimize their growth conditions. Microalgae require optimal lighting conditions for efficient photosynthesis. This article focuses on the conditions for growing microalgae mostly chlorella sp. Microalgae require optimal lighting conditions for efficient photosynthesis. Photoperiod, light intensity and wavelength of light are some of the important factors affecting the rate of photosynthesis. Light conditions directly affect the growth, pigment content and protein amount in microalgae. The aim of this paper is to model the productivity of biomass and the accumulation of lipids in algae, as well as to calculate the productivity when cultivated under weather conditions in different regions of Nigeria.The intensity of solar radiation per day is usually one of the variables collected by meteorological stations in Nigeria. Satellite derived solar irradiance over 25 locations in the 5 climatic zones of Nigeria (tropical rainforest, Guinea savannah , Sahel savannah , Sudan savannah , and Mangrove swamp forest ) was analyzed. This article analysis the prospect of production of biofuel of the third generation using microalgal biomass in the weather conditions typical regions of Nigeria. Taking into account the average monthly density of solar radiation in the main regions of Nigeria kWh/m2.day to estimate the possibiity of achieving crop yields of microalgal biomass per square meter of cultivated areas in the weather conditions of Nigeria. In addition, advantages and current limitations of biodiesel production, quantitative and qualitative feasibility of microalgal biodiesel, and its economic feasibility are discussed.
Description: 1. Dutta K., Achlesh D., Jih-Gaw L. Retrospective for alternative fuels. First to fourth generation Renewable Energy. 2014. V. 69. Pp. 114–122. 2. Elegbede I. O., Cinthya G. Algae Biofuel in the Nigerian Energy Context. Environemtal and Climate Technologies. 2016. Vol. 17(1). Pp. 44–60. 3. Shamanskyi S., Boichenko S., Lesia P. Estimation of microalgae cultivation productivity for biofuel production in Ukaine condition. Proceedings of National Aviation University. 2018. № 3. Pp. 67–77. 4. Asmare A., Berhanu M., Demessie A., Ganti S. Murthy. Theoretical Estimation the Potential of Algal Biomass for Biofuel Production and Carbon Sequestration in Ethiopia. International Journal of Renewable Energy Research. 2013. Vol. 3. Pp. 560–570. 5. Birhanu A. A., Ayalew S. Review on Potential and Status of Biofuel Production in Ethiopia. Journal of Plant Sciences. 2017. Vol. 5(2). Pp. 82–89. 6. Шаманський С. Й., Бойченко С. В., Павлюх Л. І., Бойченко М. С. Оцінка масової та ліпідної продуктивності культивування мікроводоростей в умовах Київської області для виробництва біопалива. Modern methods, innovations and experience of practical application in the field of technical sciences. International research and practice conference (27–28 December 2017, Radom, Republic of Poland). 2017. Pp. 87–90. 7. Шаманський С. Й., Бойченко С. В., Аденій К. О. Економічна оцінка виробництва біопалива з мікроводоростей в Україні. Екологічна безпека як основа сталого розвитку суспільства. Європейський досвід і перспективи. ІІІ Міжнародна науково-практична конференція (14 вересня 2018 р., Львів, Україна). 2018. С. 214. 8. Zhu L. Microalgal culture strategies for biofuel production. Biofuels Bioproducts and Biorefining. 2015. Vol. 9. Pp. 801–804. 9. Шаманський С. Й. Оцінювання енергоекономічної ефективності культивування мікроводоростей для виробництва біопалива в Україні. Екологічна безпека. 2018. № 1(25). С. 52–60. 10. Chiemeka I. U., Chineke T. C. Evaluating the global solar energy potential at Uturu, Nigeria. International Journal of Physical Sciences. 2009. Vol. 4(3). Pp. 115–119. 11. Jacovides C. P., Timvios F. S., Papaioannou G., Asimakopoulos D. N., TheofilouC. M. Ratio of PAR to Broadband Solar Radiation Measured in Cyprus. Agricultural and Forest Meteorology. 2004. Vol. 121. Pp. 135–140. 12. Hodaifa G., Martinez M. E., Sanchez S. Use of industrial wastewater from olive-oil extraction for biomass production of Scenedesmus obliquus. Bioresource Technology. 2008. Vol. 99. Pp. 1111–1117. 13. Шаманський С. Й., Бойченко С. В. Інноваційні екологічно безпечні технології у водовідведенні. Монографія. Видавництво «Центр учбової літератури», 2018. 320 с. 14. Delgadillo-Mirquez L. Nitrogen and Phosphate Removal from Wastewater with a Mixed Microalgae and Bacteria Culture. Biotechnology Reports. 2016. №11. Pp. 18–26. 15. Shamanskyi S., Boichenko S. Development of Environmentally Safe Technological Water Disposal Scheme of Aviation Enterprise. Eastern-European Journal of Enterprise Technologies. 2016. Vol. 6/10(84). Pp. 49–57. 16. Shamanskyi S. I., Boichenko S. V. Chapter 11. Environment-Friendly Technology of Airport’s Sewerage. Advances in Sustainable Aviation. under general editorship of Tahir Hikmet Karako, C. Ozgur Colpan, Yasin Şöhret. Springer International Publishing AG 2018. Pp. 161–175. 17. Skjànes K., Rebours C., Lindblad P. Potential for green microalgae to produce hydrogen, pharmaceuticals and other high value products in a combined process. Critical Reviews in Biotechnology. 2013. Vol. 33. Iss. 2. Pp. 172–215. 18. Lau N., Matsui S., Abdullah A. A. Cyanobacteria: Photoautotrophic Microalgal Factories for the Sustainable Synthesis of Industrial Products. Hindawi Publishing Corporation. BioMed Research International. Volume 2015. 9 p. 19. Van Wambeke, Obernosterer F., Mountin T., Duhamel S., Ulloa O., Claustre H. Heterotrophic bacterial production in the eastern South Pacific: longitudinal trends and coupling with primary production. Biogeosciences. 2008. Vol. 5. Pp. 157–169. 20. WangJ., Yang H., Wang F. Mixotrophic cultivation of microalgae for biodiesel production: status and prospects. Applied biochemistry and biotechnology. 2014. Vol. 172. Pp. 3307–3329. 21. Yang J. S., Rasa E., Tantayotai P., Scow K. M, Yuan H. L., Hristova K. R. Mathematical model of Chlorella minutissima UTEX2341 growth and lipid production under photoheterotrophic fermentation conditions. Bioresource Technology. 2011. Vol. 102. Pp. 3077–3082. 22. Sudhakar K., Premalatha M. Theoretical Assessment of Algal Biomass Potential for Carbon Mitigation and Biofuel Production. Iranical Jornal of Energy and Environment. 2012. Vol. 3. Pp. 232–240. 23. Osinowo A. A., Okogbue E. C., Ogungbenro S. B., FashanuO. Analysis of Global Solar Irradiance over Climatic Zones in Nigeria for Solar Energy Applications. Journal of Solar Energy. Volume 2015. Article ID 819307. 9 p.
URI: http://er.nau.edu.ua/handle/NAU/38899
Appears in Collections:Публікації у наукових виданнях співробітників кафедри екології

Files in This Item:
File Description SizeFormat 
13528-35464-1-PB.pdfОсновна стаття557.03 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.