Please use this identifier to cite or link to this item:
https://er.nau.edu.ua/handle/NAU/59468
Title: | Geospatial modeling of radon-prone areas |
Other Titles: | Геопросторове моделювання радононебезпечної території |
Authors: | Dudar, Tamara Viktorivna Titarenko, Olga Viktorivna Nekos, Alla Naumivna Vysotska, Olena Volodymyrivna Porvan, Andrii Pavlovych Дудар, Тамара Вікторіна Тітаренко, Ольга Вікторівна Некос, Алла Наумівна Висоцька, Олена Володимирівна Порван, Андрій Павлович |
Keywords: | radon-prone area geospatial analysis faults spatial density spatial density of the 3-4 order lineaments method of discriminant functions геопросторовий аналіз метод дискримінантних функцій радононебезпечна територія просторова щільність лінеаментів 3-4 порядку просторова щільність розломів |
Issue Date: | 15-Sep-2020 |
Publisher: | Державне підприємство «Державний науково-технічний центр з ядерної та радіаційної безпеки» |
Citation: | Dudar T., Titarenko O., Nekos A., Vysotska O., Porvan A. Geospatial modeling of radon-prone areas. Nuclear and radiation safety. 2020. No 3 (87). P. 28–37. |
Series/Report no.: | 37;3 |
Abstract: | Methods for identification of potentially radon-prone areas using geospatial analysis in ArcGIS 10.6 software environment and mathematical modeling in SPSS 19.0 on the example of high background radiation area have been developed. High level of natural radioactivity associated with uranium content in environment objects and natural uranium occurrences, and also the spatial density of faults (reliable and unreliable) and lineaments were taken into account as well as the distance from uranium mine located nearby.
The method of linear discriminant functions was used to make a math model for determining the level of radon hazard. To do this, data on all locations were divided into training and test samples. Determination of predictors of the mathematical model was performed using Fisher's criterion by their sequential inclusion in discriminant equations. Among the considered 13 factors of radon hazard, seven of them turned out to be informative. For them, canonical coefficients were calculated using the least squares method for first- and second- order polynomials. Based on the values of discriminant functions, a territorial map was constructed to assign the new location to a certain level of radon hazard.
The maps obtained present the correlation of the radon-prone areas with the zones of high spatial density of faults and lineaments, and confirmed by the data of direct indoor radon measurements. In a limited number of measurements, the methods might get a good help in prioritization for round-the-country radon survey. As far as the model for identification of potentially radon-prone areas is mainly based on geological studies, the further research is supposed to be directed to its approbation for a different geological environment of the Ukrainian shield. Розроблено методику ідентифікації потенційно радононебезпечних територій з використанням геопросторового аналізу в програмному середовищі ArcGIS 10.6 та математичного моделювання в програмному середовищі SPSS 19.0 на прикладі території з високим рівнем природної радіоактивності. Основними параметрами для початкового етапу картування пропонується просторова щільність розломів та просторова щільність лінеаментів 3-4 порядків. Інші параметри додаються для більш детального аналізу, залежно від конкретної локації, що розглядається. Отримані карти показують позитивну кореляцію радононебезпечних ділянок із зонами високої просторової щільності розломів та лінеаментів та підтверджуються даними безпосередніх замірів радону в приміщеннях. За умови обмеженої кількості вимірювань, ця методика може бути корисною у визначенні пріоритетності для радонової зйомки по країні. |
Description: | EC Council Directive 2013/59/Euratom (2014). Laying down basic safety standards for protection against the dangers arising from exposure to ionising radiation. Official J. Eur. Union, 57(L13), 1–73. Cinelli, G., Tollefsen, T., Bossew, P., Gruber, V., Bogucarskis, K., De Felice, L., De Cort, M. (2019). Digital version of the European Atlas of natural radiation. J. Environ Radioact, 196:240-252. doi: 10.1016/j.jenvrad.2018.02.008. Szabó, K.Z., Jordan, G., Horváth, Á., Szabó, C. (2014). Mapping the geogenic radon potential: methodology and spatial analysis for central Hungary. J. Environ. Radioact, 129, pp. 107–120. Garcia-Talavera, M., Garca-Perez, A., Rey, C., Ramos, L. (2013). Mapping radon-prone areas using γ-radiation dose rate and geological information. J. Radiol. Prot., 33, pp. 605–620. Pavlenko, T. A., Los, I. P., Aksenov, N. V. (1997). Exposure doses due to indoor Rn-222 in Ukraine and basic directions for their decrease. Radiat. Meas., 