Пожалуйста, используйте этот идентификатор, чтобы цитировать или ссылаться на этот ресурс: https://er.nau.edu.ua/handle/NAU/62120
Title: A system for generating training samples in semi-supervised learning tasks based on generative-competitive networks
Other Titles: Система генерування навчальної вибірки в задачах напівкерованого навчання на основі генеративно- змагальних мереж
Authors: Trotsiuk, Denys
Троцюк, Денис Олександрович
Keywords: qualification work
generative adversarial neural networks
unbalanced data
object of detection
segmentation
classification
deep learning
deep generative model
кваліфікаційна робота
генеративні змагальні нейронні мережі
незбалансовані дані
об'єкт виявлення
сегментація
класифікація
глибоке навчання
глибока генеративна модель
Issue Date: 27-Dec-2023
Publisher: National Aviation University
Citation: Trotsiuk D.O. A system for generating training samples in semi-supervised learning tasks based on generative-competitive networks. – Thesis for a master degree in "Automation and computer-integrated technologies" – National Aviation University, Kyiv, 2023, 85 p.
Abstract: In today's world of rapid technological development, artificial intelligence (AI) is taking a special place, being implemented in various areas of human activity, ranging from industrial automation to creative professions. Among the areas of AI research, generative adversarial networks (GANs) have proven to be a promising tool for generating new data that mimics real-world patterns. GANs play a key role in the development of machine learning, in particular, in image synthesis, natural language processing, music creation, and other tasks. The relevance of the research topic is due to the rapid development of neural networks and the need to create efficient and reliable systems that can adapt to changing production conditions and market needs. Despite the large number of studies in this area, the structural-parametric synthesis of ANNs still requires in-depth study to optimize the network training process and improve the quality of the generated data. The purpose of this master's thesis is to develop structural-parametric synthesis methods for optimizing GANs, which will improve the accuracy and diversification of the generated data. As part of the work, the author of the master's thesis investigated the following aspects: analysis of existing GAN architectures, development of new methods of structural synthesis and parametric optimization, experimental verification of the developed methods on real data. The object of research is generatively adversarial networks, and the subject is methods of their structural and parametric synthesis. In the course of the work, the author used such research methods as analysis of scientific literature, computer modeling, experimental methods, and statistical data processing. As a result of the work, it is expected to obtain a model of GAN with improved characteristics, which will expand the possibilities of their practical use in various fields, such as visual art, design automation, game development, and other areas where it is necessary to generate high-quality content.
У сучасному світі стрімкого розвитку технологій штучний інтелект (ШІ) займає особливе місце, впроваджуючи його в різні сфери людської діяльності, починаючи від промислової автоматизації і закінчуючи творчими професіями. Серед сфер досліджень штучного інтелекту генеративні змагальні мережі (GAN) виявилися перспективним інструментом для створення нових даних, які імітують моделі реального світу. GAN відіграють ключову роль у розвитку машинного навчання, зокрема, в синтезі зображень, обробці природної мови, створенні музики та інших завданнях. Актуальність теми дослідження зумовлена швидким розвитком нейронних мереж та необхідністю створення ефективних і надійних систем, здатних адаптуватися до мінливих умов виробництва та потреб ринку. Незважаючи на велику кількість досліджень у цій галузі, структурно-параметричний синтез ШНМ все ще потребує поглибленого вивчення для оптимізації процесу навчання мережі та підвищення якості генерованих даних. Метою даної магістерської роботи є розробка методів структурно-параметричного синтезу для оптимізації GAN, що дозволить підвищити точність та диверсифікацію згенерованих даних. В рамках роботи автором магістерської роботи були досліджені наступні аспекти: аналіз існуючих архітектур GAN, розробка нових методів структурного синтезу та параметричної оптимізації, експериментальна перевірка розроблених методів на реальних даних. Об’єктом дослідження є генеративно змагальні мережі, а предметом – методи їх структурного та параметричного синтезу. У ході роботи автор використовував такі методи дослідження, як аналіз наукової літератури, комп’ютерне моделювання, експериментальні методи, статистична обробка даних. В результаті роботи очікується отримати модель GAN з покращеними характеристиками, що розширить можливості їх практичного використання в різних сферах, таких як візуальне мистецтво, автоматизація проектування, розробка ігор та інших сферах, де це можливо. необхідні для створення якісного контенту.
Description: Робота публікується згідно наказу Ректора НАУ від 27.05.2021 р. №311/од "Про розміщення кваліфікаційних робіт здобувачів вищої освіти в репозиторії університету". Керівник роботи: д.т.н., професор, зав. кафедри авіаційних комп’ютерно-інтегрованих комплексів, Синєглазов Віктор Михайлович
URI: https://er.nau.edu.ua/handle/NAU/62120
Располагается в коллекциях:Кваліфікаційні роботи здобувачів вищої освіти кафедри авіаційних комп'ютерно-інтегрованих комплексів (НОВА)

Файлы этого ресурса:
Файл Описание РазмерФормат 
FAET ІЗ-225М Trotsiuk D.O..pdfКваліфікаційна робота з пояснювальною запискою3.49 MBAdobe PDFПросмотреть/Открыть


Все ресурсы в архиве электронных ресурсов защищены авторским правом, все права сохранены.