28, pp. 733-738. Pavlenko, T., German, O., Fruziuk, M., Aksenov, N., Operchyuk, A. (2014). The Ukrainian Pilot Project “Stop Radon”. Nuclear Technology&Radiation Protection, 29(2), 1-7. Molchanov, O., Soroka, Y., Buzinny, M., Pavlenko, T., Podrezov, A., Soroka, M. (2010). Dispersion of radon in the atmosphere around old uranium mill tailings. Nukleonika, 55(4), 535-538. Orliuk, M. I., Marchenko, A. V., Yatsevskyi, P. I. (2018). Radon and geomagnetic anomalies in Ukraine. Dopovidi NAS of Ukraine, 5, pp. 60-66. Lebed, O. O. Myslinchuk, V. O., Andreev, O. A. (2017). Radon: monitoring and geoecological analysis of its impact on the ecosystem of the city of Rivne. Monograph, RMANUM, 208. Kovalenko, G. D. (2013). Radioecology of Ukraine: Monograph. Kharkiv, INZEK, 344. Titarenko, O. V. (2014). Operational assessment of geoecological state of Krivyi Rig city by remote sensing techniques. Dopovidi NASU, 9, pp. 74-78. Verkhovtsev, V. G., Yuskiv, Yu. V. (2016). Surveying aspects of currently active geostructures of the Ukrainian Shield and its slopes. Ukrainian Journal of Earth Remote Sensing, 8, pp. 43–46. Verkhovtsev, et al. (2014). Prospects for the development of uranium resource base of nuclear power of Ukraine. Kyiv, Naukova Dumka, 355. Clavensjoe, B., Aakerblom, G. (2003). Radon book. Measures against radon in existing buildings. Stockholm, FORMAS, 131. Fryziuk, M. A., Aksionov, N. V., Fedorenko, O. V., Slinchenko, V. A., Chuchupal, I. I. (2018). Estimation of the radon concentrations in children educational institutions of Kropyvnytskyi city for radon protective actions. Environment and Health, 3(88), 56-62. Dudar, T. V. (2019). Uranium mining and milling facilities legacy sites: Ukraine case study. Environmental Problems, 4, pp. 212–218. doi: 10.23939/ep2019.04.212. Dudar, T. V. Verkhovtsev, V. G. Lysychenko, G. V. Tyshchenko, Yu. Ye. (2018). Radon emanation as a source of radiation hazard to the environment. Information & Security: An International Journal. doi: 10.11610/isij.410x. Dudar, T. V., Verkhovtsev, V. G., Tyshchenko, Yu. Ye., Kyselevych, L. S., Buglak O. V. (2019). Radon-prone areas: the Ukrainian Shield case study. XVIIIth International conference “Geoinformatics: Theoretical and Applied Aspects”, Kyiv, Ukraine. Voinovskyi, A. S., Bochai, L. V., Nechaev, S. V. et. al. (2002). Comprehensive metallogenic map of Ukraine. Scale 1: 500,000. Explanatory note, Kyiv, UkrDGRI, State Geological Survey of the Ministry of Resources of Ukraine, 336. Shumlyanskyi, V. O., Subbotin, A. G., Bakarzhiev, A. H. et. al. (2003).Technogenic contamination with radioactive elements in mineral ore deposits. Kyiv, Znannia Ukrainy, 113. Mikhailichenko, O.M. (2018). Report on the Regional Geological Survey of the Territory of Ukraine “Mapping of the Uranium and Thorium Ore Manifestations of the Ukrainian Shield 1: 500,000”. State Enterprise ‘Kirovheolohiia’, 150. Fomin, Yu. O., Demikhov, Yu. M., Verkhovtsev, V. G., Dudar, T. V. (2019). Forms of uranium trace elements in albitites of the Ukrainian Shield. Geochemistry of Technogenesis, Collection of research papers of IEG NAS of Ukraine, Kyiv, 2(30), 106-118. Nosov, K., Zholtkevych, G., Georgiyants, M., Vysotska, O., Balym, Yu., Porvan A. (2017). Development of the descriptive binary model and its application for identification of clumps of toxic cyanobacteria. Eastern-European Journal of Enterprise Technologies, 4(88), 4-11. doi: 10.15587/1729-4061.2017.108285. Nekos, A., Shulika, B., Porvan, A., Vysotska, O., Zhemerov, O. (2017). Control over grape yield in the north-eastern region of Ukraine using mathematical modeling. Eastern-European Journal of Enterprise Technologies, 3(86), 51-59. doi: 10.15587/1729-4061.2017.97969. Vуsotska, O., Georgiyants, M., Nosov, K. et. al. (2018). Development of a spatial ¬dynamical model of the structure of clumps of toxic cyanobacteria for biosafty. Eastern-European Journal of Enterprise Technologies, 10(96), 64-75. doi: 10.15587/1729-4061.2018.150273. Marija J. Norušis (2011). IBM SPSS Statistics 19 Guide to Data Analysis. Pearson Prentice Hall, 651. Balym, Y., Georgiyants, M., Vуsotska, O., Pecherska, A., Porvan, A. (2017). Mathematical modeling of the colorimetric parameters for remote control over the state of natural bioplato. Eastern-European Journal of Enterprise Technologies. 10(88), 29-36. doi: 10.15587/1729-4061.2017.108415. |
URI: | https://er.nau.edu.ua/handle/NAU/59468 |
ISSN: | 2073-6321 |
DOI: | 10.32918/nrs.2020.3(87).04 |
Appears in Collections: | Публікації у наукових виданнях співробітників кафедри екології |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Geospatial Modeling of Radon-Prone Areas.pdf | 3.01 MB | Adobe PDF | View/Open |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.